首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the prokaryote Synechococcus RF-1, circadian changes in the uptake of l-leucine and 2-amino isobutyric acid were observed. Uptake rates in the light period were higher than in the dark period for cultures entrained by 12/12 hour light/dark cycles. The periodic changes in l-leucine uptake persisted for at least 72 hours into continuous light (L/L). The rhythm had a free-running period of about 24 hours in L/L at 29°C. A single dark treatment of 12 hours could initiate rhythmic leucine uptake in an L/L culture. The phase of rhythm could be shifted by a pulse of low temperature (0°C). The free-running periodicity was “temperature-compensated” from 21 to 37°C. A 24 hour depletion of extracellular Ca2+ before the free-running L/L condition reduced the variation in uptake rate but had little effect on the periodicity of the rhythm. The periodicity was also not affected by the introduction of 25 mm NaNO3. The uptake rates for 20 natural amino acids were studied at 12 hour intervals in cultures exposed to 12/12 hour light/dark cycles. For eight of these amino acids (l-Val, l-Leu, l-Ile, l-Pro, l-Phe, l-Trp, l-Met, and l-Tyr), the light/dark uptake rate ratios had values greater than 3 and the rhythm persisted in L/L.  相似文献   

2.
Hart JW  Filner P 《Plant physiology》1969,44(9):1253-1259
The sulfur requirements of tobacco (Nicotiana tabacum L. var. Xanthi) XD cells grown in chemically defined liquid media can be satisfied by sulfate, thiosulfate, l-cyst(e)ine, l-methionine or glutathione, and somewhat less effectively by d-cyst (e) ine, d-methionine or dl-homocyst (e)ine. Sulfate uptake is inhibited after a 2 hr lag by l-cyst (e)ine, l-methionine, l-homocyst(e)ine or l-isoleucine, but not by any of the other protein amino acids, nor by d-cyst(e)ine. l-cyst(e)ine is neither a competitive nor a non-competitive inhibitor of sulfate uptake. Its action most closely resembles apparent uncompetitive inhibition. Inhibition of sulfate uptake by l-cyst(e)ine can be partially prevented by equimolar l-arginine, l-lysine, l-leucine, l-phenylalanine, l-tyrosine or l-tryptophan, but is little affected by any of the other protein amino acids. The effective amino acids are apparent competitive inhibitors of l-cyst(e)ine uptake after a 2 hr lag. Inhibition of sulfate uptake by l-methionine cannot be prevented, nor can uptake of l-methionine be inhibited by any single protein amino acid. The results suggest the occurrence of negative feedback control of sulfate assimilation by the end products, the sulfur amino acids, in cultured tobacco cells.  相似文献   

3.
Quinto G 《Applied microbiology》1966,14(6):1022-1026
Nutritional studies were performed on nine Bacteroides strains, by use of the methodology and media of anaerobic rumen microbiology. Ristella perfoetens CCI required l-arginine hydrochloride, l-tryptophan, l-leucine, l-histidine hydrochloride, l-cysteine hydrochloride, dl-valine, dl-tyrosine, and the vitamin calcium-d-pantothenate, since scant turbidity developed in media without these nutrients. R. perfoetens was stimulated by glycine, dl-lysine hydrochloride, dl-isoleucine, l-proline, l-glutamic acid, dl-alanine, dl-phenylalanine, dl-methionine, and the vitamins nicotinamide and p-aminobenzoic acid, since maximal turbidity developed more slowly in media without these nutrients than in complete medium. Medium A-23, which was devised for R. perfoetens, contained salts, 0.0002% nicotinamide and calcium d-pantothenate, 0.00001% p-aminobenzoic acid, 0.044% l-tryptophan, 0.09% l-glutamic acid, and 0.1% of the other 13 amino acids listed above. Zuberella clostridiformis and seven strains of R. pseudoinsolita did not require vitamins, and showed no absolute requirement for any one amino acid. Various strains produced maximal turbidity more slowly in media deficient in l-proline, glycine, l-glutamic acid, dl-serine, l-histidine hydrochloride, dl-alanine, or l-cysteine hydrochloride, than in complete medium. These eight strains grew optimally in medium A-23 plus 0.1% dl-serine but without vitamins.  相似文献   

