首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosine phosphorylation is a key device in numerous cellular functions in eukaryotes, but in bacteria this protein modification was largely ignored until the mid-1990s. The first conclusive evidence of bacterial tyrosine phosphorylation came only a decade ago. Since then, several tyrosine kinases exhibiting unexpected features have been identified in a variety of bacteria. These enzymes use homologues of Walker motifs of nucleotide-binding proteins for their catalytic mechanism, thus defining an idiosyncratic type of bacterial tyrosine kinases. Recently, bacterial tyrosine kinases have been found to phosphorylate an increasing list of endogenous protein substrates. This discovery contributes to the emerging picture that bacterial tyrosine phosphorylation is an important regulatory arsenal of bacterial physiology in addition to the classical serine/threonine kinases, and the 'two-component' and phosphotransferase systems.  相似文献   

2.
Protein kinase-mediated phosphorylation is among the most important post-translational modifications. However, few phosphorylation sites have been experimentally identified for most species, making it difficult to determine the degree to which phosphorylation sites are conserved. The goal of this study was to use computational methods to characterize the conservation of human phosphorylation sites in a wide variety of eukaryotes. Using experimentally-determined human sites as input, homologous phosphorylation sites were predicted in all 432 eukaryotes for which complete proteomes were available. For each pair of species, we calculated phosphorylation site conservation as the number of phosphorylation sites found in both species divided by the number found in at least one of the two species. A clustering of the species based on this conservation measure was concordant with phylogenies based on traditional genomic measures. For a subset of the 432 species, phosphorylation site conservation was compared to conservation of both protein kinases and proteins in general. Protein kinases exhibited the highest degree of conservation, while general proteins were less conserved and phosphorylation sites were least conserved. Although preliminary, these data tentatively suggest that variation in phosphorylation sites may play a larger role in explaining phenotypic differences among organisms than differences in the complements of protein kinases or general proteins.  相似文献   

3.
Treatment of B lymphocytes with antibodies to membrane immunoglobulin (Ig) stimulates protein tyrosine phosphorylation. We have examined the phosphorylation in vitro of proteins associated with membrane Ig. The Src family protein tyrosine kinases p53/56lyn, p59fyn, and p56lck are associated with membrane Ig in spleen B cells and B-cell lines and undergo phosphorylation in vitro. The pattern of expression of Src family protein tyrosine kinases in B cells varied. Our studies suggest that multiple kinases can potentially interact with membrane Ig and that within any one B-cell type, all of the Src family kinases expressed can be found in association with membrane Ig. We also observed that the Ig-associated Ig alpha protein, multiple forms of Ig beta, and proteins of 100 and 25 kDa were tyrosine phosphorylated in vitro. The 100- and 25-kDa proteins remain unidentified.  相似文献   

4.
Role of protein phosphorylation in neuronal signal transduction   总被引:23,自引:0,他引:23  
Protein phosphorylation is involved in the regulation of a wide variety of physiological processes in the nervous system. Studies in which purified protein kinases or kinase inhibitors have been microinjected into defined cells while a specific response is monitored have demonstrated that protein phosphorylation is both necessary and sufficient to mediate responses of excitable cells to extracellular signals. The precise molecular mechanisms involved in neuronal signal transduction processes can be further elucidated by identification and characterization of the substrate proteins for the various protein kinases. The roles of three such substrate proteins in signal transduction are described in this article: 1) synapsin I, whose phosphorylation increases neurotransmitter release and thereby modulates synaptic transmission presynaptically; 2) the nicotinic acetylcholine receptor, whose phosphorylation increases its rate of desensitization and thereby modulates synaptic transmission postsynaptically; and 3) DARPP-32, whose phosphorylation converts it to a protein phosphatase inhibitor and which thereby may mediate interactions between dopamine and other neurotransmitter systems. The characterization of the large number of additional phosphoproteins that have been found in the nervous system should elucidate many additional molecular mechanisms involved in signal transduction in neurons.  相似文献   

