首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Sardans  Jordi  Rodà  Ferran  Peñuelas  Josep 《Plant Ecology》2004,174(2):307-319
Aleppo pine (Pinus halepensis) and the evergreen holm oak (Quercus ilex) dominate forest areas of the Mediterranean Basin. Both species regenerate abundantly after fires: pine through seedlings and holm oak through resprouts. Cumulative nutrient losses caused by frequent fires may have decreased soil nutrient availability in such areas. To assess the role of nitrogen and phosphorus as limiting factors for growth of these species during post-fire recovery, a field fertilisation and competition experiment was conducted in a 5-year post-fire shrubland on calcareous soil, where naturally-regenerated saplings of Aleppo pine and resprouts of interior holm oak (Quercus ilex subsp. rotundifolia) coexist. Three years after fertilisation, relative basal area increment was 56% greater in pines fertilised with 250 kg P ha–1 than in non fertilised ones. N fertilisation had small or no effects. Interactions between N and P fertilisation were not observed. Growth of Aleppo pine only increased with P fertilisation when neighbours were removed. Hence, the negative effect of neighbours on growth was greater when P availability was enhanced by fertilisation. In contrast, holm oak was able to grow more (110%) in response to increased P supply even without neighbour removal. A common garden experiment was then conducted with potted seedlings to investigate whether the suggested higher competitive capacity of holm oak for P held under a range of P amendments on different soils and competitive situations. P fertilisation increased seedling biomass yield of both species. When P availability increased, a negative effect of neighbours on growth was observed for holm oak and in 70 a lesser extent for Aleppo pine. In conclusion, in the field, holm oak resprouts showed higher competitive ability for P uptake compared to Aleppo pine saplings, but in potted seedlings in common garden conditions this trend was not observed. Therefore holm oak is not always competitively superior to Aleppo pine for P. Potted seedlings of both species had a notable plasticity in shoot/root biomass allocation, but only holm oak increased its proportional allocation to roots when neighbours were present. P availability can be a key factor in growth and competitive relations of these two species, but effects differ depending on soil type, individual age, regeneration type (i.e., seedling versus resprouts), and competitive situation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
The capacity of Mediterranean species to adapt to variable nutrient supply levels in a global change context can be a key factor to predict their future capacity to compete and survive in this new scenario. We aimed to investigate the capacity of a typical Mediterranean tree species, Pinus halepensis, to respond to sudden changes in N and P supply in different environmental conditions. We conducted a fertilisation, irrigation and removal of competing vegetation experiment in a calcareous post-fire shrubland with an homogeneous young (5 years old) population of P. halepensis in order to investigate the retranslocation and nutrient status for the principal nutrients (N, P, Mg, K, S, Ca and Fe), and the nutrient use efficiency (NUE) of the most important nutrients linked to photosynthetic capacity (N, P, Mg and K). P fertilisation increased P concentration in needles, P, N, Mg and K retranslocations, and NUE calculated as biomass production per unit of nutrient lost in the litterfall. The P fertilisation was able to increase the aboveground biomasses and P concentration 3 years after P fertiliser application. Those responses to P fertilisation were enhanced by the removal of competing vegetation. The N needle and litterfall concentration decreased after P fertilisation and this effect was greater when the P fertilisation was accompanied by removal of competing vegetation. The increase of P availability decreased the P-NUE and increased the N-NUE when these variables were calculated as aboveground biomass production per unit of P present in the biomass. Both P-NUE and N-NUE increased when calculated as total aboveground production per unit of nutrient loss. The results show that it is necessary to calculate NUE on a different basis to have a wider understanding of nutrient use. The irrigation did not change the needle nutrient concentrations and the litterfall production, but it significantly changed the nutrient litterfall concentrations and total aboveground contents (especially P and K). These results show a high capacity of P. halepensis to quickly respond to a limiting nutrient such as P in the critical phases of post-fire regeneration. The increase in P availability had a positive effect on growth and P concentrations and contents in aboveground biomass, thus increasing the capacity of growth in future periods and avoiding immediate runoff losses and leachate. This capacity also strongly depends on neighbour competition.  相似文献   

