共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium-mediated inactivation of the MAP kinase pathway in sea urchin eggs at fertilization. 总被引:5,自引:0,他引:5
We have evaluated the regulation of a 43-kDa MAP kinase in sea urchin eggs. Both MAP kinase and MEK (MAP kinase kinase) are phosphorylated and active in unfertilized eggs while both are dephosphorylated and inactivated after fertilization, although with distinct kinetics. Reactivation of MEK or the 43-kDa MAP kinase prior to or during the first cell division was not detected. Confocal immunolocalization microscopy revealed that phosphorylated (active) MAP kinase is present primarily in the nucleus of the unfertilized egg, with some of the phosphorylated form in the cytoplasm as well. Incubation of unfertilized eggs in the MEK inhibitor U0126 (0.5 microM) resulted in the inactivation of MEK and MAP kinase within 30 min. Incubation in low concentrations of U0126 (sufficient to inactivate MEK and MAP kinase) after fertilization had no effect on progression through the embryonic cell cycle. Microinjection of active mammalian MAP kinase phosphatase (MKP-3) resulted in inactivation of MAP kinase in unfertilized eggs, as did addition of MKP-3 to lysates of unfertilized eggs. Incubation of unfertilized eggs in the Ca(2+) ionophore A23187 led to inactivation of MEK and MAP kinase with the same kinetics as observed with sperm-induced egg activation. This suggests that calcium may be deactivating MEK and/or activating a MAP kinase-directed phosphatase. A cell-free system was used to evaluate the activation of phosphatase separately from MEK inactivation. Unfertilized egg lysates were treated with U0126 to inactivate MEK and then Ca(2+) was added. This resulted in increased MAP kinase phosphatase activity. Therefore, MAP kinase inactivation at fertilization in sea urchin eggs likely is the result of a combination of MEK inactivation and phosphatase activation that are directly or indirectly responsive to Ca(2+). 相似文献
2.
Fertilization of starfish eggs during meiosis results in rapid progression to embryogenesis as soon as meiosis II is completed. Unfertilized eggs complete meiosis and arrest in postmeiotic interphase for an, until now, indeterminate time. If they remain unfertilized, the mature postmeiotic eggs ultimately die. The aim of this study is to characterize the mechanism of death in postmeiotic unfertilized starfish eggs. We report that, in two species of starfish, in the absence of fertilization, postmeiotic interphase arrest persists for 16-20 h, after which time the cells synchronously and rapidly die. Dying eggs extrude membrane blebs, undergo cytoplasmic contraction and darkening, and fragment into vesicles in a manner reminiscent of apoptotic cells. The DNA of dying eggs is condensed, fragmented, and labeled by the TUNEL assay. Taken together, these data suggest that the default fate of postmeiotic starfish eggs, like their mammalian counterparts, is death by apoptosis. We further report that the onset and execution of apoptosis in this system is dependent on ongoing protein synthesis and is inhibited by a rise in intracellular Ca(2+), an essential component of the fertilization signaling pathway. We propose starfish eggs as a useful model to study developmentally regulated apoptosis. 相似文献
3.
Induction of apoptosis in starfish eggs requires spontaneous inactivation of MAPK (extracellular signal-regulated kinase) followed by activation of p38MAPK 总被引:3,自引:0,他引:3
下载免费PDF全文

Mitogen-activated protein kinase (MAPK) (extracellular signal-regulated kinase) prevents DNA replication and parthenogenesis in maturing oocytes. After the meiotic cell cycle in starfish eggs, MAPK activity is maintained until fertilization. When eggs are fertilized, inactivation of MAPK occurs, allowing development to proceed. Without fertilization, highly synchronous apoptosis of starfish eggs starts 10 h after germinal vesicle breakdown, which varies according to season and individual animals. For induction of the apoptosis, MAPK should be activated for a definite period, called the MAPK-dependent period, during which eggs develop competence to die, although the exact duration of the period was unclear. In this study, we show that the duration of the MAPK-dependent period was approximately 8 h. Membrane blebbing occurred approximately 2 h after the MAPK-dependent period. Surprisingly, when MAPK was inhibited by U0126 after the MAPK-dependent period, activation of caspase-3 occurred earlier than in the control eggs. Thus, inactivation of MAPK is a prerequisite for apoptosis. Also, even in the absence of the inhibitor, MAPK was inactivated spontaneously when eggs began to bleb, indicating that inactivation of MAPK after the MAPK-dependent period acts upstream of caspase-3. Inactivation of MAPK also resulted in the activation of p38MAPK, which may contribute to apoptotic body formation. 相似文献
4.
