首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The widely used industrial solvent ethylene glycol monomethyl ether (EGME) is teratogenic to rats and mice, inducing a variety of heart and major vessel abnormalities. In the present study, electrocardiography was used to evaluate heart function in day 20 rat (Sprague-Dawley) fetuses from mothers treated on gestation days 7-13 (sperm = day 1) with 0, 25, or 50 mg/kg EGME by gavage in 10 ml/kg water. The increased incidence of fetuses with cardiovascular malformations (primarily right ductus arteriosus and ventricular septal defect) and abnormal electrocardiograms (EKG) was dose dependent. The most prevalent EKG abnormality was a prolonged QRS wave. Mean QRS intervals were not significantly increased by EGME exposure, but there were significantly more litters in the 50-mg/kg EGME group that had one or more fetuses with QRS complexes of 40 msec or longer. The enhanced duration and the appearance of the aberrant QRS's suggested the presence of an intraventricular conduction delay in these fetuses. Heart rate and other EKG characteristics such as the P wave or P-R and Q-T intervals were not significantly affected by exposure to EGME. There did not appear to be an association between abnormal EKG's and fetal heart dysmorphology.  相似文献   

2.
Important sex differences in cardiovascular disease outcomes exist, including conditions of hypertrophic cardiomyopathy and cardiac ischemia. Studies of sex differences in the extent to which load-independent (primary) hypertrophy modulates the response to ischemia-reperfusion (I/R) damage have not been characterized. We have previously described a model of primary genetic cardiac hypertrophy, the hypertrophic heart rat (HHR). In this study the sex differences in HHR cardiac function and responses to I/R [compared to control normal heart rat (NHR)] were investigated ex vivo. The ventricular weight index was markedly increased in HHR female (7.82 +/- 0.49 vs. 4.80 +/- 0.10 mg/g; P < 0.05) and male (5.76 +/- 0.22 vs. 4.62 +/- 0.07 mg/g; P < 0.05) hearts. Female hearts of both strains exhibited a reduced basal contractility compared with strain-matched males [maximum first derivative of pressure (dP/dt(max)): NHR, 4,036 +/- 171 vs. 4,258 +/- 152 mmHg/s; and HHR, 3,974 +/- 160 vs. 4,540 +/- 259 mmHg/s; P < 0.05]. HHR hearts were more susceptible to I/R (I = 25 min, and R = 30 min) injury than NHR hearts (decreased functional recovery, and increased lactate dehydrogenase efflux). Female NHR hearts exhibited a significantly greater recovery (dP/dt(max)) post-I/R relative to male NHR (95.0 +/- 12.2% vs. 60.5 +/- 9.4%), a resistance to postischemic dysfunction not evident in female HHR (29.0 +/- 5.6% vs. 25.9 +/- 6.3%). Ventricular fibrillation was suppressed, and expression levels of Akt and ERK1/2 were selectively elevated in female NHR hearts. Thus the occurrence of load-independent primary cardiac hypertrophy undermines the intrinsic resistance of female hearts to I/R insult, with the observed abrogation of endogenous cardioprotective signaling pathways consistent with a potential mechanistic role in this loss of protection.  相似文献   

3.
Reactive oxygen species (ROS) contribute to ischemia-reperfusion injury of the heart. This study investigates the effects of tempol, a membrane-permeable radical scavenger on (i) the infarct size caused by regional myocardial ischemia and reperfusion of the heart in vivo (rat, rabbit) and in vitro (rat), and (ii) the cell injury caused by hydrogen peroxide (H2O2) in rat cardiac myoblasts (H9c2 cells). In the anesthetized rat, tempol reduced the infarct size caused by regional myocardial ischemia (25 min) and reperfusion (2 h) from 60 +/- 3% (control, n = 8) to 24 +/- 5% (n = 6, p < .05). In the anesthetized rabbit, tempol also attenuated the infarct size caused by myocardial ischemia (45 min) and reperfusion (2 h) from 59 +/- 3% (control, n = 6) to 39 +/- 5% (n = 5, p < .05). Regional ischemia (35 min) and reperfusion (2 h) of the isolated, buffer-perfused heart of the rat resulted in an infarct size of 54 +/- 4% (control n = 7). Reperfusion of hearts with buffer containing tempol (n = 6) caused a 37% reduction in infarct size (n = 6, p < .05). Pretreatment of rat cardiac myoblasts with tempol attenuated the impairment in mitochondrial respiration caused by H2O2 (1 mM for 4 h). Thus, the membrane-permeable radical scavenger tempol reduces myocardial infarct size in rodents.  相似文献   