5.
Profound changes in the phosphorylation state of many proteins occur during mitosis. It is well established that many of these mitotic phosphorylations are carried out by archetypal mitotic kinases that are activated only during mitosis, shifting the equilibrium of kinases and phosphatases towards phosphorylation. However, many studies have also detailed the phosphorylation of proteins at mitosis by kinases that are constitutively active throughout the cell cycle. In most cases, it is uncertain how kinases and phosphatases that appear to be constitutively active can induce phosphorylations specifically at mitosis. In this issue of the Biochemical Journal, Escargueil and Larsen provide evidence of an interesting alternative mechanism to attain specific mitotic phosphorylation. A mitosis-specific phosphorylation site in DNA topoisomerase IIalpha, which is recognized by the MPM-2 antibody, is phosphorylated by protein kinase CK2. The authors found that phosphorylation of this site is suppressed during interphase due to competing dephosphorylation by protein phosphatase 2A. Interestingly, protein phosphatase 2A is excluded from the nucleus during early mitosis, allowing CK2 to phosphorylate topoisomerase IIalpha. It is possible that similar mechanisms are used to regulate the phosphorylation of other proteins.  相似文献   

6.
Although mitogen-activated protein kinases (MAPKs) have been shown to be activated by a wide range of biotic and abiotic stimuli in diverse plant species, few in vivo substrates for these kinases have been identified. While studying proteins that are differentially phosphorylated upon treatment of Arabidopsis suspension cultures with the general bacterial elicitor peptide flagellin-22 (flg22), we identified two proteins with endogenous nickel binding properties that become phosphorylated after flg22 elicitation. These highly related proteins, AtPHOS32 and AtPHOS34, show similarity to bacterial universal stress protein A. We identified one of the phosphorylation sites on AtPHOS32 by nanoelectrospray ionization tandem mass spectrometry. Phosphorylation in a phosphoSer-Pro motif indicated that this protein may be a substrate of MAPKs. Using in vitro kinase assays, we confirmed that AtPHOS32 is a substrate of both AtMPK3 and AtMPK6. Specificity of phosphorylation was demonstrated by site-directed mutagenesis of the first phosphorylation site. In addition, immunosubtraction of both MAPKs from protein extracts removed detectable kinase activity toward AtPHOS32, indicating that the two MAPKs were the predominate kinases recognizing the motif in this protein. Finally, the target phosphorylation site in AtPHOS32 is conserved in AtPHOS34 and among apparent orthologues from many plant species, indicating that phosphorylation of these proteins by AtMPK3 and AtMPK6 orthologues has been conserved throughout evolution.  相似文献   

7.
Phosphorylation of nuclear proteins   总被引:1,自引:0,他引:1  
Many nuclear proteins are phosphorylated: they range from enzymes to several structural proteins such as histones, non-histone chromosomal proteins and the nuclear lamins. The pattern of phosphorylation varies through the cell cycle. Although histone H1 is phosphorylated during interphase its phosphorylation increases sharply during mitosis. Histone H3, chromosomal protein HMG 14 and lamins A, B and C all show reversible phosphorylation during mitosis. Several nuclear kinases have been characterized, including one that increases during mitosis and phosphorylates H1 in vitro. Factors have been demonstrated in maturing amphibian oocytes and mitotic mammalian cells that induce chromosome condensation and breakdown of the nuclear membrane. The possibility that they are autocatalytic protein kinases is considered. The location of histone phosphorylation sites within the nucleosome is consistent with a role for phosphorylation in modulating chromatin folding.  相似文献   

8.
Interleukin 2 (IL-2) has been shown to stimulate tyrosine phosphorylation of a number of proteins requiring only the p75 beta chain of the IL-2 receptor. Unlike the receptors for epidermal growth factor, insulin, and other growth factors, the p55-alpha and p75-beta chains of the IL-2 receptor have no tyrosine protein kinase domain suggesting that the IL-2 receptor complex activates protein kinases by a unique mechanism. The activation of tyrosine kinases by IL-2 in situ was studied and using a novel methodology has shown tyrosine kinase activity associated with the purified IL-2R complex in vitro. IL-2 stimulated the in situ tyrosine phosphorylation of 97 kDa and 58 kDa proteins which bound to poly(Glu,Tyr)4:1, a substrate for tyrosine protein kinases, suggesting these proteins had characteristics found in almost all tyrosine kinases. IL-2 was found to stimulate tyrosine protein kinase activity in receptor extracts partially purified from human T lymphocytes and the YT cell line. Biotinylated IL-2 was used to precipitate the high-affinity-receptor complex and phosphoproteins associated with it. The data indicated that the 97-kDa and 58-kDa phosphotyrosyl proteins were tightly associated with the IL-2 receptor complex. These proteins were phosphorylated on tyrosine residues by IL-2 stimulation of intact cells and ligand treatment of in vitro receptor extracts. Furthermore, the 97-kDa and 58-kDa proteins were found in streptavidin-agarose/biotinylated IL-2 purified receptor preparations and showed high affinity for tyrosine kinase substrate support matrixes. The experiments suggest that these two proteins are potential candidates for tyrosine kinases involved in the IL-2R complex signal transduction process.  相似文献   

