首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipid A and inner core regions of Rhizobium leguminosarum lipopolysaccharide contain four galacturonic acid (GalA) residues. Two are attached to the outer unit of the 3-deoxy-D-manno-octulosonic acid (Kdo) disaccharide, one to the mannose residue, and one to the 4'-position of lipid A. The enzymes RgtA and RgtB, described in the accompanying article, catalyze GalA transfer to the Kdo residue, whereas RgtC is responsible for modification of the core mannose unit. Heterologous expression of RgtA in Sinorhizhobium meliloti 1021, a strain that normally lacks GalA modifications on its Kdo disaccharide, resulted in detectable GalA transferase activity in isolated membrane preparations, suggesting that the appropriate GalA donor substrate is available in S. meliloti membranes. In contrast, heterologous expression of RgtA in Escherichia coli yielded inactive membranes. However, RgtA activity was detectable in the E. coli system when total lipids from R. leguminosarum 3841 or S. meliloti 1021 were added. We have now purified and characterized dodecaprenyl (C60) phosphate-GalA as a minor novel lipid of R. leguminosarum 3841 and S. meliloti. This substance is stable to mild base hydrolysis and was purified by DEAE-cellulose column chromatography. Its structure was established by a combination of electrospray ionization mass spectrometry and gas-liquid chromatography. Purified dodecaprenyl phosphate-GalA supports the efficient transfer of GalA to Kdo2-1-dephospho-lipid IV(A) by membranes of E. coli cells expressing RgtA, RgtB, and RgtC. The identification of a polyisoprene phosphate-GalA donor substrate suggests that the active site of RgtA faces the periplasmic side of the inner membrane. This work represents the first definitive characterization of a lipid-linked GalA derivative with the proposed structure dodecaprenyl phosphate-beta-D-GalA.  相似文献   

2.
The lipopolysaccharide (LPS) core domain of Gram-negative bacteria plays an important role in outer membrane stability and host interactions. Little is known about the biochemical properties of the glycosyltransferases that assemble the LPS core. We now report the purification and characterization of the Rhizobium leguminosarum mannosyl transferase LpcC, which adds a mannose unit to the inner 3-deoxy-d-manno-octulosonic acid (Kdo) moiety of the LPS precursor, Kdo(2)-lipid IV(A). LpcC containing an N-terminal His(6) tag was assayed using GDP-mannose as the donor and Kdo(2)-[4'-(32)P]lipid IV(A) as the acceptor and was purified to near homogeneity. Sequencing of the N terminus confirmed that the purified enzyme is the lpcC gene product. Mild acid hydrolysis of the glycolipid generated in vitro by pure LpcC showed that the mannosylation occurs on the inner Kdo residue of Kdo(2)-[4'-(32)P]lipid IV(A). A lipid acceptor substrate containing two Kdo moieties is required by LpcC, since no activity is seen with lipid IV(A) or Kdo-lipid IV(A). The purified enzyme can use GDP-mannose or, to a lesser extent, ADP-mannose (both of which have the alpha-anomeric configuration) for the glycosylation of Kdo(2)-[4'-(32)P]lipid IV(A). Little or no activity is seen with ADP-glucose, UDP-glucose, UDP-GlcNAc, or UDP-galactose. A Salmonella typhimurium waaC mutant, which lacks the enzyme for incorporating the inner l-glycero-d-manno-heptose moiety of LPS, regains LPS with O-antigen when complemented with lpcC. An Escherichia coli heptose-less waaC-waaF deletion mutant expressing the R. leguminosarum lpcC gene likewise generates a hybrid LPS species consisting of Kdo(2)-lipid A plus a single mannose residue. Our results demonstrate that heterologous lpcC expression can be used to modify the structure of the Salmonella and E. coli LPS cores in living cells.  相似文献   