4.
l-Serine is required to synthesize membrane lipids such as phosphatidylserine and sphingolipids. Nevertheless, it remains largely unknown how a diminished capacity to synthesize l-serine affects lipid homeostasis in cells and tissues. Here, we show that deprivation of external l-serine leads to the generation of 1-deoxysphingolipids (doxSLs), including 1-deoxysphinganine, in mouse embryonic fibroblasts (KO-MEFs) lacking d-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step in the de novo synthesis of l-serine. A novel mass spectrometry-based lipidomic approach demonstrated that 1-deoxydihydroceramide was the most abundant species of doxSLs accumulated in l-serine-deprived KO-MEFs. Among normal sphingolipid species in KO-MEFs, levels of sphinganine, dihydroceramide, ceramide, and hexosylceramide were significantly reduced after deprivation of external l-serine, whereas those of sphingomyelin, sphingosine, and sphingosine 1-phosphate were retained. The synthesis of doxSLs was suppressed by supplementing the culture medium with l-serine but was potentiated by increasing the ratio of l-alanine to l-serine in the medium. Unlike with l-serine, depriving cells of external l-leucine did not promote the occurrence of doxSLs. Consistent with results obtained from KO-MEFs, brain-specific deletion of Phgdh in mice also resulted in accumulation of doxSLs in the brain. Furthermore, l-serine-deprived KO-MEFs exhibited increased formation of cytosolic lipid bodies containing doxSLs and other sphingolipids. These in vitro and in vivo studies indicate that doxSLs are generated in the presence of a high ratio of l-alanine to l-serine in cells and tissues lacking Phgdh, and de novo synthesis of l-serine is necessary to maintain normal sphingolipid homeostasis when the external supply of this amino acid is limited.  相似文献   

5.
The mechanism of hexose transport into plasma membrane vesicles isolated from mature sugarbeet leaves (Beta vulgaris L.) was investigated. The initial rate of glucose uptake into the vesicles was stimulated approximately fivefold by imposing a transmembrane pH gradient (ΔpH), alkaline inside, and approximately fourfold by a negative membrane potential (ΔΨ), generated as a K+-diffusion potential, negative inside. The -fold stimulation was directly related to the relative ΔpH or ΔΨ gradient imposed, which were determined by the uptake of acetate or tetraphenylphosphonium, respectively. ΔΨ- and ΔpH-dependent glucose uptake showed saturation kinetics with a Km of 286 micromolar for glucose. Other hexose molecules (e.g. 2-deoxy-d-glucose, 3-O-methyl-d-glucose, and d-mannose) were also accumulated into plasma membrane vesicles in a ΔpH-dependent manner. Inhibition constants of a number of compounds for glucose uptake were determined. Effective inhibitors of glucose uptake included: 3-O-methyl-d-glucose, 5-thio-d-glucose, d-fructose, d-galactose, and d-mannose, but not 1-O-methyl-d-glucose, d- and l-xylose, l-glucose, d-ribose, and l-sorbose. Under all conditions of proton motive force magnitude and glucose and sucrose concentration tested, there was no effect of sucrose on glucose uptake. Thus, hexose transport on the sugarbeet leaf plasma membrane was by a H+-hexose symporter, and the carrier and possibly the energy source were not shared by the plasma membrane H+-sucrose symporter.  相似文献   

6.
Properties of an Aminotransferase of Pea (Pisum sativum L.)   总被引:2,自引:2,他引:0  
A transaminase (aminotransferase, EC 2.6.1) fraction was partially purified from shoot tips of pea (Pisum sativum L. cv. Alaska) seedlings. With α-ketoglutarate as co-substrate, the enzyme transaminated the following aromatic amino acids: d,l-tryptophan, d,l-tyrosine, and d,l-phenylalanine, as well as the following aliphatic amino acids: d,l-alanine, d,l-methionine, and d,l-leucine. Of other α-keto acids tested, pyruvate and oxalacetate were more active than α-ketoglutarate with d,l-tryptophan. Stoichiometric yields of indolepyruvate and glutamate were obtained with d,l-tryptophan and α-ketoglutarate as co-substrates. The specific activity was three times higher with d-tryptophan than with l-tryptophan.  相似文献   