Activation of the MAP kinase pathway by the protein kinase raf. 总被引:131,自引:0,他引:131
Both MAP kinases and the protein kinase p74raf-1 are activated by many growth factors in a c-ras-dependent manner and by oncogenic p21ras. We were therefore interested in determining the relationship between MAP kinases and raf. The MAP kinase ERK2 is activated by expression of oncogenically activated raf, independently of cellular ras. Overexpressed p74raf-1 potentiates activation of ERK2 by EGF and TPA. MAP kinase kinase inactivated by phosphatase 2A treatment is phosphorylated and reactivated by incubation with p74raf-1 immunoprecipitated from phorbol ester-treated cells. We conclude that raf protein kinase is upstream of MAP kinases and is either a MAP kinase kinase kinase or a MAP kinase kinase kinase kinase. 相似文献
5.
Reinitiation of meiosis in oocytes usually occurs as a two-step process during which release from the prophase block is followed by an arrest in metaphase of the first or second meiotic division [metaphase I (MI) or metaphase II (MII)]. The mechanism of MI arrest in meiosis is poorly understood, although it is a widely observed phenomenon in invertebrates. The blockage of fully grown starfish oocytes in prophase of meiosis I is released by the hormone 1-methyladenine. It has been believed that meiosis of starfish oocytes proceeds completely without MI or MII arrest, even when fertilization does not occur. Here we show that MI arrest of starfish oocytes occurs in the ovary after germinal vesicle breakdown. This arrest is maintained both by the Mos/MEK/MAP kinase pathway and the blockage of an increase of intracellular pH in the ovary before spawning. Immediately after spawning into seawater, activation of Na+/H+ antiporters via a heterotrimeric G protein coupling to a 1-methyladenine receptor in the oocyte leads to an intracellular pH increase that can overcome the MI arrest even in the presence of active MAP kinase. 相似文献
6.
Erbin suppresses the MAP kinase pathway 总被引:5,自引:0,他引:5
7.
The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal 总被引:12,自引:0,他引:12
下载免费PDF全文

Le Gall M Chambard JC Breittmayer JP Grall D Pouysségur J Van Obberghen-Schilling E 《Molecular biology of the cell》2000,11(3):1103-1112
Anchorage removal like growth factor removal induces apoptosis. In the present study we have characterized signaling pathways that can prevent this cell death using a highly growth factor- and anchorage-dependent line of lung fibroblasts (CCL39). After anchorage removal from exponentially growing cells, annexin V-FITC labeling can be detected after 8 h. Apoptosis was confirmed by analysis of sub-G1 DNA content and Western blotting of the caspase substrate poly (ADP-ribose) polymerase. Growth factor withdrawal accelerates and potentiates suspension-induced cell death. Activation of Raf-1 kinase in suspension cultures of CCL39 or Madin-Darby canine kidney cells stably expressing an estrogen-inducible activated-Raf-1 construct (DeltaRaf-1:ER) suppresses apoptosis induced by growth factor and/or anchorage removal. This protective effect appears to be mediated by the Raf, mitogen- or extracellular signal-regulated kinase kinase (MEK), and mitogen-activated protein kinase module because it is sensitive to pharmacological inhibition of MEK-1 and it can be mimicked by expression of constitutively active MEK-1 in CCL39 cells. Finally, apoptosis induced by disruption of the actin cytoskeleton with the Rho-directed toxin B (Clostridium difficile) is prevented by activation of the DeltaRaf-1:ER chimeric construct. These findings highlight the ability of p42/p44 mitogen-activated protein kinase to generate survival signals that counteract cell death induced by loss of matrix contact, cytoskeletal integrity, and extracellular mitogenic factors. 相似文献
8.