3.
The lpcC gene of Rhizobium leguminosarum and the lpsB gene of Sinorhizobium meliloti encode protein orthologs that are 58% identical over their entire lengths of about 350 amino acid residues. LpcC and LpsB are required for symbiosis with pea and Medicago plants, respectively. S. meliloti lpsB complements a mutant of R. leguminosarum defective in lpcC, but the converse does not occur. LpcC encodes a highly selective mannosyl transferase that utilizes GDP-mannose to glycosylate the inner 3-deoxy-D-manno-octulosonic acid (Kdo) residue of the lipopolysaccharide precursor Kdo(2)-lipid IV(A). We now demonstrate that LpsB can also efficiently mannosylate the same acceptor substrate as does LpcC. Unexpectedly, however, the sugar nucleotide selectivity of LpsB is greatly relaxed compared with that of LpcC. Membranes of the wild-type S. meliloti strain 2011 catalyze the glycosylation of Kdo(2)-[4'-(32)P]lipid IV(A) at comparable rates using a diverse set of sugar nucleotides, including GDP-mannose, ADP-mannose, UDP-glucose, and ADP-glucose. This complex pattern of glycosylation is due entirely to LpsB, since membranes of the S. meliloti lpsB mutant 6963 do not glycosylate Kdo(2)-[4'-(32)P]lipid IV(A) in the presence of any of these sugar nucleotides. Expression of lpsB in E. coli using a T7lac promoter-driven construct results in the appearance of similar multiple glycosyl transferase activities seen in S. meliloti 2011 membranes. Constructs expressing lpcC display only mannosyl transferase activity. We conclude that LpsB, despite its high degree of similarity to LpcC, is a much more versatile glycosyltransferase, probably accounting for the inability of lpcC to complement S. meliloti lpsB mutants. Our findings have important implications for the regulation of core glycosylation in S. meliloti and other bacteria containing LpcC orthologs.  相似文献   

4.
Lipopolysaccharides (LPSs) are prominent structural components of the outer membranes of gram-negative bacteria. In Rhizobium spp. LPS functions as a determinant of the nitrogen-fixing symbiosis with legumes. LPS is anchored to the outer surface of the outer membrane by the lipid A moiety, the principal lipid component of the outer bacterial surface. Several notable structural differences exist between the lipid A of Escherichia coli and that of Rhizobium leguminosarum, suggesting that diverse biosynthetic pathways may also exist. These differences include the lack of phosphate groups and the presence of a 4'-linked GalA residue in the latter. However, we now show that UDP-GlcNAc plays a key role in the biosynthesis of lipid A in R. leguminosarum, as it does in E. coli. 32P-labeled monosaccharide and disaccharide lipid A intermediates from E. coli were isolated and tested as substrates in cell extracts of R. leguminosarum biovars phaseoli and viciae. Six enzymes that catalyze the early steps of E. coli lipid A biosynthesis were also present in extracts of R. leguminosarum. Our results show that all the enzymes of the pathway leading to the formation of the intermediate 3-deoxy-D-manno-2-octulosonic acid (Kdo2)-lipid IVA are functional in both R. leguminosarum biovars. These enzymes include (i) UDP-GlcNAc 3-O-acyltransferase; (ii) UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase; (iii) UDP-3-O-(R-3-hydroxymyristoyl)-GlcN N-acyltransferase; (iv) disaccharide synthase; (v) 4'-kinase; and (vi) Kdo transferase. Our data suggest that the early steps in lipid A biosynthesis are conserved and that the divergence leading to rhizobial lipid A may occur at a later stage in the pathway, presumably after the attachment of the Kdo residues.  相似文献   