7.
Hepatopancreatic brush border membrane vesicles (BBMV), made from Atlantic White shrimp (Litopenaeus setiferus), were used to characterize the transport properties of 3H-l-leucine influx by these membrane systems and how other essential amino acids and the cations, sodium and potassium, interact with this transport system. 3H-l-leucine uptake by BBMV was pH-sensitive and occurred against transient transmembrane concentration gradients in both Na+- and K+-containing incubation media, suggesting that either cation was capable of providing a driving force for amino acid accumulation. 3H-l-leucine uptake in NaCl or KCl media were each three times greater in acidic pH (pH 5.5) than in alkaline pH (pH 8.5). The essential amino acid, l-methionine, at 20 mM significantly (p < 0.0001) inhibited the 2-min uptakes of 1 mM 3H-l-leucine in both Na+- and K+-containing incubation media. The residual 3H-l-leucine uptake in the two media were significantly greater than zero (p < 0.001), but not significantly different from each other (p > 0.05) and may represent an l-methionine- and cation-independent transport system. 3H-l-leucine influxes in both NaCl and KCl incubation media were hyperbolic functions of [l-leucine], following the carrier-mediated Michaelis–Menten equation. In NaCl, 3H-l-leucine influx displayed a low apparent K M (high affinity) and low apparent J max, while in KCl the transport exhibited a high apparent K M (low affinity) and high apparent J max. l-methionine or l-phenylalanine (7 and 20 mM) were competitive inhibitors of 3H-l-leucine influxes in both NaCl and KCl media, producing a significant (p < 0.01) increase in 3H-l-leucine influx K M, but no significant response in 3H-l-leucine influx J max. Potassium was a competitive inhibitor of sodium co-transport with 3H-l-leucine, significantly (p < 0.01) increasing 3H-l-leucine influx K M in the presence of sodium, but having negligible effect on 3H-l-leucine influx J max in the same medium. These results suggest that shrimp BBMV transport 3H-l-leucine by a single l-methionine- and l-phenylalanine-shared carrier system that is enhanced by acidic pH and can be stimulated by either Na+ or K+ acting as co-transport drivers binding to shared activator sites.  相似文献   

8.
The serP1 and serP2 genes found adjacently on the chromosome of Lactococcus lactis strains encode two members of the amino acid-polyamine-organocation (APC) superfamily of secondary transporters that share 61% sequence identity. SerP1 transports l-serine, l-threonine, and l-cysteine with high affinity. Affinity constants (Km) are in the 20 to 40 μM range. SerP2 is a dl-alanine/dl-serine/glycine transporter. The preferred substrate appears to be dl-alanine for which the affinities were found to be 38 and 20 μM for the d and l isomers, respectively. The common substrate l-serine is a high-affinity substrate of SerP1 and a low-affinity substrate of SerP2 with affinity constants of 18 and 356 μM, respectively. Growth experiments demonstrate that SerP1 is the main l-serine transporter responsible for optimal growth in media containing free amino acids as the sole source of amino acids. SerP2 is able to replace SerP1 in this role only in medium lacking the high-affinity substrates l-alanine and glycine. SerP2 plays an adverse role for the cell by being solely responsible for the uptake of toxic d-serine. The main function of SerP2 is in cell wall biosynthesis through the uptake of d-alanine, an essential precursor in peptidoglycan synthesis. SerP2 has overlapping substrate specificity and shares 42% sequence identity with CycA of Escherichia coli, a transporter whose involvement in peptidoglycan synthesis is well established. No evidence was obtained for a role of SerP1 and SerP2 in the excretion of excess amino acids during growth of L. lactis on protein/peptide-rich media.  相似文献   

