首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
2.
3.
We have recently characterized a novel mammalian gene family, encoding membrane glycoproteins with four trans-membrane domains. This gene family includes the previously studiedPMP22,which is involved in the Charcot–Marie–Tooth neuropathy, and three novel genes:TMP, XMP,andYMP(HGMW-approved symbolsEMP1, EMP2andEMP3,respectively). TheTmp(tumor-associated membrane protein) gene was isolated from a c-mycinduced mouse brain tumor and is expressed in several highly proliferative cell types. We have now isolated cDNAs of the mouseXmpandYmpgenes and determined the chromosomal localization of mouseTmp, Xmp,andYmp. Tmpwas mapped to mouse chromosome 6,Xmpwas mapped to chromosome 16, andYmpwas mapped to chromosome 7.TmpandYmpmap to paralogous chromosomal regions, whereasXmpmaps to a chromosomal region that is putatively paralogous to a region on chromosome 11, to whichPmp22was previously mapped. These data suggest that this family of membrane glycoproteins evolved as a result of chromosomal duplications.  相似文献   

4.
The gracile axonal dystrophy (gad) mouse, which shows hereditary sensory ataxia and motor paresis, has been morphologically characterized by the dying back type of axonal degeneration in the nerve terminals of dorsal root ganglion cells and motor neurons. In the present study, using an intraspecific backcross between gad and C57BL/6J mice, the gracile axonal dystrophy (gad) gene was mapped to a region between D5Mit197 and D5Mit113. Estimated distances between gad and D5Mit197 and between gad and D5Mit113 are 0.4 ± 0.3 and 5.0 ± 1.0 cM, respectively. The gene order was defined: centromere- D5Mit81-D5Mit233-D5Mit184/D5Mit254-D5Mit256-D5Mit197-gad-D5Mit113-D5Mit7 . The mouse map location of the gad locus appears to be in a region homologous to human 4p15-p16. Our present data suggest that the nearest flanking marker D5Mit197 provides a useful anchor for the isolation of the gad gene in a yeast artificial chromosome contig.  相似文献   

5.
The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0. 4-cM (±0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation.  相似文献   

6.
7.
A method for construction of bacterial artificial chromosome (BAC) contigs from a yeast artifical chromosome (YAC) physical map is described. An ∼2 Mb contig, consisting of two large BAC contigs linked by a small YAC, has been assembled in the region around 80 cM of Arabidopsis thaliana chromosome 2. Clones from this contig will facilitate gene isolation in the region and can be used directly as substrates for DNA sequencing.  相似文献   

8.
Multiple endocrine neoplasia types 2A and 2B (MEN 2A and MEN 2B) and familial medullary thyroid carcinoma (FMTC) are dominantly inherited cancers that have in common the clinical feature of medullary thyroid carcinoma (MTC). We have performed both genomic long-range restriction mapping and yeast artificial chromosome (YAC) contig assembly and restriction mapping to establish physical linkage, order, and distances between six loci in 10q11.2 near the genes responsible for these hereditary cancers. RET, D10S94, D10S182, and D10S102 have been mapped in genomic DNA. RET, D10S94, D10S182, D10F3853, and the 10q11.2 sequences detected by DNA marker DM124 are encompassed by a 1-Mb YAC contig. Six physically linked loci are within 1.4 Mb and have an order and orientation of 10cen, D10F38S3, DM124, RET, D10S94, D10S182, D10S102, 10qter. Mutations in the RET proto-oncogene have recently been demonstrated to be associated with MEN 2A and FMTC. RET is located within a genetically defined MEN2A candidate interval between D10S141 and D10S94; MEN2B has been mapped to a larger, overlapping region between D10S141 and a more distal locus, RBP3. Both our genomic physical map and our YAC contig span the entire MEN2A candidate region and overlap with that of MEN2B . These maps will facilitate the identification of genes that can be considered candidates for MEN2B and the identification of tumor-specific alterations important in sporadic MTC.  相似文献   