5.
Membranes of Rhizobium leguminosarum contain a 3-deoxy-D-manno-octulosonic acid (Kdo)-activated lipid A 4'-phosphatase required for generating the unusual phosphate-deficient lipid A found in this organism. The enzyme has been solubilized with Triton X-100 and purified 80-fold. As shown by co-purification and thermal inactivation studies, the 4'-phosphatase catalyzes not only the hydrolysis of (Kdo)2-[4'-32P]lipid IVA but also the transfer the 4'-phosphate of Kdo2-[4'-32P]lipid IVA to the inositol headgroup of phosphatidylinositol (PtdIns) to generate PtdIns-4-P. Like the 4'-phosphatase, the phosphotransferase activity is not present in Escherichia coli, Rhizobium meliloti, or the nodulation-defective mutant 24AR of R. leguminosarum. The specific activity for the phosphotransferase reaction is about 2 times higher than that of the 4'-phosphatase. The phosphotransferase assay conditions are similar to those used for PtdIns kinases, except that ATP and Mg2+ are omitted. The apparent Km for PtdIns is approximately 500 microM versus 20-100 microM for most PtdIns kinases, but the phosphotransferase specific activity in crude cell extracts is higher than that of most PtdIns kinases. The phosphotransferase is absolutely specific for the 4-position of PtdIns and is highly selective for PtdIns as the acceptor. The 4'-phosphatase/phosphotransferase can be eluted from heparin- or Cibacron blue-agarose with PtdIns. A phosphoenzyme intermediate may account for the dual function of this enzyme, since a single 32P-labeled protein species (Mr approximately 68,000) can be trapped and visualized by SDS gel electrophoresis of enzyme preparations incubated with Kdo2-[4'-32P]lipid IVA. Although PtdIns is not detected in cultures of R. leguminosarum/etli (CE3), PtdIns may be synthesized during nodulation or supplied by plant membranes, given that soybean PtdIns is an excellent phosphate acceptor. A bacterial enzyme for generating PtdIns-4-P and a direct link between lipid A and PtdIns-4-P biosynthesis have not been reported previously.  相似文献   

6.
Rhizobium lipopolysaccharide (LPS) contains four terminally linked galacturonic acid (GalA) residues; one attached to the lipid A and three attached to the core oligosaccharide moiety. Attachment of the GalA residues requires the lipid donor dodecaprenyl-phosphate GalA (Dod-P-GalA), which is synthesized by the GalA transferase RgtE reported here. The galacturonosyl transferases RgtA, -B, and -C utilize Dod-P-GalA to attach GalAs on the LPS core region, and RgtD attaches GalA to the lipid A 4' position. As reported here, the functions of the rgtD and rgtE genes were determined via insertion mutagenesis and structural characterization of the mutant lipid A. The rgtE(-) mutant lacked Dod-P-GalA as determined by mass spectrometry of total lipid extracts and the inability of rgtE(-) mutant membranes to provide the substrate for heterologously expressed RgtA activity. In addition, we created single mutations in each of the rgtA, -B, -C, -D, and -E genes to study the biological function of the GalA residues. The structures of the core oligosaccharide region from each of the rgt mutants were elucidated by glycosyl linkage analysis. Each mutant was assayed for its sensitivity to sodium deoxycholate and to the antimicrobial cationic peptide, polymyxin B (PmxB). The rgt mutants were more sensitive than the parent strain to deoxycholate by varying degrees. However, the rgtA, -B, and -C mutants were more resistant to PmxB, whereas the rgtD and E mutants were less resistant in comparison to the parent strain.  相似文献   