9.
The covalent modification of proteins by phosphorylation constitutes a major regulatory mechanism. It was first recognized in mammalian tissues. A conclusive evidence for the occurrence of protein phosphorylation and protein kinases in coliform bacteria was obtained in 1978. Several phosphate labeled proteins were found when Salmonella typhimurium was pulse-labeled with 32p(i) and solubilized bacterial contents were analyzed by SDS-polyacrylamide gel electrophoresis. In streptomycetes protein phosphorylation has not yet been demonstrated. We found that Streptomyces albus possesses a protein kinase activity. This in vitro protein phosphorylation is cAMP-independent.  相似文献   

10.
Reversible protein phosphorylation catalyzed by kinases and phosphatases is a major form of posttranslational regulation that plays a central role in regulating many signaling pathways. While large families of both protein kinases and protein phosphatases have been identified in plants, kinases outnumber phosphatases. This raises the question of how a relatively limited number of protein phosphatases can maintain protein phosphorylation homeostasis in a cell. Recent studies have shown that Arabidopsis FyPP1 (Phytochrome-associated serine/threonine protein phosphatase 1) and FyPP3 encode the catalytic subunits of protein phosphatase 6 (PP6), and that they directly binds to the A subunits of protein phosphatase 2A (PP2AA proteins), and SAL (SAPS domain-like) proteins to form the heterotrimeric PP6 holoenzyme complex. Emerging evidence is suggesting that PP6, acts in opposition with multiple classes of kinases, to regulate the phosphorylation status of diverse substrates and subsequently numerous developmental processes and responses to environmental stimuli.  相似文献   

11.
We have found that heparin has a different effect on Trichosporon cutaneum ribosomal protein phosphorylation by CKI and by CKII. In the presence of heparin, modification of 13 kDa, 19 kDa and 38 kDa proteins catalyzed by CKII was inhibited, while in the case of CKI, in addition to protein of 15 kDa, phosphorylation of 20 kDa and 35 kDa proteins was detected. It was also found that, in the presence of heparin, phosphorylation of P proteins (13 kDa and 38 kDa) by ribosome-bound protein kinases was inhibited. Moreover at the same conditions modification of 40 kDa protein was observed in all four yeast species tested.  相似文献   

12.
Neuronal plasticity can be defined as adaptive changes in structure and function of the nervous system, an obvious example of which is the capacity to remember and learn. Long-term potentiation and long-term depression are the experimental models of memory in the central nervous system (CNS), and have been frequently utilized for the analysis of the molecular mechanisms of memory formation. Extensive studies have demonstrated that various kinases and phosphatases regulate neuronal plasticity by phosphorylating and dephosphorylating proteins essential to the basic processes of adaptive changes in the CNS. These proteins include receptors, ion channels, synaptic vesicle proteins, and nuclear proteins. Multifunctional kinases (cAMP-dependent protein kinase, Ca2+/phospholipid-dependent protein kinase, and Ca2+/calmodulin-dependent protein kinases) and phosphatases (calcineurin, protein phosphatases 1, and 2A) that specifically modulate the phosphorylation status of neuronal-signaling proteins have been shown to be required for neuronal plasticity. In general, kinases are involved in upregulation of the activity of target substrates, and phosphatases downregulate them. Although this rule is applicable in most of the cases studied, there are also a number of exceptions. A variety of regulation mechanisms via phosphorylation and dephosphorylation mediated by multiple kinases and phosphatases are discussed.  相似文献   