The kinase domain of MEKK1 induces apoptosis by dysregulation of MAP kinase pathways 总被引:2,自引:0,他引:2
MAP kinase pathways comprise a group of parallel protein phosphorylation cascades, which are involved in signaling triggered by a variety of stimuli. Previous findings suggested that the ERK and the JNK pathways have opposing roles in regulating proliferation and survival or apoptosis and that apoptosis can be promoted by inhibiting the ERK pathway or by activation of the JNK pathway. In order to test this hypothesis and explore whether it can be exploited as a strategy for killing human cancer cells, we used gene transfer experiments with a range of cancer cell lines. We expressed the catalytic fragment of human MEKK1 to activate JNK and the Ras-binding domain (RBD) of Raf-1 to inhibit the Ras-ERK pathway. In addition, we designed several RBD-MEKK1 fusion proteins aiming to simultaneously activate the JNK and block the ERK pathway. We found that the MEKK1 proteins as well as the RBD alone could reduce colony formation in all cell lines. The survival time of MEKK1-expressing cells depended on the cell line. In HeLa cells, survival could be prolonged by inhibition of caspases but not by coexpression of the anti-apoptotic protein Bcl-2. Due to a lower kinase activity the RBD-MEKK1 fusion proteins were less effective in apoptosis induction than the MEKK1 kinase domain alone. Using mutant forms of Ras and Raf-1 we could show that the reduced kinase activity of RBD-MEKK1 fusion proteins was caused by binding to the Ras protein. The expression of lethal doses of MEKK1 resulted in a strong activation of all three major MAP kinase families JNK, ERK, and p38. Blocking these pathways either by coexpressing a dominant negative form of MKK4 or with inhibitors of MEK or p38 failed to inhibit apoptosis. This suggests that MEKK1 induces apoptosis by causing a general deregulation of MAP kinase signaling rather than by the activation of a single pathway. 相似文献
9.
S J Yu F Boudreau A Désilets M Houde N Rivard C Asselin 《Biochemical and biophysical research communications》1999,259(3):544-549
In addition to important roles in the regulation of cell growth and cell restitution, both pro- and anti-inflammatory effects have been ascribed to TGFbeta in intestinal epithelial cells. However, the mechanisms involved in TGFbeta-dependent anti-inflammatory activities remain to be determined. In the rat intestinal epithelial cell line IEC-6, TGFbeta attenuated the glucocorticoid-dependent increases in mRNA levels of the acute phase protein gene haptoglobin, and of C/EBP isoforms beta and delta. Supershift assays demonstrated a TGFbeta-mediated decrease in the binding of C/EBP isoforms beta and delta to the haptoA and haptoC C/EBP DNA-binding sites from the haptoglobin promoter. Mutations of both HaptoA and HaptoC sites abolished the glucocorticoid-dependent activation and the TGFbeta-mediated attenuation of the haptoglobin promoter, as assessed by transient transfection assays. TGFbeta induced p42/p44 MAP kinase activities. Treatment with the MEK 1/2 inhibitor PD 98059 abolished TGFbeta attenuation. These results suggest that C/EBP isoforms are involved both in the glucocorticoid-dependent induction and in the TGFbeta-mediated attenuation of haptoglobin expression. Furthermore, p42/p44 MAP kinases may function in a TGFbeta-dependent signaling pathway leading to attenuation of haptoglobin expression. 相似文献
10.
Giusti AF Xu W Hinkle B Terasaki M Jaffe LA 《The Journal of biological chemistry》2000,275(22):16788-16794
Recent evidence has indicated a requirement for a Src family kinase in initiating Ca(2+) release at fertilization in starfish eggs (Giusti, A. F., Carroll, D. J., Abassi, Y. A., Terasaki, M., Foltz, K. R., and Jaffe, L. A. (1999) J. Biol. Chem. 274, 29318-29322). We now show that injection of Src protein into starfish eggs initiates Ca(2+) release and DNA synthesis, as occur at fertilization. These responses depend on the phosphorylation state of the Src protein; only the kinase active form is effective. Like Ca(2+) release at fertilization, the Ca(2+) release in response to Src protein injection is inhibited by prior injection of the SH2 domains of phospholipase Cgamma. These findings support the conclusion that in starfish, sperm-egg interaction causes egg activation by sequential activation of a Src-like kinase and phospholipase Cgamma. Injection of the SH2 domain of Src, which inhibits Ca(2+) release at fertilization, does not inhibit Ca(2+) release caused by Src protein injection. This indicates that the requirement for a Src SH2 domain interaction is upstream of Src activation in the pathway leading to Ca(2+) release at fertilization. 相似文献
11.