7.
Certain strains of Escherichia coli and Salmonella contain lipopolysaccharide (LPS) modified with a phosphoethanolamine (pEtN) group at position 7 of the outer 3-deoxy-d-manno-octulosonic acid (Kdo) residue. Using the heptose-deficient E. coli mutant WBB06 (Brabetz, W., Muller-Loennies, S., Holst, O., and Brade, H. (1997) Eur. J. Biochem. 247, 716-724), we now demonstrate that the critical parameter determining the presence or absence of pEtN is the concentration of CaCl(2) in the medium. As judged by mass spectrometry, half the LPS in WBB06, grown on nutrient broth with 5 mm CaCl(2), is derivatized with a pEtN group, whereas LPS from WBB06 grown without supplemental CaCl(2) is not. Membranes from E. coli WBB06 or wild-type W3110 grown on 5-50 mm CaCl(2) contain a novel pEtN transferase that uses the precursor Kdo(2)-[4'-(32)P]lipid IV(A) as an acceptor. Transferase is not present in membranes of E. coli grown with 5 mm MgCl(2), BaCl(2), or ZnCl(2). Hydrolysis of the in vitro reaction product, pEtN-Kdo(2)-[4'-(32)P]lipid IV(A), at pH 4.5 shows that the pEtN substituent is located on the outer Kdo moiety. Membranes from an E. coli pss knockout mutant grown on 50 mm CaCl(2), which lack phosphatidylethanolamine, do not contain measurable transferase activity unless exogenous phosphatidylethanolamine is added back to the assay system. The induction of the pEtN transferase by 5-50 mm CaCl(2) suggests possible role(s) in establishing transformation competence or resisting environmental stress, and represents the first example of a regulated covalent modification of the inner core of E. coli LPS.  相似文献   

8.
Six DA  Carty SM  Guan Z  Raetz CR 《Biochemistry》2008,47(33):8623-8637
Escherichia coli lipid A is a hexaacylated disaccharide of glucosamine with secondary laurate and myristate chains on the distal unit. Hexaacylated lipid A is a potent agonist of human Toll-like receptor 4, whereas its tetra- and pentaacylated precursors are antagonists. The inner membrane enzyme LpxL transfers laurate from lauroyl-acyl carrier protein to the 2'- R-3-hydroxymyristate moiety of the tetraacylated lipid A precursor Kdo 2-lipid IV A. LpxL has now been overexpressed, solubilized with n-dodecyl beta- d-maltopyranoside (DDM), and purified to homogeneity. LpxL migration on a gel filtration column is consistent with a molecular mass of 80 kDa, suggestive of an LpxL monomer (36 kDa) embedded in a DDM micelle. Mass spectrometry showed that deformylated LpxL was the predominant species, noncovalently bound to as many as 12 DDM molecules. Purified LpxL catalyzed not only the formation in vitro of Kdo 2-(lauroyl)-lipid IV A but also a slow second acylation, generating Kdo 2-(dilauroyl)-lipid IV A. Consistent with the Kdo dependence of crude LpxL in membranes, Kdo 2-lipid IV A is preferred 6000-fold over lipid IV A by the pure enzyme. Sequence comparisons suggest that LpxL shares distant homology with the glycerol-3-phosphate acyltransferase (GPAT) family, including a putative catalytic dyad located in a conserved H(X) 4D/E motif. Mutation of H132 or E137 to alanine reduces specific activity by over 3 orders of magnitude. Like many GPATs, LpxL can also utilize acyl-CoA as an alternative acyl donor, albeit at a slower rate. Our results show that the acyltransferases that generate the secondary acyl chains of lipid A are members of the GPAT family and set the stage for structural studies.  相似文献   