4.
Recent studies have shown that the vasoactive peptide urotensin-II (U-II) exerts a wide range of action on the cardiovascular system of various species. In the present study, we determined the in vivo effects of U-II on basal hemodynamics and cardiac function in the anesthetized intact rat. Intravenous bolus injection of human U-II resulted in a dose-dependent decrease in mean arterial pressure and left ventricular systolic pressure. Cardiac contractility represented by +/-dP/dt was decreased after injection of U-II. However, there was no significant change in heart rate or diastolic pressure. The present study suggests that upregulation of myocardial U-II may contribute to impaired myocardial function in disease conditions such as congestive heart failure.  相似文献   

5.
The avian cardiovascular system is of special interest because avian hearts are relatively larger than mammalian hearts, and activation of ventricular myocardium in birds has a "flash" pattern. Systolic time intervals and indices of myocardial contractility were examined in anaesthetized open-chest chickens by polycardiography, including synchronous recordings of electrocardiogram, phonocardiogram, and apex cardiogram. The asynchronous contraction time, isometric contraction time, pre-ejection period and ejection time were 26 +/- 3 (Mean +/- SD), 21 +/- 9, 47 +/- 12, and 83 +/- 23 ms, respectively, for heart rates of 260 +/- 57 bpm. The myocardial tension index, isometric contraction index and the pre-ejection period/ejection time ratio were 0.39 +/- 0.11, 0.42 +/- 0.10, and 0.54 +/- 0.14, respectively. A "flash" pattern of ventricular myocardial depolarization causes more rapid excitation and as a consequence shorter asynchronous contraction time of relatively larger chicken hearts compared with rabbit hearts. Inverse relation (P < 0.05) of the asynchronous contraction time to the heart rate in chickens is probably associated with the specific activation pattern of avian ventricles. Establishment of the values of systolic time intervals will facilitate a better understanding of cardiac function in birds. The obtained results are discussed in comparison with the rabbit. The indices calculated from the systolic time intervals show disadvantageous contractile function of chicken heart compared to rabbit heart.  相似文献   

6.
To determine the hemodynamic effects of a hypotensive dose of atrial natriuretic factor (ANF), a synthetic peptide containing 26 amino acids of endogenous rat ANF (Arg-Arg-Ser-Ser-Cys-Phe-Gly-Gly-Arg-Ile-Asp-Arg-Ile-Gly-Ala-Gln-Ser-Gly -Leu-Gly-Cys-Asn-Ser-Phe-Arg-Tyr-COOH) was studied in two groups of barbiturate anesthetized rats. In the first experiment, a 20-minute infusion of a hypotensive dose, 95 pmole/min i.v., of the synthetic ANF decreased mean arterial pressure (MAP) by 40 +/- 3 mm Hg from a baseline of 128 +/- 5 mm Hg, and cardiac output (CO) (microsphere method) by 7.8 +/- 1.8 ml/min/100 gm from a baseline of 23.5 +/- 1.3 ml/min/100 gm. Synthetic ANF did not significantly affect the total peripheral resistance (TPR) measured at the end of the 20-minute infusion. Sodium nitroprusside (SNP), infused at an equihypotensive dose of 20 micrograms/kg/min i.v., produced the same hemodynamic profile in seven other animals; in contrast, 0.3 mg/kg i.v. of hydralazine (n = 7) lowered MAP by 56 +/- 6 mm Hg and reduced TPR index by 3.0 +/- 0.6 mm Hg/ml/min/100 gm, but did not change CO. Other than an increase in coronary blood during SNF infusion, there were no significant changes in the distribution of cardiac output. Infusion of the saline vehicle had no significant effects on any of these parameters. The results of the second experiment in anesthetized rats confirmed that hypotensive doses of 40 and 100 pmole/kg/min i.v. lowered CO (dye dilution method) from a baseline of 33 +/- 6 to a minimum of 24 +/- 2 ml/min/100 gm (p less than 0.05) without affecting TPR. In addition, synthetic ANF did not significantly affect heart rate (HR) but it slightly reduced cardiac contractility (dp/dt50). These results suggest that the hypotensive dose of synthetic ANF reduced cardiac output, partially by diminishing stroke volume, and perhaps contractility.  相似文献   