3.
Rosmarinus officinalis is a dominant shrub species of calcareous Mediterranean communities that has increased its presence in wide areas due to fire frequency increase and field abandonment. We aimed to study the capacity of adult shrubs to respond to nutrient pulses such as those produced by fires and human driven eutrophycation. In a 5 years old post-fire Mediterranean shrubland we conducted an experiment to investigate the effects of irrigation and N and P fertilisation on the growth, nutrient status and flowering effort of adult plants of the dominant shrub R. officinalis in a post-fire shrubland. The responses were monitored during the immediate 3 years after fertilisation. P fertilisation increased plant growth, produced a great increase in P aerial mineralomass and P concentration in leaf and stems and had a slight positive effect on flowering effort. Irrigation increased plant growth, but did not have significant effects on nutrient contents and flowering. The results show that adult individuals of the Mediterranean shrub R. officinalis have a notable capacity to positively respond in growth and in nutritional status to a sudden increase of the limiting nutrient, in this case P, and in a lesser extent, to an increase of water supply. These capacities may be important under the more unpredictable nutrient and water availability conditions expected for the near future; they will allow to take advantage of the pulses of higher nutrient and water availability in the middle of dry periods, thus increasing the community capacity to improve the nutrient retention in the ecosystem.  相似文献   

4.
We assessed the response of Quercus ilex subsp. ballota to the severe summer drought recorded in 1994 in NE Spain through the study of changes in radial growth and wood anatomy. We selected a coppice stand in the Iberian Peninsula, which is characterized by a Mediterranean climate under continental influence. We measured internode length, tree-ring width, mean and maximum vessel diameter, and vessel density for 1981–1997. The annual predicted hydraulic conductance (Kh) was calculated following Hagen-Poisseuille's law. We compared the tree-ring width, vessel diameter and Kh of Q. ilex subsp. ballota and co-existing ring-porous oaks (Q. faginea, Q. pyrenaica) for a dry summer (1994) and a wet summer (1997). To evaluate the drought-resistance of xylem for Q. ilex subsp. ballota (dominant under continental conditions) and Q. ilex subsp. ilex (dominant in mild areas) we determined vulnerability curves. Dimensionless indices of internode length, tree-ring width, and vessel density were compared with climatic data (monthly total precipitation and mean temperature) using correlation analyses. Internode length, tree-ring width, Kh, and mean and maximum vessel diameter declined in 1994. According to vulnerability curves, Q. ilex subsp. ballota showed a greater drought resistance than Q. ilex subsp. ilex. During the year of growth, we found a positive influence of January and June–August precipitation on the internode length, tree-ring width, and vessel density. The response of Q. ilex subsp. ballota radial-growth to summer drought was comparable to that of Q. faginea latewood. Overall, growth and wood anatomy of Q. ilex subsp. ballota showed a plastic response to drought.  相似文献   

5.
Although aerobiological data are often used in phenological research as an indicator of flowering, airborne pollen concentrations are influenced by a number of factors that could affect pollen curves. This paper reports on a study of various aspects of reproductive biology in Q. ilex subsp. ballota, together with environmental factors influencing pollen release and transport, with a view of achieving reliable interpretation of Quercus pollen curves in Ourense (NW Spain). Aerobiological data were recorded from 2002 to 2004 at two sites in the province of Ourense. From 1st February to the end of the flowering period, phenological observations were carried out on 19 trees from the Q. ilex subsp. ballota population found in the Ourense area. Pollen production was calculated for the same trees. The chilling and heating requirements for triggering development were also calculated. The mean flowering period lasted 11-15 days. Reduced pollen output per catkin and, especially, a reduced number of catkins per tree in 2003 and 2004, prompted a marked decline in overall pollen production. Major differences observed in Q. ilex subsp. ballota pollen curves were attributed to the considerable influence both of weather conditions during pollination and pollen production. In years with high pollen production and weather conditions favouring pollen release, Q. ilex subsp. ballota contributed almost 10% to the total Quercus pollen curve. Around 20% of the pollen trapped was captured before or after flowering periods.  相似文献   