9.
An unusual feature of lipid A from plant endosymbionts of the Rhizobiaceae family is the presence of a 27-hydroxyoctacosanoic acid (C28) moiety. An enzyme that incorporates this acyl chain is present in extracts of Rhizobium leguminosarum, Rhizobium etli, and Sinorhizobium meliloti but not Escherichia coli. The enzyme transfers 27-hydroxyoctacosanate from a specialized acyl carrier protein (AcpXL) to the precursor Kdo2 ((3-deoxy-d-manno-octulosonic acid)2)-lipid IV(A). We now report the identification of five hybrid cosmids that direct the overexpression of this activity by screening approximately 4000 lysates of individual colonies of an R. leguminosarum 3841 genomic DNA library in the host strain S. meliloti 1021. In these heterologous constructs, both the C28 acyltransferase and C28-AcpXL are overproduced. Sequencing of a 9-kb insert from cosmid pSSB-1, which is also present in the other cosmids, shows that acpXL and the lipid A acyltransferase gene (lpxXL) are close to each other but not contiguous. Nine other open reading frames around lpxXL were also sequenced. Four of them encode orthologues of fatty acid and/or polyketide biosynthetic enzymes. AcpXL purified from S. meliloti expressing pSSB-1 is fully acylated, mainly with 27-hydroxyoctacosanoate. Expression of lpxXL in E. coli behind a T7 promoter results in overproduction in vitro of the expected R. leguminosarum acyltransferase, which is C28-AcpXL-dependent and utilizes (3-deoxy-d-manno-octulosonic acid)2-lipid IV(A) as the acceptor. These findings confirm that lpxXL is the structural gene for the C28 acyltransferase. LpxXL is distantly related to the lauroyltransferase (LpxL) of E. coli lipid A biosynthesis, but highly significant LpxXL orthologues are present in Agrobacterium tumefaciens, Brucella melitensis, and all sequenced strains of Rhizobium, consistent with the occurrence of long secondary acyl chains in the lipid A molecules of these organisms.  相似文献   

10.
Bordetella pertussis lipopolysaccharide (LPS) contains a single 2-keto-3-deoxy-D-manno-octulosonic acid (Kdo) residue, whereas LPS from Escherichia coli contains at least two. Here we report that B. pertussis waaA encodes an enzyme capable of transferring only a single Kdo during the biosynthesis of LPS and that this activity is sufficient to complement an E. coli waaA mutation.  相似文献   

11.
The lipid A domain anchors lipopolysaccharide (LPS) to the outer membrane and is typically a disaccharide of glucosamine that is both acylated and phosphorylated. The core and O-antigen carbohydrate domains are linked to the lipid A moiety through the eight-carbon sugar 3-deoxy-D-manno-octulosonic acid known as Kdo. Helicobacter pylori LPS has been characterized as having a single Kdo residue attached to lipid A, predicting in vivo a monofunctional Kdo transferase (WaaA). However, using an in vitro assay system we demonstrate that H. pylori WaaA is a bifunctional enzyme transferring two Kdo sugars to the tetra-acylated lipid A precursor lipid IV(A). In the present work we report the discovery of a Kdo hydrolase in membranes of H. pylori capable of removing the outer Kdo sugar from Kdo2-lipid A. Enzymatic removal of the Kdo group was dependent upon prior removal of the 1-phosphate group from the lipid A domain, and mass spectrometric analysis of the reaction product confirmed the enzymatic removal of a single Kdo residue by the Kdo-trimming enzyme. This is the first characterization of a Kdo hydrolase involved in the modification of gram-negative bacterial LPS.  相似文献   

12.
The lipopolysaccharide of Haemophilus influenzae contains a single 3-deoxy-D-manno-octulosonic acid (Kdo) residue derivatized with either a phosphate or an ethanolamine pyrophosphate moiety at the 4-OH position. In previous studies, we identified a kinase unique to H. influenzae extracts that phosphorylates Kdo-lipid IV(A), a key precursor of lipopolysaccharide in this organism. We have now identified the gene encoding the Kdo kinase by using an expression cloning approach. A cosmid library containing random DNA fragments from H. influenzae strain Rd was constructed in Escherichia coli. Extracts of 472 colonies containing individual hybrid cosmids were assayed for Kdo kinase activity. A single hybrid cosmid directing expression of the kinase was found. The kinase gene was identified by activity assays, sub-cloning, and DNA sequencing. When the putative kinase gene was expressed in E. coli behind a T7 promoter, massive overproduction of kinase activity was achieved ( approximately 8000-fold higher than in H. influenzae membranes). The catalytic properties and the product generated by the overexpressed kinase, assayed with Kdo-lipid IV(A) as the substrate, were the same as observed with H. influenzae membranes. Unexpectedly, the kinase gene was identical to a previously characterized open reading frame (orfZ), which had been shown to be important for establishing bacteremia in an infant rat model (Hood, D. W., Deadman, M. E., Allen, T., Masoud, H., Martin, A., Brisson, J. R., Fleischmann, R., Venter, J. C., Richards, J. C., and Moxon, E. R. (1996) Mol. Microbiol. 22, 951-965). However, based solely on the genome sequence of H. influenzae Rd, no biochemical function had been assigned to the product of orfZ, which we now designate kdkA ("Kdo kinase A"). Although Kdo phosphorylation may be critical for bacterial virulence of H. influenzae, it does not appear to be required for growth.  相似文献   