7.
Recently, rapid and transient cardiac pacing was shown to induce preconditioning in animal models. Whether the electrical stimulation per se or the concomitant myocardial ischemia affords such a protection remains unknown. We tested the hypothesis that chronic pacing of a cardiac preparation maintained in a normoxic condition can induce protection. Hearts of 4-day-old chick embryos were electrically paced in ovo over a 12-h period using asynchronous and intermittent ventricular stimulation (5 min on-10 min off) at 110% of the intrinsic rate. Sham (n = 6) and paced hearts (n = 6) were then excised, mounted in vitro, and subjected successively to 30 min of normoxia (20% O(2)), 30 min of anoxia (0% O(2)), and 60 min of reoxygenation (20% O(2)). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout the experiment. Reoxygenation-induced chrono-, dromo-, and inotropic disturbances, incidence of arrhythmias, and changes in electromechanical delay (EMD) in atria and ventricle were systematically investigated in sham and paced hearts. Under normoxia, the isolated heart beat spontaneously and regularly, and all baseline functional parameters were similar in sham and paced groups (means +/- SD): heart rate (190 +/- 36 beats/min), P-R interval (104 +/- 25 ms), mechanical atrioventricular propagation (20 +/- 4 mm/s), ventricular shortening velocity (1.7 +/- 1 mm/s), atrial EMD (17 +/- 4 ms), and ventricular EMD (16 +/- 2 ms). Under anoxia, cardiac function progressively collapsed, and sinoatrial activity finally stopped after approximately 9 min in both groups. During reoxygenation, paced hearts showed 1) a lower incidence of arrhythmias than sham hearts, 2) an increased rate of recovery of ventricular contractility compared with sham hearts, and 3) a faster return of ventricular EMD to basal value than sham hearts. However, recovery of heart rate, atrioventricular conduction, and atrial EMD was not improved by pacing. Activity of all hearts was fully restored at the end of reoxygenation. These findings suggest that chronic electrical stimulation of the ventricle at a near-physiological rate selectively alters some cellular functions within the heart and constitutes a nonischemic means to increase myocardial tolerance to a subsequent hypoxia-reoxygenation.  相似文献   

8.
Wang YY  Yu ZB 《生理学报》2008,60(2):197-204
在慢性压力超负荷引起心肌肥大过程中,蛋白激酶C(protein kinase C,PKC)的激活起关键性作用,激活的PKC也能调节心肌收缩性能.本文旨在研究自发性高血压大(spontaneously hypertensive rat,SHR)心肌肥大的不同阶段PKC调节心肌收缩性能的特征.采用胶原酶法分离4月龄与10月龄Wistar-Kyoto(WKY)、SHR大鼠的心肌细胞,观测单个心肌细胞无负荷缩短幅值以及在PKC激动剂与抑制剂作用下心肌收缩性能的变化.结果表明:刺激频率从1 Hz增至3 Hz,WKY大鼠心肌细胞无负荷缩短幅值逐渐增加,呈正阶梯效应;4月龄SHR大鼠心肌细胞的缩短幅值较WKY大鼠增强,但在各刺激频率下其缩短幅值基本保持不变;10月龄SHR大鼠心肌细胞的缩短幅值在1 Hz刺激条件下与WKY大鼠无差别,随刺激频率增加,缩短幅值降低,呈负阶梯效应.在PKC激动剂PMA灌流条件下,50、100与200 nmol/L的PMA分别降低WKY大鼠心肌细胞缩短幅值至(69.8±1.9)%、(58.2 2.2)%与(22.7±2.5)%(均P<0.01),呈浓度依赖关系;PMA对4月龄SHR大鼠心肌细胞缩短幅值的降低更明显,分别降至(6.1±0.7)%、(2.4±0.2)%与(12.5±2.6)%(均P<0.01);PMA降低10月龄SHR大鼠心肌细胞缩短幅值至(65.7±1.6)%、(53.9±4.0)%与(16.3±2.0)%(均P<0.01),小于对4月龄SHR大鼠心肌细胞缩短幅值的作用.PKC抑制剂staurosporine增加WKY大鼠心肌细胞缩短幅值,在200 nmol/L的staurosporine灌流条件下,WKY大鼠、4月龄SHR大鼠、10月龄SHR大鼠心肌细胞缩短幅值分别增JJH(63.63±4.53)%、(80.82±4.61)%、(80.97±4.59)%(均P<0.05).结果提示,在SHR大鼠心肌肥大初期,具有负性肌力作用的PKC异构体可能被激活,并参与对心肌收缩性能的调节;而心肌肥大稳定阶段,这些PKC活性可能恢复至正常水平.  相似文献   