9.
Mechanically isolated Asparagus sprengeri Regel mesophyll cells cause alkalinization of the suspension medium on the addition of l-glutamate or its analog l-methionine-d,l-sulfoximine. Using a radiolabeled pH probe, it was found that both compounds caused internal acidification whereas l-aspartate did not. Fusicoccin stimulated H+ efflux from the cells by 111% and the uptake of l-[U-14C]glutamate by 55%. Manometric experiments demonstrated that, unlike l-methionine-d,l-sulfoximine, l-glutamate stimulated CO2 evolution from nonilluminated cells. Simultaneous measurements of medium alkalinization and 14CO2 evolution upon the addition of labeled l-glutamate showed that alkalinization was immediate and reached a maximum value after 45 minutes whereas 14CO2 evolution exhibited a lag before its appearance and continued in a linear manner for at least 100 minutes. Rates of alkalinization and uptake of l-[U-14C]glutamate were higher in the light while rates of 14CO2 evolution were higher in the dark. The major labeled product of glutamate decarboxylation, γ-aminobutyric acid, was found in the cells and the suspension medium. Its addition to the cell suspension did not result in medium alkalinization and evidence indicates that it is lost from the cell to the medium. The data suggest that the origin of medium alkalinization is co-transport not metabolism, and that the loss of labeled CO2 and γ-aminobutyric acid from the cell result in an overestimation of the stoichiometry of the H+/l-glutamate uptake process.  相似文献   

10.
Evidence for a specific glutamate/h cotransport in isolated mesophyll cells   总被引:1,自引:1,他引:0  
Mechanically isolated Asparagus sprengeri Regel mesophyll cells were suspended in 1 millimolar CaSO4. Immediate alkalinization of the medium occured on the addition of 1 millimolar concentrations of l-glutamate (Glu) and its analog l-methionine-d,l-sulfoximine (l-MSO). d-Glu and the l isomers of the protein amino acids did not elicit alkalinization. l-Glu dependent alkalinization was transient and acidification resumed after approximately 30 to 45 minutes. At pH 6.0, 5 millimolar l-Glu stimulated initial rates of alkalinization that varied between 1.3 to 4.1 nmol H+/106 cells·minute. l-Glu dependent alkalinization was saturable, increased with decreasing pH, was inhibited by carbonyl cyanide-p-trichloromethoxyphenyl hydrazone (CCCP), and was not stimulated by light. Uptake of l-[U-14C]glutamate increased as the pH decreased from 6.5 to 5.5, and was inhibited by l-MSO. l-Glu had no influence on K+ efflux. Although evidence for multiple amino acid/proton cotransport systems has been found in other tissues, the present report indicates that a highly specific l-Glu/proton uptake process is present in Asparagus mesophyll cells.  相似文献   

11.
12.
Previous results (TJ Buckhout, Planta [1989] 178: 393-399) indicated that the structural specificity of the H+-sucrose symporter on the plasma membrane from sugar beet leaves (Beta vulgaris L.) was specific for the sucrose molecule. To better understand the structural features of the sucrose molecule involved in its recognition by the symport carrier, the inhibitory activity of a variety of phenylhexopyranosides on sucrose uptake was tested. Three competitive inhibitors of sucrose uptake were found, phenyl-α-d-glucopyranoside, phenyl-α-d-thioglucopyranoside, and phenyl-α-d-4-deoxythioglucopyranoside (PDTGP; Ki = 67, 180, and 327 micromolar, respectively). The Km for sucrose uptake was approximately 500 micromolar. Like sucrose, phenyl-α-d-thioglucopyranoside and to a lesser extent, PDTGP induced alkalization of the external medium, which indicated that these derivatives bound to and were transported by the sucrose symporter. Phenyl-α-d-3-deoxy-3-fluorothioglucopyranoside, phenyl-α-d-4-deoxy-4-fluorothioglucopyranoside, and phenyl-α-d-thioallopyranoside only weakly but competively inhibited sucrose uptake with Ki values ranging from 600 to 800 micromolar, and phenyl-α-d-thiomannopyranoside, phenyl-β-d-glucopyranoside, and phenylethyl-β-d-thiogalactopyranoside did not inhibit sucrose uptake. Thus, the hydroxyl groups of the fructose portion of sucrose were not involved in a specific interaction with the carrier protein because phenyl and thiophenyl derivatives of glucose inhibited sucrose uptake and, in the case of phenyl-α-d-thioglucopyranoside and PDTGP, were transported.  相似文献   