13.
A 2-kb region that complements the Tn5-derived lipopolysaccharide (LPS) rough mutant Rhizobium leguminosarum RU301 was sequenced. Two open reading frames (ORFs) were identified. The first ORF (lpcA) is homologous to a family of bacterial sugar transferases involved in LPS core tetrasaccharide biosynthesis. ORF2 (lpcB), in which Tn5 transposed, has no significant homology to any DNA in the GenBank-EMBL databases. Chemical characterization of LPS produced by strain RU301 demonstrated that the 3-deoxy-D-manno-2-octulosonic acid (Kdo) residue which normally attaches the core tetrasaccharide to the O chain was missing, suggesting that IpcB may encode a CMP-Kdo:LPS Kdo transferase.  相似文献   

14.
The structures of Rhizobium leguminosarum and Rhizobium etli lipid A are distinct from those found in other Gram-negative bacteria. Whereas the more typical Escherichia coli lipid A is a hexa-acylated disaccharide of glucosamine that is phosphorylated at positions 1 and 4', R. etli and R. leguminosarum lipid A consists of a mixture of structurally related species (designated A-E) that lack phosphate. A conserved distal unit, comprised of a diacylated glucosamine moiety with galacturonic acid residue at position 4' and a secondary 27-hydroxyoctacosanoyl (27-OH-C28) as part of a 2' acyloxyacyl moiety, is present in all five components. The proximal end is heterogeneous, differing in the number and lengths of acyl chains and in the identity of the sugar itself. A proximal glucosamine unit is present in B and C, but an unusual 2-amino-2-deoxy-gluconate moiety is found in D-1 and E. We now demonstrate that membranes of R. leguminosarum and R. etli can convert B to D-1 in a reaction that requires added detergent and is inhibited by EDTA. Membranes of Sinorhizobium meliloti and E. coli lack this activity. Mass spectrometry demonstrates that B is oxidized in vitro to a substance that is 16 atomic mass units larger, consistent with the formation of D-1. The oxidation of the lipid A proximal unit is also demonstrated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry in the positive and negative modes using the model substrate, 1-dephospho-lipid IV(A). With this material, an additional intermediate (or by product) is detected that is tentatively identified as a lactone derivative of 1-dephospho-lipid IV(A). The enzyme, presumed to be an oxidase, is located exclusively in the outer membrane of R. leguminosarum as judged by sucrose gradient analysis. To our knowledge, an oxidase associated with the outer membranes of Gram-negative bacteria has not been reported previously.  相似文献   

15.
The core oligosaccharide region of Klebsiella pneumoniae lipopolysaccharide contains some novel features that distinguish it from the corresponding lipopolysaccharide region in other members of the Enterobacteriaceae family, such as Escherichia coli and Salmonella. The conserved Klebsiella outer core contains the unusual trisaccharide 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo)-(2,6)-GlcN-(1,4)-GalUA. In general, Kdo residues are normally found in the inner core, but in K. pneumoniae, this Kdo residue provides the ligation site for O polysaccharide. The outer core Kdo residue can also be non-stoichiometrically substituted with an l-glycero-d-manno-heptopyranose (Hep) residue, another component more frequently found in the inner core. To understand the genetics and biosynthesis of core oligosaccharide synthesis in Klebsiella, the gene products involved in the addition of the outer core GlcN (WabH), Kdo (WabI), and Hep (WabJ) residues as well as the inner core HepIII residue (WaaQ) were identified. Non-polar mutations were created in each of the genes, and the resulting mutant lipopolysaccharide was analyzed by mass spectrometry. The in vitro glycosyltransferase activity of WabI and WabH was verified. WabI transferred a Kdo residue from CMP-Kdo onto the acceptor lipopolysaccharide. The activated precursor required for GlcN addition has not been identified. However, lysates overexpressing WabH were able to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the outer core.  相似文献   