9.
Voltage-sensitive dyes and imaging techniques have proved to be indispensable tools for use in in vitro electrophysiological studies. To avoid motion artifacts in optical recordings, electromechanical uncouplers such as 2,3-butanedione monoxime (BDM) are required. In this study, we sought to determine whether the voltage-sensitive dye RH421 had an effect on the contractility of heart muscle, either alone or in the presence of BDM. Ventricular contractility was studied in (i) isolated rat myocytes and (ii) Langendorff-perfused rat hearts under control conditions, and during perfusion with RH421 or RH421 + BDM. The following results were obtained. (i) The amplitude of cell shortening increased progressively from 6.24 +/- 0.64 to 9.95 +/- 1.02 microm during 15 min of superfusion with 5 microM RH421 (n = 11), and further increased to 12.54 +/- 0.97 microm during washout. In seven cells first perfused with 15 mM BDM and then with 15 mM BDM + 5 microM RH421, the amplitude of the cell shortening first decreased from 5.17 +/- 0.51 to 0.41 +/- 0.19 microm, then the amplitude increased to 2.63 +/- 0.25 microm. (ii) Left ventricular pressure (LVP) of the heart (n = 7) was reduced by 15 mM BDM from 60.7 +/- 2.5 to 2.8 +/- 0.5 mmHg (1 mmHg = 133.3 Pa). LVP increased to 12.8 +/- 1.1 mmHg during subsequent perfusion with 10 microM RH421 in the presence of BDM and did not change (LVP = 12.4 +/- 2.4 mmHg) during washout of the dye. Therefore, RH421 increased the contractility of rat hearts and isolated myocytes with and without BDM.  相似文献   

10.
Cardiac autonomic dysfunction is common in heart disease with or without congestive heart failure, and can cause sudden cardiac death. However, cardiac autonomic abnormalities in non-ischemic (hypertensive) heart failure, which is prevalent in Black Africans is poorly documented. We conducted a cross-sectional study of 32 patients with congestive heart failure, mostly secondary to hypertension (aged 52 +/- 15 years, with ejection fraction of 0.38 +/- 11) and 30 age- and sex-matched healthy volunteers (aged 51 +/- 11 years, 14 males/16 females). Cardiac autonomic function was assessed by the Valsalva's maneuver, respiratory sinus arrhythmia (for cardiac vagal tone) and the pressor and chronotropic changes following forearm isometric handgrip exercise and the assumption of upright posture (tests of sympathetic function). The exercise tolerance of the cardiac patients was assessed by the distance covered during 6 min of walking. The Valsalva ratio was significantly lower in chronic heart failure, 1.10 +/- 0.08 compared to the healthy controls 1.47 +/- 0.20 (p<0.001). Specifically, the phase IV bradycardia in heart failure, was significantly attenuated to 650 +/- 121 msec compared to the value of 935 +/- 101 msec in healthy controls (p<0.001). The phase 11 Valsalva tachycardia did not differ between the patients and controls. The respiratory sinus arrhythmia was also significantly reduced in chronic heart failure (p<0.05) compared to controls. Treatment of the heart failure patients with enalapril-digoxin and diuretics by 4 weeks, resulted in a reversal of the autonomic abnormalities. The phase IV bradycardia increased significantly to 798 +/- 164 msec (p<0.01) and the Valsalva ratio to 1.35 +/- 0.25 (p<0.01) and the respiratory sinus arrhythmia increased toward normal. There was close positive correlation between the Valsalva's ratio and the 6 min self paced distance covered (r = 0.44, p = 0.03 ANOVA), and a weak inverse correlation to cardiac size and cardiothoracic ratio (r = -0.31, p = 0.09). This study demonstrates cardiac autonomic dysfunction (especially reduced vagal tone) in Black Nigerians with mainly non-ischemic congestive heart failure. The parasympathetic dysfunction significantly correlates with severity of heart failure. Current treatment reverses autonomic dysfunction to values seen in healthy age matched controls, mainly through augmentation of cardiac parasympathetic activity.  相似文献   