13.
G protein-coupled receptor kinases (GRKs) are key modulators of G protein-coupled receptor (GPCR) signaling. They constitute a family of seven mammalian serine-threonine protein kinases that phosphorylate agonist-bound receptor. GRKs-mediated receptor phosphorylation rapidly initiates profound impairment of receptor signaling and desensitization. Activity of GRKs and subcellular targeting is tightly regulated by interaction with receptor domains, G protein subunits, lipids, anchoring proteins and calcium sensitive proteins. Moreover, GRK phosphorylation by several other kinases and autophosphorylation have recently been shown to modulate its functionality. This review summarize our current knowledge of GRKs regulatory mechanisms and GRKs physiological function.  相似文献   

14.
The ribosomal stalk is directly involved in the interaction of the elongation factors with the ribosome during protein synthesis. The stalk is formed by a complex of five proteins, four small acidic polypeptides and a larger protein which directly interacts with the rRNA at the GTPase center. In eukaryotes the acidic components correspond to the 12-kDa P1 and P2 proteins, and the RNA binding component is the P0 protein. All these proteins are found phosphorylated in eukaryotic organisms, and previous in vitro data suggested this modification was involved in the activity of this structure. Results from mutational studies have shown that phosphorylation takes place at a serine residue close to the carboxy end of the P proteins. Modification of this serine residue does not affect the formation of the stalk and the activity of the ribosome in standard conditions but induces an osmoregulation-related phenotype at 37 degrees C. The phosphorylatable serine is part of a consensus casein kinase II phosphorylation site. However, although CKII seems to be responsible for part of the stalk phosphorylation in vivo, it is probably not the only enzyme in the cell able to perform this modification. Five protein kinases, RAPI, RAPII and RAPIII, in addition to the previously reported CKII and PK60 kinases, are able to phosphorylate the stalk proteins. A comparison of the five enzymes shows differences among them that suggest some specificity regarding the phosphorylation of the four yeast acidic proteins. It has been found that some typical effectors of the PKC kinase stimulate the in vitro phosphorylation of the stalk proteins. All the data suggest that although phosphorylation is not involved in the interaction of the acidic P proteins with the ribosome, it can affect the ribosome activity and might participate in a possible ribosome regulatory mechanism.  相似文献   

15.
Protein Phosphorylation and Neuronal Function   总被引:25,自引:13,他引:12  
Studies in the past several years have provided direct evidence that protein phosphorylation is involved in the regulation of neuronal function. Electrophysiological experiments have demonstrated that three distinct classes of protein kinases, i.e., cyclic AMP-dependent protein kinase, protein kinase C, and CaM kinase II, modulate physiological processes in neurons. Cyclic AMP-dependent protein kinase and kinase C have been shown to modify potassium and calcium channels, and CaM kinase II has been shown to enhance neurotransmitter release. A large number of substrates for these protein kinases have been found in neurons. In some cases (e.g., tyrosine hydroxylase, acetylcholine receptor, sodium channel) these proteins have a known function, whereas most of these proteins (e.g., synapsin I) had no known function when they were first identified as phosphoproteins. In the case of synapsin I, evidence now suggests that it regulates neurotransmitter release. These studies of synapsin I suggest that the characterization of previously unknown neuronal phosphoproteins will lead to the elucidation of previously unknown regulatory processes in neurons.  相似文献   

16.
Several protein kinases that copurify with neurofilaments (NF) were identified and each kinase was assessed for its ability to phosphorylate NF proteins. NFs were isolated using an axonal flotation procedure and the kinases were extracted from NFs with 0.8 M KCl. NF kinases were incubated with peptide substrates for selected protein kinases, [32P]ATP and protein kinase cofactors and inhibitors to characterize the kinases. Using peptide substrates, three types of kinase were identified, and a fourth was identified using NF protein as substrate. The first three kinases were the catalytic subunit of cAMP-dependent protein kinase, calcium-calmodulin dependent protein kinase II and a cofactor-independent kinase that phosphorylated prepro VIP sequence 156-170 and was inhibited by heparin. Using NF proteins as substrate, a fourth kinase was identified which was cofactor-independent and was not inhibited by heparin. Neither cofactor-independent kinase was casein kinase II. NF proteins were phosphorylated in vitro on serine and threonine, primarily by the two cofactor-independent kinases. Using [alpha-32P]8-N3ATP for affinity labeling, one kinase of 43,800 Da was identified. Thus, in addition to cAMP-dependent protein kinase and calcium-calmodulin dependent protein kinase II, two kinases have been found which are primarily responsible for NF phosphorylation in vitro and are cofactor-independent.  相似文献   