16.
The Escherichia coli K-12 strain KPM22, defective in synthesis of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo), is viable with an outer membrane (OM) composed predominantly of lipid IV(A), a precursor of lipopolysaccharide (LPS) biosynthesis that lacks any glycosylation. To sustain viability, the presence of a second-site suppressor was proposed for transport of lipid IV(A) from the inner membrane (IM), thus relieving toxic side-effects of lipid IV(A) accumulation and providing sufficient amounts of LPS precursors to support OM biogenesis. We now report the identification of an arginine to cysteine substitution at position 134 of the conserved IM protein YhjD in KPM22 that acts as a compensatory suppressor mutation of the lethal DeltaKdo phenotype. Further, the yhjD400 suppressor allele renders the LPS transporter MsbA dispensable for lipid IV(A) transmembrane trafficking. The independent derivation of a series of non-conditional KPM22-like mutants from the Kdo-dependent parent strain TCM15 revealed a second class of suppressor mutations localized to MsbA. Proline to serine substitutions at either residue 18 or 50 of MsbA relieved the Kdo growth dependence observed in the isogenic wild-type strain. The possible impact of these suppressor mutations on structure and function are discussed by means of a computationally derived threading model of MsbA.  相似文献   

17.
Lipid A from the nitrogen-fixing bacterium Rhizobium leguminosarum displays many structural differences compared with lipid A of Escherichia coli. R. leguminosarum lipid A lacks the usual 1- and 4'-phosphate groups but is derivatized with a galacturonic acid substituent at position 4'. R. leguminosarum lipid A often contains an aminogluconic acid moiety in place of the proximal glucosamine 1-phosphate unit. Striking differences also exist in the secondary acyl chains attached to E. coli versus R. leguminosarum lipid A, specifically the presence of 27-hydroxyoctacosanoate and the absence of laurate and myristate in R. leguminosarum. Recently, we have found that lipid A isolated by pH 4.5 hydrolysis of R. leguminosarum cells is more heterogeneous than previously reported (Que, N. L. S., Basu, S. S., White, K. A., and Raetz, C. R. H. (1998) FASEB J. 12, A1284 (abstr.)). Lipid A species lacking the 3-O-linked beta-hydroxymyristoyl residue on the proximal unit contribute to this heterogeneity. We now describe a membrane-bound deacylase from R. leguminosarum that removes a single ester-linked beta-hydroxymyristoyl moiety from some lipid A precursors, including lipid X, lipid IVA, and (3-deoxy-D-manno-octulosonic acid)2-lipid IVA. The enzyme does not cleave E. coli lipid A or lipid A precursors containing an acyloxyacyl moiety on the distal glucosamine unit. The enzyme is not present in extracts of E. coli or Rhizobium meliloti, but it is readily demonstrable in membranes of Pseudomonas aeruginosa, which also contains a significant proportion of 3-O-deacylated lipid A species. Optimal reaction rates are seen between pH 5.5 and 6.5. The enzyme requires a nonionic detergent and divalent metal ions for activity. It cleaves the monosaccharide lipid X at about 5% the rate of lipid IVA and (3-deoxy-D-manno-octulosonic acid)2-lipid IVA. 1H NMR spectroscopy of the deacylase reaction product, generated with lipid IVA as the substrate, confirms unequivocally that the enzyme cleaves only the ester-linked beta-hydroxymyristoyl residue at the 3-position of the glucosamine disaccharide.  相似文献   