11.
Lv PP  Fan Y  Chen WL  Shen YL  Zhu L  Wang LL  Chen YY 《生理学报》2007,59(5):674-680
本文旨在研究冠状动脉内皮和NO在选择性环加氧酶2(cyclooxygenase2,COX-2)抑制剂尼美舒利(nimesulide)对抗心肌氧化损伤中的作用。离体大鼠心脏行Langendorff灌流,给予H2O2(140Bmol/L)观察心脏收缩功能。用U-46619灌流心脏,使冠状动脉预收缩后,观察冠状动脉对内皮依赖性舒张因子5-HT和内皮非依赖性舒张因子硝普钠(sodiumnitroprusside,SNP)的反应。结果显示:(1)与空白对照组(100%)相比,H202灌流20min后,左心室发展压[left ventriculardevelo pedpressure,LVDP,(54.8±4.0)%],和心室内压最大变化速率【±dp/dtmax(50.8±3.1)%和(46.2±2.9)%]明显降低。H2O2灌流前尼美舒利(5μmol/L)预处理10min,能够显著抑制H2O2引起的LVDP和μdp/dtmax下降[(79.9±2.8)%,(80.3±2.6)%和(81.4±2.6)%,P〈0.0l]。(2)与空白对照组相比,H2O2灌流后,5-HT和SNP引起内皮依赖性和内皮非依赖性血管舒张功能均明显下降;而尼美舒利预处理10min能明显对抗内皮依赖性血管舒张功能的下降[(-22.2±4.2)%vsH2O2组(-6.0±2.5)%,P〈0.0l],但对其内皮非依赖性血管舒张功能的下降没有明显作用[(-2.0±1.8)%vsH202组(-7.0±3.5)%,P〉0.05]。(3)一氧化氮合酶(nitric oxide synthase,NOS)抑制剂L-NAME能够部分取消尼美舒利预处理对H20,应激心脏心功能指标的改善作用ILVDP和±dp/dtmax分别为(60.2±2.1)%,(63.9±2.4)%和(63.1±2.9)%,P〈0.01]。同时尼美舒利预处理10min能使H202应激心肌NO含量增加[(2.63±0.40)vs(1.36±0.23)nmol/gprotein,P〈0.051,而L-NAME抑制此作用。(4)选择性COX-1抑制剂吡罗昔康(piroxicam)预处理不能抑制H202引起的LVDP和±dp/dtmax下降,但促进左心室舒张末压(1eftventricular end diastolicpressure,LVEDP)升高;吡罗昔康对H202引起的内皮依赖性和内皮非依赖性血管舒张功能下降无显著作用。以上结果提示,选择性COX-2抑制剂尼美舒利能够对抗大鼠离体心肌氧化应激损伤,其机制可能是通过改善内皮依赖性血管舒张功能和增加心肌NO含量起作用。  相似文献   