13.
The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of d-leucine, d-methionine, d-tryptophan, and d-tyrosine and was reported to inhibit biofilm formation via the incorporation of these d-amino acids into the cell wall. Here, we show that l-amino acids were able to specifically reverse the inhibitory effects of their cognate d-amino acids. We also show that d-amino acids inhibited growth and the expression of biofilm matrix genes at concentrations that inhibit biofilm formation. Finally, we report that the strain routinely used to study biofilm formation has a mutation in the gene (dtd) encoding d-tyrosyl-tRNA deacylase, an enzyme that prevents the misincorporation of d-amino acids into protein in B. subtilis. When we repaired the dtd gene, B. subtilis became resistant to the biofilm-inhibitory effects of d-amino acids without losing the ability to incorporate at least one noncanonical d-amino acid, d-tryptophan, into the peptidoglycan peptide side chain. We conclude that the susceptibility of B. subtilis to the biofilm-inhibitory effects of d-amino acids is largely, if not entirely, due to their toxic effects on protein synthesis.  相似文献   

14.
The endosperm of castor bean seeds (Ricinus communis L.) contains two —SH-dependent aminopeptidases, one hydrolyzing l-leucine-β-naphthylamide optimally at pH 7.0, and the other hydrolyzing l-proline-β-naphthylamide optimally at pH 7.5. After germination the endosperm contains in addition an —SH-dependent hemoglobin protease, a serine-dependent carboxypeptidase, and at least two —SH-dependent enzymes hydrolyzing the model substrate α-N-benzoyl-dl-arginine-β-naphthylamide (BANA). The carboxypeptidase is active on a variety of N-carbobenzoxy dipeptides, especially N-carbobenzoxy-L-phenylalanine-l-alanine and N-carbobenzoxy-l-tyrosine-l-leucine. The pH optima for the protease, carboxypeptidase, and BANAase acivities are 3.5 to 4.0, 5.0 to 5.5, and 6 to 8, respectively.  相似文献   

15.
1. The influence of cations on the active transport into cells of rat-brain-cortex slices of l-histidine, an amino acid that is not metabolized by this tissue, has been studied. 2. Like other amino acids, l-histidine accumulated in the cells in the presence of glucose in concentrations up to over double that in the incubation medium. 3. The active transport of l-histidine was highest in a medium containing Ca2+ (3mm). The addition of K+ (27mm) led to a marked decrease in the intracellular concentration of l-histidine, though the oxygen uptake of the slices was higher. 4. The active l-histidine transport was inhibited by NH4+. The inhibitory effect increased with the NH4+ concentration, being about 25% at 8mm, 65% at 20mm, and 90% at 27 and 50mm. The oxygen uptake of the brain slices was depressed by only 25% by the highest NH4+ concentration used, and less by lower concentrations.  相似文献   

16.
To establish an advantageous method for the production of l-amino acids, microbial isomerization of d- and dl-amino acids to l-amino acids was studied. Screening experiments on a number of microorganisms showed that cell suspensions of Pseudomonas fluorescens and P. miyamizu were capable of isomerizing d- and dl-phenylalanines to l-phenylalanine. Various conditions suitable for isomerization by these organisms were investigated. Cells grown in a medium containing d-phenylalanine showed highest isomerization activity, and almost completely converted d- or dl-phenylalanine into l-phenylalanine within 24 to 48 hr of incubation. Enzymatic studies on this isomerizing system suggested that the isomerization of d- or dl-phenylalanine is not catalyzed by a single enzyme, “amino acid isomerase,” but the conversion proceeds by a two step system as follows: d-pheylalanine is oxidized to phenylpyruvic acid by d-amino acid oxidase, and the acid is converted to l-phenylalanine by transamination or reductive amination.  相似文献   