17.
Proteomic analysis of in vivo phosphorylated synaptic proteins   总被引:10,自引:0,他引:10  
In the nervous system, protein phosphorylation is an essential feature of synaptic function. Although protein phosphorylation is known to be important for many synaptic processes and in disease, little is known about global phosphorylation of synaptic proteins. Heterogeneity and low abundance make protein phosphorylation analysis difficult, particularly for mammalian tissue samples. Using a new approach, combining both protein and peptide immobilized metal affinity chromatography and mass spectrometry data acquisition strategies, we have produced the first large scale map of the mouse synapse phosphoproteome. We report over 650 phosphorylation events corresponding to 331 sites (289 have been unambiguously assigned), 92% of which are novel. These represent 79 proteins, half of which are novel phosphoproteins, and include several highly phosphorylated proteins such as MAP1B (33 sites) and Bassoon (30 sites). An additional 149 candidate phosphoproteins were identified by profiling the composition of the protein immobilized metal affinity chromatography enrichment. All major synaptic protein classes were observed, including components of important pre- and postsynaptic complexes as well as low abundance signaling proteins. Bioinformatic and in vitro phosphorylation assays of peptide arrays suggest that a small number of kinases phosphorylate many proteins and that each substrate is phosphorylated by many kinases. These data substantially increase existing knowledge of synapse protein phosphorylation and support a model where the synapse phosphoproteome is functionally organized into a highly interconnected signaling network.  相似文献   

18.
Aurintricarboxylic acid (ATA) prevents apoptosis in a diverse range of cell types including PC12 cells. It is known to stimulate tyrosine phosphorylation of signaling proteins including Shc proteins, phosphatidylinositol 3-kinase, phospholipase C-g and mitogen-activated protein kinases (MAPKs). However, it has been unclear how ATA increases the phosphorylation of these proteins as it was believed to be membrane impermeable. We found that ATA translocates across the plasma membrane of PC12 cells and have confirmed that it is a potent inhibitor of protein tyrosine phosphatases (PTP ases). Other PTPase inhibitors also prevented apoptosis independent of ATA. These observations indicate that ATA exerts its anti-apoptotic effect on PC12 cells at least in part by inhibiting certain PTPase(s).  相似文献   

19.
Phosphorylation by protein tyrosine kinases is crucial to the control of growth and development of multicellular eukaryotes, including humans, and it also seems to play an important role in multicellular prokaryotes. A plant tyrosine-specific kinase has not been identified yet; hence, plants have been suggested to share with unicellular eukaryote yeast a tyrosine phosphorylation system where a limited number of stress proteins are tyrosyl-phosphorylated only by a few dual-specificity (serine/threonine and tyrosine) kinases. However, preliminary evidence obtained so far suggests that tyrosine phosphorylation in plants depends on the developmental conditions. Since sequencing of the genome of the model flowering plant Arabidopsis thaliana has been recently completed, we have performed a bioinformatic screening of the whole Arabidopsis proteome to identify a model complement of bona fide protein tyrosine kinases. In silico analyses suggest that < 4% of Arabidopsis kinases are tyrosine-specific kinases, whose gene expression has been assessed by a preliminary polymerase chain reaction screening of an Arabidopsis cDNA library. Finally, immunological evidence confirms that the number of Arabidopsis proteins specifically phosphorylated on tyrosine residues is much higher than in yeast.  相似文献   

20.
Regulation of gap junctions by phosphorylation of connexins   总被引:21,自引:0,他引:21  
Gap junctions are a unique type of intercellular junction found in most animal cell types. Gap junctions permit the intercellular passage of small molecules and have been implicated in diverse biological processes, such as development, cellular metabolism, and cellular growth control. In vertebrates, gap junctions are composed of proteins from the "connexin" gene family. The majority of connexins are modified posttranslationally by phosphorylation, primarily on serine amino acids; however, phosphotyrosine has also been detected in connexin from cells coexpressing nonreceptor tyrosine protein kinases. Connexins are targeted by numerous protein kinases, of which some have been identified: protein kinase C, mitogen-activated protein kinase, and the v-Src tyrosine protein kinase. Phosphorylation has been implicated in the regulation of a broad variety of connexin processes, such as the trafficking, assembly/disassembly, degradation, as well as the gating of gap junction channels. This review examines the consequences of connexin phosphorylation for the regulation of gap junctional communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号