6.
Quercus ilex and Pinus halepensis are two of the most common tree species of the western Mediterranean basin. Both species regenerate reliably after fire: P. halepensis colonizes recently disturbed areas by effective seedling recruitment, while Q. ilex resprouts vigorously after disturbances. For this reason, the natural regeneration of these species after fire should ensure the re-establishment of a forest similar to that which existed before the fire. This study analyzes with a simple simulation model whether or not the relative abundance of monospecific and mixed forests of these species in the landscape is altered by fire. We also analyze the topographic factors and the forest structure before the fire that determine the changes in forest composition after fire. This study has been carried out in a large fire that occurred in NE Spain. Overall, 33% of plots changed to another community type, but this probability of change varied considerably among community types before the fire. Monospecific forests of P. halepensis or Q. ilex had a high probability of remaining in their original composition after the fire, whereas the resilience of mixed forests of these two species was quite low. Mixed forests changed for the most part to monospecific P. halepensis or Q. ilex forests. Analysis of several factors determining these changes indicated that only elevation as a significant topographical variable. The effect of fire was to increase the altitudinal differentiation between the two species. P. halepensis forests that changed to mixed or Q. ilex forests were those of highest elevation, while the mixed and Q. ilex plots that changed to P. halepensis forests were those located at the lowest elevations. Concerning structural variables before fire, density of Q. ilex trees before the fire showed a much greater effect than P. halepensis density in determining the post-fire community. Finally, burn severity also influenced the changes observed. For both P. halepensis and Q. ilex forests, plots that changed to another forest type were mainly those that burned more severely. In the case of mixed forests, even low fire severities involved high probabilities of change to monospecific forests.  相似文献   

7.
Seeds ofPinus halepensis andPinus pinaster subsp.pinaster were subjected to four heat treatments (90, 110, 150 and 200 °C) for 1 and 5 min to investigate their tolerances to high temperatures resulting from fires. Another group of seeds of each species were not heated and considered as a control. Information on responses of seeds to high temperatures would help to determine whether or not the species are pyrophytes. Heating for 1 min at all temperatures did not affect the average germination ofPinus halepensis seeds whereas that ofP. pinaster subsp.pinaster seeds was decreased significantly when they were heated to 200 ° C. HoweverP. pinaster seeds were more resistant than that ofP. halepensis when heat treatment was 150 °C for 5 min. Data obtained also indicated that, in general,P. halepensis andP. pinaster subsp.pinaster seed germination is not favoured by a temperature increase than can be reached in soils during a fire. Thus, the species are not pyrophytes but colonizers of burnt sites.  相似文献   

8.
Sun and shade leaves of two Mediterranean Quercus species, Quercus ilex subsp. ballota (Desf.) Samp. and Quercus coccifera L., were compared by measuring leaf optical properties, photosynthetic pigment composition and photosystem II efficiency. The presence of trichomes in the adaxial (upper) leaf surface of Q. ilex subsp. ballota seems to constitute an important morphological mechanism that allows this species to maintain a good photosystem II efficiency during the summer. Q. coccifera has almost no trichomes and seems instead to develop other physiological responses, including a smaller light-harvesting antenna size, higher concentrations of violaxanthin cycle pigments and a higher (zeaxanthin + antheraxanthin)/(violaxanthin + antheraxanthin + zeaxanthin) ratio. Q. coccifera was not able to maintain a good photosystem II efficiency up to the end of the summer. In Q. ilex subsp. ballota leaves, natural loss or mechanical removal of adaxial-face leaf trichomes induced short-term decreases in photosystem II efficiency. These changes were accompanied by de-epoxidation of violaxanthin cycle pigments, suggesting that the absence of trichomes would trigger physiological responses in this species. Our data have revealed different patterns of response of Q. ilex subsp. ballota and Q. coccifera facing the stress conditions prevailing in the Mediterranean area.  相似文献   