18.
Escherichia coli MsbA, the proposed inner membrane lipid flippase, is an essential ATP-binding cassette transporter protein with homology to mammalian multidrug resistance proteins. Depletion or loss of function of MsbA results in the accumulation of lipopolysaccharide and phospholipids in the inner membrane of E. coli. MsbA modified with an N-terminal hexahistidine tag was overexpressed, solubilized with a nonionic detergent, and purified by nickel affinity chromatography to approximately 95% purity. The ATPase activity of the purified protein was stimulated by phospholipids. When reconstituted into liposomes prepared from E. coli phospholipids, MsbA displayed an apparent K(m) of 878 microm and a V(max) of 37 nmol/min/mg for ATP hydrolysis in the presence of 10 mm Mg(2+). Preincubation of MsbA-containing liposomes with 3-deoxy-d-mannooctulosonic acid (Kdo)(2)-lipid A increased the ATPase activity 4-5-fold, with half-maximal stimulation seen at 21 microm Kdo(2)-lipid A. Addition of Kdo(2)-lipid A increased the V(max) to 154 nmol/min/mg and decreased the K(m) to 379 microm. Stimulation was only seen with hexaacylated lipid A species and not with precursors, such as diacylated lipid X or tetraacylated lipid IV(A). MsbA containing the A270T substitution, which renders cells temperature-sensitive for growth and lipid export, displayed ATPase activity similar to that of the wild type protein at 30 degrees C but was significantly reduced at 42 degrees C. These results provide the first in vitro evidence that MsbA is a lipid-activated ATPase and that hexaacylated lipid A is an especially potent activator.  相似文献   

19.
Lipid A of Rhizobium leguminosarum, a nitrogen-fixing plant endosymbiont, displays several significant structural differences when compared with Escherichia coli. An especially striking feature of R. leguminosarum lipid A is that it lacks both the 1- and 4'-phosphate groups. Distinct lipid A phosphatases that attack either the 1 or the 4' positions have previously been identified in extracts of R. leguminosarum and Rhizobium etli but not Sinorhizobium meliloti or E. coli. Here we describe the identification of a hybrid cosmid (pMJK-1) containing a 25-kb R. leguminosarum 3841 DNA insert that directs the overexpression of the lipid A 1-phosphatase. Transfer of pMJK-1 into S. meliloti 1021 results in heterologous expression of 1-phosphatase activity, which is normally absent in extracts of strain 1021, and confers resistance to polymyxin. Sequencing of a 7-kb DNA fragment derived from the insert of pMJK-1 revealed the presence of a lipid phosphatase ortholog (designated LpxE). Expression of lpxE in E. coli behind the T7lac promoter results in the appearance of robust 1-phosphatase activity, which is normally absent in E. coli membranes. Matrix-assisted laser-desorption/time of flight and radiochemical analysis of the product generated in vitro from the model substrate lipid IVA confirms the selective removal of the 1-phosphate group. These findings show that lpxE is the structural gene for the 1-phosphatase. The availability of lpxE may facilitate the re-engineering of lipid A structures in diverse Gram-negative bacteria and allow assessment of the role of the 1-phosphatase in R. leguminosarum symbiosis with plants. Possible orthologs of LpxE are present in some intracellular human pathogens, including Francisella tularensis, Brucella melitensis, and Legionella pneumophila.  相似文献   

20.
GseA is an enzyme from Chlamydia trachomatis that can catalyse the addition of three 3-deoxy-D-manno-octulosonic acid (Kdo) residues onto lipid A precursors. GseA is similar, and in a few stretches identical, in its amino acid sequence to KdtA, an Escherichia coli Kdo transferase. In this study we altered an amino acid of GseA in a region that is identical between GseA and KdtA to test its importance in the structure or catalytic activity of GseA. We found that when Arg276 was changed to Lys, Ile or Ser, GseA activity was lost, suggesting an enzymatic role for this amino acid residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号