Activation and signaling of the p38 MAP kinase pathway 总被引:104,自引:0,他引:104
The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38. 相似文献
12.
Karen L. Clark Pascale J. F. Feldmann Daniel Dignard Robert Larocque Alistair J. P. Brown Melanie G. Lee David Y. Thomas Malcolm Whiteway 《Molecular genetics and genomics : MGG》1995,249(6):609-621
The HST7 gene of Candida albicans encodes a protein with structural similarity to MAP kinase kinases. Expression of this gene in Saccharomyces cerevisiae complements disruption of the Ste7 MAP kinase kinase required for both mating in haploid cells and pseudohyphal growth in diploids. However, Hst7 expression does not complement loss of either the Pbs2 (Hog4) MAP kinase kinase required for response to high osmolarity, or loss of the Mkk1 and Mkk2 MAP kinase kinases required for proper cell wall biosynthesis. Intriguingly, HST7 acts as a hyperactive allele of STE7; expression of Hst7 activates the mating pathway even in the absence of upstream signaling components including the Ste7 regulator Ste11, elevates the basal level of the pheromone-inducible FUS1 gene, and amplifies the pseudohyphal growth response in diploid cells. Thus Hst7 appears to be at least partially independent of upstream activators or regulators, but selective in its activity on downstream target MAP kinases. Creation of Hst7/Ste7 hybrid proteins revealed that the C-terminal two-thirds of Hst7, which contains the protein kinase domain, is sufficient to confer this partial independence of upstream activators. 相似文献
13.
MAP kinase phosphatases (MKPs) catalyze dephosphorylation of activated MAP kinase (MAPK) molecules and deactivate them. Therefore, MKPs play an important role in determining the magnitude and duration of MAPK activities. MKPs constitute a structurally distinct family of dual-specificity phosphatases. The MKP family members share the sequence homology and the preference for MAPK molecules, but they are different in substrate specificity among MAPK molecules, tissue distribution, subcellular localization and inducibility by extracellular stimuli. Our understanding of their protein structure, substrate recognition mechanisms, and regulatory mechanisms of the enzymatic activity has greatly increased over the past few years. Furthermore, although there are a number of MKPs, that have similar substrate specificities, non-redundant roles of MKPs have begun to be identified. Here we focus on recent findings regarding regulation and function of the MKP family members as physiological regulators of MAPK signaling. 相似文献
14.
Yu Zhang Liang Zhou Yong Li Bao Yin Wu Chun Lei Yu Yan Xin Huang Ying Sun Li Hua Zheng Yu Xin Li 《Chemico-biological interactions》2010,185(3):174-181
Butyrate has been shown to display anti-cancer activity through the induction of apoptosis in various cancer cells. However, the underlying mechanism involved in butyrate-induced apoptosis is still not fully understood. Here, we investigated the cytotoxicity mechanism of butyrate in human colon cancer RKO cells. The results showed that butyrate induced a strong growth inhibitory effect against RKO cells. Butyrate also effectively induced apoptosis in RKO cells, which was characterized by DNA fragmentation, nuclear staining of DAPI, and the activation of caspase-9 and caspase-3. The expression of anti-apoptotic protein Bcl-2 decreased, whereas the apoptotic protein Bax increased in a dose-dependent manner during butyrate-induced apoptosis. Moreover, treatment of RKO cells with butyrate induced a sustained activation of the phosphorylation of c-jun N-terminal kinase (JNK) in a dose- and time-dependent manner, and the pharmacological inhibition of JNK MAPK by SP600125 significantly abolished the butyrate-induced apoptosis in RKO cells. These results suggest that butyrate acts on RKO cells via the JNK but not the p38 pathway. Butyrate triggered the caspase apoptotic pathway, indicated by an enhanced Bax-to-Bcl-2 expression ratio and caspase cascade reaction, which was blocked by SP600125. Taken together, our data indicate that butyrate induces apoptosis through JNK MAPK activation in colon cancer RKO cells. 相似文献
15.