9.
In a field microcosm experiment, species‐specific responses of aboveground biomass of two California annual grassland communities to elevated CO2 and nutrient availability were investigated. One community grows on shallow, nutrient‐poor serpentine‐derived soil whereas the other occurs on deeper, modestly fertile sandstone/greenstone‐derived substrate. In most species, CO2 effects did not appear until late in the growing season, probably because the elevated CO2 increased water‐use‐efficiency easing, the onset of the summer drought. Responses of aboveground biomass to elevated CO2 differed depending on nutrient availability. Similarly, biomass responses to nutrient treatments differed depending on the CO2 status. For the majority of the species, production increased most under elevated CO2 with added nutrients (N,P,K, and micro nutrients). Some species were losers under conditions that increased overall community production, including Bromus hordeaceus in the serpentine community (negative biomass response under elevated CO2) and Lotus wrangelianus in both communities (negative biomass response with added nitrogen). Treatment and competitive effects on species‐specific biomass varied in both magnitude and direction, especially in the serpentine community, significantly affecting community structure. Individual resource environments are likely to be affected by neighbouring plants, and these competitive interactions complicate predictions of species' responses to elevated CO2.  相似文献   

10.
Climatic dryness imposes limitations on vascular plant growth by reducing stomatal conductance, thereby decreasing CO2 uptake and transpiration. Given that transpiration‐driven water flow is required for nutrient uptake, climatic stress‐induced nutrient deficit could be a key mechanism for decreased plant performance under prolonged drought. We propose the existence of an “isohydric trap,” a dryness‐induced detrimental feedback leading to nutrient deficit and stoichiometry imbalance in strict isohydric species. We tested this framework in a common garden experiment with 840 individuals of four ecologically contrasting European pines (Pinus halepensis, P. nigra, P. sylvestris, and P. uncinata) at a site with high temperature and low soil water availability. We measured growth, survival, photochemical efficiency, stem water potentials, leaf isotopic composition (δ13C, δ18O), and nutrient concentrations (C, N, P, K, Zn, Cu). After 2 years, the Mediterranean species Pinus halepensis showed lower δ18O and higher δ13C values than the other species, indicating higher time‐integrated transpiration and water‐use efficiency (WUE), along with lower predawn and midday water potentials, higher photochemical efficiency, higher leaf P, and K concentrations, more balanced N:P and N:K ratios, and much greater dry‐biomass (up to 63‐fold) and survival (100%). Conversely, the more mesic mountain pine species showed higher leaf δ18O and lower δ13C, indicating lower transpiration and WUE, higher water potentials, severe P and K deficiencies and N:P and N:K imbalances, and poorer photochemical efficiency, growth, and survival. These results support our hypothesis that vascular plant species with tight stomatal regulation of transpiration can become trapped in a feedback cycle of nutrient deficit and imbalance that exacerbates the detrimental impacts of climatic dryness on performance. This overlooked feedback mechanism may hamper the ability of isohydric species to respond to ongoing global change, by aggravating the interactive impacts of stoichiometric imbalance and water stress caused by anthropogenic N deposition and hotter droughts, respectively.  相似文献   

11.
Cuttings of Populus kangdingensis and Populus cathayana originating from altitudes of 3500 and 1500 m in southwestern China, respectively, were grown for one growing season in the field under ambient or ambient plus supplemental ultraviolet‐B (UV‐B) radiation with two levels of nutrients. In both species, enhanced UV‐B radiation significantly increased UV‐B absorbing compounds and guaiacol peroxidase (GPX) activity, while no significant effects were observed in photosynthetic pigments and proline content. On the other hand, cuttings grown with high‐nutrient availability had larger leaf area, higher total biomass and GPX activity as well as higher water use efficiency (WUE) (as measured by stable carbon isotope composition, δ13C) when compared with low‐nutrient conditions, while UV‐B absorbing compounds and ascorbic acid (AsA) content significantly decreased. Differences in responses to enhanced UV‐B radiation and nutrient availability were observed between the two species. Nutrient‐induced increases in chlorophyll a, chlorophyll b and total chlorophyll as well as in carotenoids were greater in P. kangdingensis than in P. cathayana. In P. cathayana, enhanced UV‐B radiation significantly decreased leaf area and total biomass, while it significantly increased WUE and ascorbate peroxidase (APX). In contrast, such changes were not observed in P. kangdingensis. In addition, the effects of enhanced UV‐B radiation on leaf area, total biomass and UV‐B absorbing compounds were closely related to the nutrient status. Our results indicated that P. kangdingensis, which originates from the altitude of 3500 m and is apparently adapted to low‐nutrient and high‐UV‐B habitats, exhibits better tolerance to enhanced UV‐B radiation and greater growth under low‐nutrient availability than does P. cathayana originating from the altitude of 1500 m.  相似文献   