12.
The spontaneously hypertensive rat (SHR) is a model of cardiomyopathy characterized by a restricted use of exogenous long-chain fatty acid (LCFA) for energy production. The aims of the present study were to document the functional and metabolic response of the SHR heart under conditions of increased energy demand and the effects of a medium-chain fatty acid (MCFA; octanoate) supplementation in this situation. Hearts were perfused ex vivo in a working mode with physiological concentrations of substrates and hormones and subjected to an adrenergic stimulation (epinephrine, 10 microM). (13)C-labeled substrates were used to assess substrate selection for energy production. Compared with control Wistar rat hearts, SHR hearts showed an impaired response to the adrenergic stimulation as reflected by 1) a smaller increase in contractility and developed pressure, 2) a faster decline in the aortic flow, and 3) greater cardiac tissue damage (lactate dehydrogenase release: 1,577 +/- 118 vs. 825 +/- 44 mU/min, P < 0.01). At the metabolic level, SHR hearts presented 1) a reduced exogenous LCFA contribution to the citric acid cycle flux (16 +/- 1 vs. 44 +/- 4%, P < 0.001) and an enhanced contribution of endogenous substrates (20 +/- 4 vs. 1 +/- 4%, P < 0.01); and 2) an increased lactate production from glycolysis, with a greater lactate-to-pyruvate production ratio. Addition of 0.2 mM octanoate reduced lactate dehydrogenase release (1,145 +/- 155 vs. 1,890 +/- 89 mU/min, P < 0.001) and increased exogenous fatty acid contribution to energy metabolism (23.7 +/- 1.3 vs. 15.8 +/- 0.8%, P < 0.01), which was accompanied by an equivalent decrease in unlabeled endogenous substrate contribution, possibly triglycerides (11.6 +/- 1.5 vs. 19.0 +/- 1.2%, P < 0.01). Taken altogether, these results demonstrate that the SHR heart shows an impaired capacity to withstand an acute adrenergic stress, which can be improved by increasing the contribution of exogenous fatty acid oxidation to energy production by MCFA supplementation.  相似文献   

13.
The effect of ischemia on cardiac Leucine enkephalin (Leu-enk) content, degradation and coronary release was studied in the isolated perfused hearts of male Sprague Dawley rats. Hearts were electrically stimulated at 180 beats/min. Cardiac Leu-enk concentrations were increased when hearts were perfused (635 +/- 41 vs 301 +/- 60 fmol/g in control non-perfused hearts,) or during ischemia-reperfusion (520 +/- 78 vs 277 +/- 42 fmol/g in heart submitted to ischemia alone). The quantity of leucine-enkephalin released by the heart during perfusion was four times higher than the initial content measured in the heart tissue. The rate of this release was the same throughout the experiment (25.9 +/- 2.9 fmol/min/g during perfusion vs. 19.2 +/- 1.6 during ischemia-reperfusion). These findings suggested that cardiac enkephalin metabolism is regulated by cardiac events. In fact, enzymes involved in enkephalin degradation were decreased during perfusion (39%) and increased during ischemia (50%). The decrease in the enzyme activity during coronary perfusion depended on a reduced activity in the membrane fraction only while membrane and soluble fractions were interested in the increased enzyme activity after ischemia. Ischemia-reperfusion induced a larger release of Leu-enk than perfusion without ischemia. In view of the protective actions of enkephalin peptides against oxidative stress, we can infer from our results an implication of Leu-enk in ischemia-reperfusion and thus eventually in preconditioning phenomenon.  相似文献   

14.
We examined myocardial 5'-adenosine monophosphate (5'-AMP) catabolism, adenosine salvage and adenosine responses in perfused guinea pig, rat and mouse heart. MVO(2) increased from 71+/-8 microl O(2)/min per g in guinea pig to 138+/-17 and 221+/-15 microl O(2)/min per g in rat and mouse. VO(2)/beat was 0.42+/-0.03, 0.50+/-0.03 and 0.55+/-0.04 microl O(2)/g in guinea pig, rat and mouse, respectively. Resting and peak coronary flows were highest in mouse vs. rat and guinea pig, and peak ventricular pressures and Ca(2+) sensitivity declined as heart mass increased. Net myocardial 5'-AMP dephosphorylation increased significantly as mass declined (3.8+/-0.5, 9.0+/-1.4 and 11.0+/-1.6 nmol/min per g in guinea pig, rat and mouse, respectively). Despite increased 5'-AMP catabolism, coronary venous [adenosine] was similar in guinea pig, rat and mouse (45+/-8, 69+/-10 and 57+/-14 nM, respectively). Comparable venous [adenosine] was achieved by increased salvage vs. deamination: 64%, 41% and 39% of adenosine formed was rephosphorylated while 23%, 46%, and 50% was deaminated in mouse, rat and guinea pig, respectively. Moreover, only 35-45% of inosine and its catabolites derive from 5'-AMP (vs. IMP) dephosphorylation in all species. Although post-ischemic purine loss was low in mouse (due to these adaptations), functional tolerance to ischemia decreased with heart mass. Cardiovascular sensitivity to adenosine also differed between species, with A(1) receptor sensitivity being greatest in mouse while A(2) sensitivity was greatest in guinea pig. In summary: (i) cardiac 5'-AMP dephosphorylation, VO(2), contractility and Ca(2+) sensitivity all increase as heart mass falls; (ii) adaptations in adenosine salvage vs. deamination limit purine loss and yield similar adenosine levels across species; (iii) ischemic tolerance declines with heart mass; and (iv) cardiovascular sensitivity to adenosine varies, with increasing A(2) sensitivity relative to A(1) sensitivity in larger hearts.  相似文献   