9.
Mice that are homozygous for the kidney disease (kd) gene on Chromosome (Chr) 10 spontaneously develop a progressive and fatal interstitial nephritis. The disease phenotype is similar to that of the human disease, juvenile nephronophthisis. Using a backcross and intercross breeding strategy and analysis of over 900 resultant progeny, this genetic locus has now been mapped to a minimal co-segregating region of approximately two megabases between D10Mit 193 and D10Mit 38. The location assigned to kd by this study is over 3 cM from the current Mouse Genome Database location. The entire interval has been cloned in yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC) clones. Recombinant analysis has permitted assignment of 13 Mit microsatellite markers to positions near or within the region. Two new markers have been identified by using single-strand conformation polymorphism (SSCP) analysis of sequenced BAC ends. Several BAC end sequences align with human BAC clones from Chr 6q21 that contain NR2E1, Snx3, and Ros1. Three murine genes, CD24a, fyn, and ColX reported to map in or near the kd region as defined by this study have been evaluated. Though not definitely excluded, they appear to be unlikely candidates. Received: 23 July 1999 / Accepted 23 June 2000  相似文献   

10.
Several recent genetic studies have suggested linkage of Type 2 diabetes (non-insulin-dependent diabetes mellitus) susceptibility to a region of chromosome 20q12-q13.1. To facilitate the identification and cloning of a diabetes susceptibility gene(s) in this region, we have constructed correlated radiation hybrid and YAC/BAC contig physical maps of the region. A high-resolution radiation hybrid map encompassing 9.5 Mb between the PLC and the CEBPB genes was constructed using 68 markers: 25 polymorphic markers, 15 known genes, 21 ESTs, and 7 random genomic sequences. The physical order of the polymorphic markers within this radiation hybrid map is consistent with published genetic maps. A YAC/BAC contig that gives continuous coverage between PLC and CEBPB was also constructed. This contig was constructed from 24 YACs, 34 BACs, and 1 P1 phage clone onto which 71 markers were mapped: 23 polymorphic markers, 12 genes, 24 ESTs, and 12 random genomic sequences. The radiation hybrid map and YAC/BAC physical map enable precise mapping of newly identified transcribed sequences and polymorphic markers that will aid in linkage and linkage disequilibrium studies and facilitate identification and cloning of candidate Type 2 diabetes susceptibility genes residing in 20q12-q13.1.  相似文献   

11.
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS or SACS) is a neurodegenerative disease frequent in northeastern Québec. In a previous study, we localized the disease gene to chromosome region 13q11 by identifying excess sharing of a marker allele in patients followed by linkage analysis and haplotyping. To create a detailed physical map of this region, we screened CEPH mega-YACs with 41 chromosome 13 sequence-tagged-sites (STSs) known to map to 13q11-q12. The YAC contig, composed of 27 clones, extends on the genetic map from D13S175 to D13S221, an estimated distance of at least 19.3 cM. A high-resolution BAC and PAC map that includes the ARSACS critical region flanked by D13S1275 and D13S292 was constructed. These YAC and BAC/PAC maps allowed the accurate placement of 29 genes and ESTs previously mapped to the proximal region of chromosome 13q. We confirmed the position of two candidate genes within the critical region and mapped the other 27 genes and ESTs to nearby intervals. Six BAC/PAC clones form a contig between D13S232 and D13S787 for sequencing within the ARSACS critical region.  相似文献   

12.
Tall-caespitose basin wildrye (Leymus cinereus) and rhizomatous creeping wildrye (Leymus triticoides) are perennial Triticeae relatives of wheat and barley. Quantitative trait loci (QTLs) controlling rhizome proliferation were previously detected on homoeologous regions of LG3a and LG3b in two full-sib families derived from allotetraploid hybrids. Triticeae homoeologous group 3 aligns to rice chromosome 1, which contains the rice lax panicle and maize barrenstalk1 orthogene responsible for induction of axillary branch meristems, but this gene has not been mapped or sequenced in Triticeae. We developed bacterial artificial chromosome (BAC) libraries representing 6.1 haploid equivalents of the tetraploid Leymus genome (10.7 Mb). Overgo probes designed from the lax-barrenstalk1 orthogene hybridized to 12 Leymus BAC clones. Deduced amino-acid sequences from seven BAC clones were highly conserved with the rice, maize, and sorghum lax-barrenstalk1orthogenes. Gene specific primers designed from two of the most divergent BAC clones map to homoeologous regions of Leymus LG3a and LG3b and align with the lax-barrenstalk1 orthogene on rice 1L. Comparisons of genomic DNA sequences revealed two other conserved regions surrounding the Leymus LG3a, rice, and sorghum lax-barrenstalk1 ortholoci, and one of these regions was also present in maize and Leymus LG3b sequences. Comparisons of Leymus LG3a and LG3b lax-barrenstalk1 coding sequences and flanking genomic regions elucidate molecular differences between subgenomes.  相似文献   