12.
The changes in foliar concentrations of volatile terpenes in response to water stress, fertilization and temperature were analyzed in Pinus halepensis and Quercus ilex. The most abundant terpenes found in both species were α-pinene and Δ3-carene. β-Pinene and myrcene were also abundant in both species. P. halepensis concentrations were much greater than those of Q. ilex in agreement with the lack of storage in the latter species (15205.60 ± 1140.04 vs. 0.54 ± 0.08 μg g−1 [d.m.]). The drought treatment (reduction to 1/3 of full watering) significantly increased the total terpene concentrations in both species (54% in P. halepensis and 119% in Q. ilex). The fertilization treatment (addition of either 250 kg N ha−1 or 250 kg P ha−1 or both) had no significant effects on terpene foliar concentrations. The terpene concentrations increased from 0.25 μg g−1 [d.m.] at 30°C to 0.70 μg g−1 [d.m.] at 40°C in Q. ilex (the non-storing species) and from 2,240 μg g−1 [d.m.] at 30°C to 15,621 μg g−1 [d.m.] at 40°C in P. halepensis (the storing species). Both species presented negative relationship between terpene concentrations and relative water contents (RWC). The results of this study show that higher terpene concentrations can be expected in the warmer and drier conditions predicted for the next decades in the Mediterranean region.  相似文献   

13.
We studied the effects of experimental warming and drought on the plant biomass of a Mediterranean shrubland. We monitored growth at plant level and biomass accumulation at stand level. The experimentation period stretched over 7 years (1999–2005) and we focused on the two dominant shrub species, Erica multiflora L. and Globularia alypum L. and the tree species Pinus halepensis L. The warming treatment increased shoot elongation in E. multiflora, and the drought treatment reduced shoot elongation in G. alypum. The elongation of P. halepensis remained unaffected under both treatments. The balance between the patterns observed in biomass accumulation for the three studied species in the drought plots (reduction in E. multiflora and P. halepensis and increase in G. alypum) resulted in a trend to reduce 33% the biomass of the drought treatment plots with respect to the untreated plots, which almost doubled their biomass from 1998 to 2005. The results also suggest that under drier conditions larger accumulation of dead biomass may occur at stand level, which combined with higher temperatures, may thus increase fire risk in the Mediterranean area.  相似文献   

14.
Biosolids have been widely used for land reclamation, but information on their use in restoration, i.e., on less degraded areas, is scarce. Biosolids may be used to restore forest ecosystems by fostering tree establishment in degraded shrublands. Detailed knowledge on the effects of biosolid application is needed to optimize such practice. We evaluated the effect of different rates (0, 7.5 and 14.5 kg dry weight per plant) and types of biosolid application on the performance of Pinus halepensis and Quercus ilex seedlings, and operational costs. Biosolids increased seedling mortality in both species, particularly when seedlings were planted in direct contact with them. Mortality mostly occurred during the first year, and was probably favored by soil shrinking and salinity. Foliar and needle nitrogen concentration increased with biosolid rate in the short term, but biosolids affected negatively (P. halepensis), or had no effect (Q. ilex) on phosphorus and potassium concentration. Biosolids had a positive effect on P. halepensis growth, and a negative effect on Q. ilex growth at the highest rate when seedlings were in contact with biosolids. Cost of this type of biosolid application approximately doubled plantation cost, but were similar or cheaper that landfill disposal of biosolids. The lowest application rate showed the best balance between seedling response and costs for P. halepensis, whereas biosolid use cannot be recommended for Q. ilex.  相似文献   

15.
Abstract. European Mediterranean landscapes have undergone changes in structure in recent years as a result of widespread agricultural land abandonment and cessation of silvicultural regimes. Studies concerning the regeneration dynamics of dominant forest species have become critical to the prediction of future landscape trends in these changing forest stands. Quercus ilex (holm oak) and Q. pubescens (downy oak) are considered to be the terminal point of secondary succession in extensive areas of the Mediterranean region. Recent studies, however, have suggested the existence of recruitment bottlenecks in oak genet populations as a result of current management regimes. In this study, we present evidence of the successful establishment of Q. ilex and Q. pubescens in Pinus halepensis (Aleppo pine) woodlands. We investigate the distribution patterns and spatial relationships among oak recruits and resident pines. Established P. halepensis is randomly distributed throughout the study area. Oak seedlings are positively associated with pine trees, suggesting that P. halepensis individuals provide safe sites for oak genet recruitment. We show that spatial patterns of recruitment are in agreement with the general model of spatial segregation described for other Mediterranean plant communities, with seeder species colonizing large openings after disturbance, followed by a more aggregated recruitment of resprouter species.  相似文献   