17.
Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative γ-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative γ-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no γ-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 μmol·min−1·mg−1, respectively, and those for d-allo-isoleucine were 13.2 mM and 286 μmol·min−1·mg−1, respectively. Hydroxylamine and other inhibitors of pyridoxal 5′-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5′-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position.  相似文献   

18.
Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-l-alanine amidase, whereas Lc-Lys-2 is a γ-d-glutamyl-l-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with d-Ala4d-Asx-l-Lys3 in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting d-Ala4l-Ala-(l-Ala/l-Ser)-l-Lys3; moreover, they do not lyse the L. lactis mutant containing only the nonamidated d-Asp cross-bridge, i.e. d-Ala4d-Asp-l-Lys3. In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 l-Lys3-d-Asn-l-Lys3 bridges replacing the wild-type 4→3 d-Ala4-d-Asn-l-Lys3 bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly d-Asn but not PG with only the nonamidated d-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the d-Asn interpeptide bridge of PG.  相似文献   

19.
The growth of crown-gall tumors on primary bean leaves (Phaseolus vulgaris L. cv. “Pinto”) was promoted by the addition of d-lysopine, d-octopine, l-carnosine, or nopaline. Assayed on tumors induced by Agrobacterium tumefaciens strain B6, the relative activity was octopine = carnosine > lysopine nopaline; assayed on tumors induced by A. tumefaciens strain T-37, which induces tumors which form nopaline, the relative activity was nopaline = octopine = carnosine > lysopine. From one to three applications of carnosine or octopine gave equal additive increments in tumor growth, showing that a continual supply of these substances is required to maintain an increased rate of growth. At concentrations above 0.1 mm, pairs of these growth-promoting substances were less active than when applied singly. Inhibition of octopine-induced growth was obtained by applying 0.01 mm carnosine with 1 mm octopine and partial inhibition was obtained when carnosine was added 10 hr after octopine. Equimolar mixtures of lysopine, octopine, and carnosine, however, were at least as active in promoting tumor growth as any of the compounds added singly at equivalent concentrations. The activity of 0.1 to 0.5 mm lysopine, octopine, and carnosine was inhibited, respectively, by 1 mml-lysine, l-arginine, and l-histidine and this inhibition was limited in each case to the basic amino acid corresponding to that of the growth factor. Arginine fully inhibited octopine-induced tumor growth when applied as much as 6 hr after octopine, indicating that this inhibition was not due to prevention of octopine uptake. Although four separate substances were found which promoted tumor growth, the molecular specificity required for activity of each compound was high. Evidence is presented which suggests that a tumor growth-promoting substance extracted from tumorous leaves is a carnosine-like derivative of l-histidine.  相似文献   

20.
We present evidence that the role of tryptophan and other potential intermediates in the pathways that could lead to indole derivatives needs to be reexamined. Two lines of Lemna gibba were tested for uptake of [15N-indole]-labeled tryptophan isomers and incorporation of that label into free indole-3-acetic acid (IAA). Both lines required levels of l-[15N]tryptophan 2 to 3 orders of magnitude over endogenous levels in order to obtain measurable incorporation of label into IAA. Labeled l-tryptophan was extractable from plant tissue after feeding and showed no measurable isomerization into d-tryptophan. d-[15N]tryptophan supplied to Lemna at rates of approximately 400 times excess of endogenous d-tryptophan levels (to yield an isotopic enrichment equal to that which allowed detection of the incorporation of l-tryptophan into IAA), did not result in measurable incorporation of label into free IAA. These results demonstrate that l-tryptophan is a more direct precursor to IAA than the d isomer and suggest (a) that the availability of tryptophan in vivo is not a limiting factor in the biosynthesis of IAA, thus implying that other regulatory mechanisms are in operation and (b) that l-tryptophan also may not be a primary precursor to IAA in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号