13.
14.
Despite rapid progress in the physical characterization of murine and human genomes, little molecular information is available on certain regions, e.g., proximal mouse chromosome 11 (Chr 11) and human chromosome 2p (Chr 2p). We have localized thewobblerspinal atrophy genewrto proximal mouse Chr 11, tightly linked toRab1,a gene coding for a small GTP-binding protein, andGlns-ps1,an intronless pseudogene of the glutamine synthetase gene. We have now used these markers to construct a 1.3-Mb yeast artificial chromosome (YAC) contig of theRab1region on mouse Chr 11. Four YAC clones isolated from two independent YAC libraries were characterized by rare-cutting analysis, fluorescencein situhybridization (FISH), and sequence-tagged site (STS) isolation and mapping.Rab1andGlns-ps1were found to be only 200 kb apart. A potential CpG island near a methylatedNarI site and a trapped exon,ETG1.1,were found between these loci, and a new STS,AHY1.1,was found over 250 kb fromRab1.Two overlapping YACs were identified that contained a 150-kb region of human Chr 2p, comprising theRAB1locus,AHY1.1,and the human homologue ofETG1.1,indicating a high degree of conservation of this region in the two species. We mappedAHY1.1and thus humanRAB1on Chr 2p13.4–p14 using somatic cell hybrids and a radiation hybrid panel, thus extending a known region of conserved synteny between mouse Chr 11 and human Chr 2p. Recently, the geneLMGMD2Bfor a human recessive neuromuscular disease, limb girdle muscular dystrophy type 2B, has been mapped to 2p13–p16. The conservation between the mouseRab1and humanRAB1regions will be helpful in identifying candidate genes for thewobblerspinal muscular atrophy and in clarifying a possible relationship betweenwrandLMGMD2B.  相似文献   

15.
16.
Fine physical mapping of the rice stripe resistance gene locus, Stvb-i   总被引:8,自引:0,他引:8  
The Stvb-i gene confers stripe disease resistance to rice. For positional cloning, we constructed a physical map spanning 1.8-cM distance between flanking markers, consisting of 18 bacterial artificial chromosome (BAC) clones, around the Stvb-i locus on rice chromosome 11. The 18 clones were isolated by screening a BAC library derived from a japonica cultivar, Shimokita, with three Stvb-i-linked RFLP markers and DraI-digested DNAs of a yeast artificial chromosome (YAC) clone. The results of Southern hybridization and restriction enzyme analyses indicated that these BAC clones are contiguous and cover about a 700-kb region containing the Stvb-i allele. Utilizing end and internal fragments of the BAC insert DNAs, 33 molecular markers were generated within a small chromosomal region including the Stvb-i locus. Genotyping analysis with these markers for a resistant cultivar and four nearby recombinants selected from 120 F2 individuals indicated that Stvb-i is contained within an approximately 286-kb region covered with two overlapping BAC clones. Received: 25 August 1999 / Accepted: 16 November 1999  相似文献   

17.
Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease recently mapped to chromosome 12q close to the locus D12S84 by genetic linkage analysis. To generate additional genetic markers in the SCA2 region, we constructed a physical map of the region using yeast artificial chomosome (YAC), P1 artificial chromosome (PAC) and cosmid clones. The physical map was found to agree well with the genetic map. Three novel microsatellite markers were isolated and physically mapped. A novel approach to isolate CAG repeats directly from YAC DNAs is described. Received: 25 January 1995 / Revised: 26 September 1995  相似文献   

18.
We have constructed a physical map of Arabidopsis thaliana chromosome3 by ordering the clones from CIC YAC, P1, TAC and BAC librariesusing the sequences of a variety of genetic and EST markersand terminal sequences of clones. The markers used were 112DNA markers, 145 YAC end sequences, and 156 end sequences ofP1, TAC and BAC clones. The entire genome of chromosome 3, exceptfor the centromeric and telomeric regions, was covered by twolarge contigs, 13.6 Mb and 9.2 Mb long. This physical map willfacilitate map-based cloning experiments as well as genome sequencingof chromosome 3. The map and end sequence information are availableon the KAOS (Kazusa Arabidopsis data Opening Site) web siteat http://www.kazusa.or.jp/arabi/.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号