16.
Summary Pole sized stands ofPopulus tremuloides Michx.,Picea glauca (Moench.) Voss,Pinus resinosa Ait., andPinus banksiana Lamb., were sampled on both a very fine sandy loam and a loamy sand. Relative species ranking in above-ground tree biomass (Pinus resinosa>Populus>Picea>Pinus banksiana) and above-ground tree nutrient (N, P, K, Ca, Mg) weights (Populus>Picea>Pinus resinosa>Pinus banksiana) were similar on both soils. Particularly large proportions of biomass and nutrients were found in aspen bark and spruce foliage and branches on both soils. Harvesting entire above-ground trees would remove up to three times more nutrients than would harvesting only the bole.Herbs and shrubs had less than 3% of the total vegetation organic matter but contributed as much as one-half of the total annual litterfall nutrients. Litterfall weights and nutrient concentrations, and especially forest floor nutrients, were all less on the loamy sand. Nutrients in the rooting zone of the loamy sand were 12 to 29% less than in the very fine sandy loam except for P which averaged 24% higher. On both soils, exchangeable Ca in the surface soil was much lower under Populus and Picea than under the pines, owing to species differences in uptake and apparently slow release of Ca by weathering.Ca in the above-ground Populus amounted to 18% (very fine sandy loam) to 25% (loamy sand) of the exchangeable Ca in the total complex. Intensive utilization of this species in particular could stress the Ca economy of these sites.This article was written and prepared by U.S. Government employees on official time; it is therefore in the public domain.Principal Silviculturist and Research Soil Scientist, resp.  相似文献   

17.
In evergreen broad-leaved forests (EBLFs) in Tiantong National Forest Park, Eastern China, we studied the soil chemistry and plant leaf nutrient concentration along a chronosequence of secondary forest succession. Soil total N, P and leaf N, P concentration of the most abundant plant species increased with forest succession. We further examined leaf lifespan, leaf nutrient characteristics and root–shoot attributes of Pinus massoniana Lamb, the early-successional species, Schima superba Gardn. et Champ, the mid-successional species, and Castanopsis fargesii Franch, the late-successional species. These species showed both intraspecific and interspecific variability along succession. Leaf N concentration of the three dominant species increased while N resorption tended to decrease with succession; leaf P and P resorption didn’t show a consistent trend along forest succession. Compared with the other two species, C. fargesii had the shortest leaf lifespan, largest decay rate and the highest taproot diameter to shoot base diameter ratio while P. massoniana had the highest root–shoot biomass ratio and taproot length to shoot height ratio. Overall, P. massoniana used ‘conservative consumption’ nutrient use strategy in the infertile soil conditions while C. fargesii took up nutrients in the way of ‘resource spending’ when nutrient supply increased. The attributes of S. superba were intermediate between the other two species, which may contribute to its coexistence with other species in a wide range of soil conditions.  相似文献   

18.
《Acta Oecologica》2006,29(2):221-232
Nutrient availability is increasing in the Mediterranean Basin due to the great number and intensity of fires and higher levels of anthropomorphic pollution. In the experiment described in this paper, we aimed to determine the effects of N and P availability and of the removal of competing vegetation on resprouter capacity, biomass, and nutrient accumulation in Erica multiflora. Plants of the resprouter species E. multiflora were clipped to 0% of aerial biomass in a post-fire Mediterranean shrubland and fertilisation experiments and removal of competing vegetation were established in a factorial design. The resprouting of clipped plants was monitored during the first year after clipping and at the end of the year, all plant resprout populations were harvested and their resprout structure, biomass and N and P content measured. N fertilisation had no significant effect on leaf biomass either at plant level or on the total aerial biomass per stump unit area; however N concentration in resprout biomass did increased. P fertilisation slightly increased resprouting vigour and had a significant effect on P content of the leaf biomass. The removal of competing vegetation increased the ratio between leaf biomass and stem biomass, the lateral expansion of resprout, the hierarchy of resprouts branching, and the P content of stems, above all when P fertilisation was applied. These results show that as a response to decreased competition E. multiflora has the capacity to modify the relative proportions of the nutrients in the aerial biomass. All these characteristics allow E. multiflora to persist in increasingly disturbed Mediterranean ecosystems and contribute to the retention of nutrients in the ecosystem during early resprouting phases.  相似文献   