15.
Congenital heart defects often include altered conduction as well as morphological changes. Model organisms, like the frog Xenopus laevis, offer practical advantages for the study of congenital heart disease. X. laevis embryos are easily obtained free living, and the developing heart is readily visualized. Functional and morphological evidence for a conduction system is available for adult frog hearts, but information on the normal properties of embryonic heart contraction is lacking, especially in intact animals. With the use of fine glass microelectrodes, we were able to obtain cardiac recordings and make standard electrophysiological measurements in 1-wk-old embryos (stage 46). In addition, a system using digital analysis of video images was adapted for measurement of the standard cardiac intervals and compared with invasive measurements. Video images were obtained of the heart in live, pharmacologically paralyzed, stage 46 X. laevis embryos. Normal values for the timing of the cardiac cycle were established. Intervals determined by video analysis (n = 53), including the atrial and ventricular cycle lengths (473 +/- 10 ms and 464 +/- 19 ms, respectively) and the atrioventricular interval (169 +/- 5 ms) were not statistically different from those determined by intrathoracic cardiac recordings. We also present the data obtained from embryos treated with standard medications that affect the human conduction system. We conclude that the physiology of embryonic X. laevis cardiac conduction can be noninvasively studied by using digital video imaging. Additionally, we show the response of X. laevis embryonic hearts to chronotropic agents is similar but not identical to the response of the human heart.  相似文献   

16.
This work aims to describe some electrophysiological changes promoted by the aqueous extract (AEx) from Averrhoa carambola leaves in guinea pig heart. The experiments were carried out on isolated heart or on right atrium-ventricle preparations. In 6 hearts, the extract induced many kinds of atrioventricular blocks (1st, 2nd, and 3rd degrees); increased the QT interval from 229+/-23 to 264+/-19 ms; increased the QRS complex duration from 27+/-3.1 to 59+/-11 ms, and depressed the cardiac rate from 136+/-17 to 89+/-14b pm. Furthermore, it decreased the conduction velocity of atrial impulse (17+/-3%); reduced the intraventricular pressure (86+/-6%), and increased the conduction time between the right atrium and the His bundle (27+/-6.5%). The conduction time from the His bundle to the right ventricle was not altered. Atropine sulfate did not change either the electrocardiographic parameters or the intraventricular pressure effects promoted by the A. carambola AEx. Based on these results, the popular use of such extracts should be avoided because it can promote electrical and mechanical changes in the normal heart.  相似文献   