In the starfish Astropecten aurantiacus the acrosome reaction occurs when the spermatozoon contacts the outer surface of the jelly layer. A long thin acrosomal filament is extruded from the anterior region of the spermatozoon and establishes contact with the oocyte surface. This latter interaction initiates the movement of the spermatozoon to the oocyte surface, formation of the fertilization cone and the cortical reaction. The first detectable electrical change across the oocyte plasma membrane during interaction with the spermatozoon is the fertilization potential (FP) which occurs simultaneously with the cortical reaction. The FP is probably the electrical result of the modification of the oocyte plasma membrane during cortical exocytosis. There are no primary step-like depolarizations during fertilization of starfish oocytes, which contrasts with the situation in sea urchin eggs [see 13]. We suggest that the difference in electrical response to fertilization of starfish oocytes and sea urchin eggs may be attributed to the location of the acrosome reaction in these animals and not to their different meiotic states. 相似文献
16.
17.
Internalization of activated receptors from the plasma membrane has been implicated in the activation of mitogen-activated protein (MAP) kinase. However, the mechanism whereby membrane trafficking may regulate mitogenic signaling remains unclear. Here we report that dominant-negative dynamin (K44A), an inhibitor of endocytic vesicle formation, abrogates MAP kinase activation in response to epidermal growth factor, lysophosphatidic acid, and protein kinase C-activating phorbol ester. In contrast, dynamin-K44A does not affect the activation of Ras, Raf, and MAP kinase kinase (MEK) by either agonist. Through immunofluorescence and subcellular fractionation studies, we find that activated MEK is present both at the plasma membrane and in intracellular vesicles but not in the cytosol. Our findings suggest that dynamin-regulated endocytosis of activated MEK, rather than activated receptors, is a critical event in the MAP kinase activation cascade. 相似文献
18.
Bone morphogenetic protein-4 (BMP-4) induces epidermis and represses neural fate in Xenopus ectoderm. Our previous findings implicate p42 Erk MAP kinase (MAPK) in the response to neural induction. We have examined the effects of BMP-4 on MAPK activity in gastrula ectoderm. Expression of a dominant negative BMP-4 receptor resulted in a 4.5-fold elevation in MAPK activity in midgastrula ectoderm. MAPK activity was reduced in ectoderm expressing a constitutively active BMP-4 receptor, or ectoderm treated with BMP-4 protein in the presence or absence of cycloheximide. Overexpression of TAK1 led to a reduction in MAPK activity in early gastrula ectoderm. The inhibitory effects of TAK1 could be reversed by 1 microM SB 203580, a p38 inhibitor. Treatment of isolated ectoderm with SB 203580 led to expression of otx2, NCAM, and noggin. Western blot analyses indicated that the BMP-4 pathway does not activate JNKs in ectoderm. Our findings indicate that BMP-4 inhibits ectodermal MAPK activity through a TAK1/p38-type pathway. MAPK has been shown to inactivate Smad1. Thus, our results suggest that BMP-4 and MAPK pathways are mutually antagonistic in Xenopus ectoderm, and that interactions between these pathways may govern the choice between epidermal and neural fate. 相似文献
19.
Although the importance of the extracellular signal-regulated kinase (ERK) pathway in regulating the transition from G1 to S has been extensively studied, its role during the G2/M transition is less well understood. Previous reports have shown that inhibition of the ERK pathway in mammalian cells delays entry as well as progression through mitosis, suggesting the existence of molecular targets of this pathway in M phase. In this report we employed 2-DE and MS to survey proteins and PTMs in the presence versus absence of MKK1/2 inhibitor. Targets of the ERK pathway in G2/M were identified as elongation factor 2 (EF2) and nuclear matrix protein, 55 kDa (Nmt55). Phosphorylation of each protein increased under conditions of ERK pathway inhibition, suggesting indirect control of these targets; regulation of EF2 was ascribed to phosphorylation and inactivation of upstream EF2 kinase, whereas regulation of Nmt55 was ascribed to a delay in normal mitotic phosphorylation and dephosphorylation. 2-DE Western blots probed using anti-phospho-Thr-Pro antibody demonstrated that the effect of ERK inhibition is not to delay the onset of phosphorylation controlled by cdc2 and other mitotic kinases, but rather to regulate a small subset of targets in M phase in a nonoverlapping manner with cdc2. 相似文献
20.