19.
Norway spruce (NS) and Douglas-fir (DF) are among the main species used for production forestry in France. In low-elevation mountains and under-acidic conditions, they often occupy the same ecological situations. It is therefore of paramount interest to have a good understanding of how the two species behave under similar conditions and how they react to site improvement by fertilisation. The study stands are part of an experimental stand located in the estate forest of Breuil-Chenue in the Morvan (east central part of France). Its aim is to compare the impact of change in species on ecosystem functions. Destructive sampling of 10 trees per stand, distributed over the whole spectrum of inventoried classes of circumference at breast height (c 1.30), was carried out within four stands, e.g., fertilised and control (non-fertilised) NS; fertilised and control (non-fertilised) DF. Allometric relationships between c 1.30 and biomass or nutrient content per tree compartment were calculated. These equations were applied to the stand inventory for quantifying stand biomass and nutrient content on a hectare basis. The standard deviations of results were estimated using Monte-Carlo simulations. Specific emphasis was given to explain the origin of differences observed between species and treatments, i.e., changes in carbon allocation leading to specific allometric relationships, changes in stand structure (tree size distributions) and changes in stand density due to mortality.DF was more productive than NS (+28% for total tree biomass, +50% for ligneous biomass and +53% for stem wood). Both NS and DF were affected by fertilisation but in the case of NS, effects on the crown_c 1.30 relationship and on average tree growth were predominant while in the case of DF, the stem_c 1.30 relationship and stand density were affected by changes in soil fertility. The general fertilisation effect was an increment of 40% of ligneous dry matter for DF and only 22% for NS. In both cases, the amount of wood biomass produced per unit of leaf biomass (on a tree basis and, to a lesser extent, on a per hectare basis) was greater in fertilised plots. However, in the case of NS, the same amount of wood biomass was produced from a smaller quantity of leaves while in the case of DF, the same amount of leaves produced more wood biomass.The amount of nutrients in total ligneous biomass was higher for N, P and K, but lower for Ca and Mg, in DF than in NS. A high variability was observed between nutrient content of the different compartments, e.g., DF < NS for needles (except Mg), DF < NS for K, Ca and Mg for stem wood and DF > NS for N and P of stem wood. Fertilisation did not considerably change the hierarchy. On the basis of this study, all the indexes concerning stand production, wood density, nutrient use efficiency and response to fertilisation gave a net advantage to DF. This information is highly relevant for both ecological and practical purposes.  相似文献   

20.
R. Aerts 《Oecologia》1989,78(1):115-120
Summary Leaf turnover and aboveground productivity in relation to nutrient availability were studied in the evergreen shrubs Erica tetralix and Calluna vulgaris. In monospecific stands of these species four levels of nutrient (NPK) availability were created during three growing seasons. Percentage survival and life expectancy of Erica leaves decreased with increasing nutrient availability. For Calluna there was no effect. Winter mortality of Erica leaves was smaller than growing season mortality. These was no difference for Calluna. The timing of leaf mortality of both species was not affected by nutrient treatment. At the end of the experimental period current year leaf biomass, total biomass and current year second year and third year biomass of both species showed a significant increase with increasing nutrient availability. The relative increase was greater for Calluna, except for second and third year biomass. Stem production and stem mortality of both species increased with increasing nutrient availability. The increased stem mortality resulted also for Calluna in an increased leaf turnover (per unit ground area) with increasing nutrient availability. Nutrient cycling in ecosystems dominated by these species will increase with increasing nutrient availability, because of increased leaf and stem turnover and productivity. This phenotypic effect is similar to the effect of the shift in dominance between different species which occurs along natural gradients of nutrient availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号