17.
Phosphorylation of phospholipids was studied in Langendorff perfused guinea pig hearts subjected to beta-adrenergic stimulation. Hearts were perfused with Krebs-Henseleit buffer containing [32P]Pi and freeze-clamped in a control condition or at the peak of the inotropic response to isoprenaline. 32P incorporation into total phospholipids, individual phospholipids and polyphosphoinositides was analysed in whole tissue homogenates and membranes, enriched in sarcoplasmic reticulum, prepared from the same hearts. Isoprenaline stimulation of the hearts did not result in any significant changes in the levels of phosphate incorporation in the total phospholipid present in cardiac homogenates (11.6 +/- 0.4 nmol of 32P/g for control hearts and 12.4 +/- 0.5 nmol of 32P/g for isoprenaline-treated hearts; n = 6), although there was a significant increase in the degree of phospholipid phosphorylation in sarcoplasmic reticulum (3.5 +/- 0.3 nmol of 32P/mg for control hearts and 6.7 +/- 0.2 nmol of 32P/mg for isoprenaline-treated hearts; n = 6). Analysis of 32P incorporation into individual phospholipids and polyphosphoinositides revealed that isoprenaline stimulation of the hearts was associated with a 2-3-fold increase in the degree of phosphorylation of phosphatidylinositol monophosphate and bisphosphate as well as phosphatidic acid in both cardiac homogenates and sarcoplasmic reticulum membranes. In addition, there was increased phosphate incorporation into phosphatidylinositol in sarcoplasmic reticulum membranes. Thus, perfusion of guinea pig hearts with isoprenaline is associated with increased formation of polyphosphoinositides and these phospholipids may be involved, at least in part, in mediating the effects of beta-adrenergic agents in the mammalian heart.  相似文献   

18.
Age-associated dysfunction in cardiac microvascular endothelial cells with impaired induction of cardioprotective platelet-derived growth factor (PDGF)-dependent pathways suggests that alterations in critical vascular receptor(s) may contribute to the increased severity of cardiovascular pathology in older persons. In vivo murine phage-display peptide library biopanning revealed a senescent decrease in cardiac microvascular binding of phage epitopes homologous to tumor necrosis factor-alpha (TNF-alpha), suggesting that its receptor(s) may be downregulated in older cardiac endothelial cells. Immunostaining demonstrated that TNF-receptor 1 (TNF-R1) density was significantly lower in the subendocardial endothelium of the aging murine heart. Functional studies confirmed the senescent dysregulation of TNF-alpha receptor pathways, demonstrating that TNF-alpha induced PDGF-B expression in cardiac microvascular endothelial cells of 4-mo-old, but not 24-mo-old, rats. Moreover, TNF-alpha mediated cardioprotective pathways were impaired in the aging heart. In young rat hearts, injection of TNF-alpha significantly reduced the extent of myocardial injury after coronary ligation: TNF-alpha, 7.9 +/- 1.9% left ventricular injury (n = 4) versus PBS, 16.2 +/- 7.9% (n = 10; P < 0.05). The addition of PDGF-AB did not augment the cardioprotective action of TNF-alpha. In myocardial infarctions of older hearts, however, TNF-alpha induced significant postcoronary occlusion mortality (TNF-alpha 80% vs. PBS 0%; n = 10 each, P < 0.05) that was reversed by the coadministration of PDGF-AB. Overall, these studies demonstrate that aging-associated alterations in TNF-alpha receptor cardiac microvascular pathways may contribute to the increased cardiovasular pathology of the aging heart. Strategies targeted at restoring TNF-alpha receptor-mediated expression of PDGF-B may improve cardiac microvascular function and provide novel approaches for treatment and possible prevention of cardiovascular disease in older individuals.  相似文献   

19.
20.
We undertook studies in the isolated perfused rat lung to determine 1) the effects of endothelial charge neutralization with the polycation protamine sulfate on microvascular permeability, lung water, and anionic ferritin binding to the endothelium and 2) the role of heparan sulfate and hyaluronate, negatively charged cell surface glycosaminoglycans, on permeability. Capillary permeability was determined by tissue 125I-albumin accumulation in isolated perfused rat lungs. In control lungs the 5-min albumin uptake was 0.50 +/- 0.05 cm3.s-1.g dry tissue-1 X 10(-3). It was increased by 132 +/- 7.8% (P less than 0.001) by protamine (0.08 mg/ml) and 65 +/- 12% (P less than 0.01) by heparinase (5 U/ml), whereas hyaluronidase (25 NFU/ml) was without effect. In control lungs total water was 4.83 +/- 0.15 ml g/dry tissue. Protamine increased lung water 12 +/- 2% (P less than 0.05). Heparinase caused a 9 +/- 3% increase (P less than 0.05), and hyaluronidase had no effect. Electron microscopy demonstrated that protamine increased anionic ferritin binding to the surface of endothelial cells. We conclude that protamine sulfate neutralization of negative charge in the pulmonary microcirculation leads to increased microvascular permeability. Heparin sulfate may be responsible for this charge effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号