共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Heiner Gorrissen Alex L. Mackay Stephen R. Wassall Marko I. Valic Alexander P. Tulloch Robert J. Cushley 《生物化学与生物物理学报:生物膜》1981,644(2):266-272
Dispersions (50 wt% water) containing 95 mol% dipalmitoyl phosphatidylcholine/5 mol% deuterated cholesteryl palmitate (or stearate) were studied using 2H-NMR. Incorporation of ester into the phospholipid bilayer was found to be 0.5 mol% at 50°C. From the profile of 2H quadrupolar splitting vs. chain position, support for an average conformation resembling a ‘horseshoe’ within the bilayer is obtained. Quadrupolar relaxation times of approx. 250 μs and approx. 850 μs are measured for cholesteryl palmitate-2,2-d2 and cholesteryl palmitate-16,16,16-d3, respectively, which are less than one-half those obtained for the corresponding positions in dipalmitoyl-d62 phosphatidylcholine. This is ascribed to a slower rate of motion of the ester chain and/or an extra, slow motion of the molecule. 相似文献
3.
A 1H NMR study of a selectively deuterated mouse anti-dansyl monoclonal antibody is reported. Two-dimensional homonuclear Hartmann-Hahn (2D-HOHAHA) spectroscopy was found to be effective for establishing the connectivity between the C2-H and C4-H protons of His residues in the antibody molecule. It has been concluded that 1) even in the case of large proteins such as an antibody, HOHAHA peaks can be observed for amino acid residues that are located in a flexible environment, and 2) deuterium labeling is effective in reducing the efficiency of spin relaxation and makes it possible to increase the number of observed HOHAHA cross peaks. It was suggested that 2D-HOHAHA can also be used to obtain information concerning the flexible parts of antibody molecules. 相似文献
4.
High-resoluiton proton nuclear magnetic resonance spectroscopy at 250 MHz has been used to investigate sickle cell hemoglobin. The hyperfine shifted, the ring-current shifted, and the exchangeable proton resonances suggest that the heme environment and the subunit interfaces of the sickle cell hemoglobin molecule are normal. These results suggest that the low oxygen affinity in sickle cell blood is not due to conformational alterations in the heme environment or the subunit interfaces. The C-2 proton resonances of certain histidyl residues can serve as structural probes for the surface conformation of the hemoglobin molecule. Several sharp resonances in sickle cell hemoglobin are shifted upfield from their positions in normal adult hemoglobin. These upfield shifts, which are observed in both oxy and deoxy forms of the molecule under various experimental conditions, suggest that some of the surface residues of sickle cell hemoglobin are altered and they may be in a more hydrophobic environment as compared with that of normal human adult hemoglobin. These differences in surface conformation are pH and ionic strength specific. In particular, upon the addition of organic phosphates to normal and sickle cell hemoglobin samples, the differences in their aromatic proton resonances diminish. These changes in the surface conformation may, in part, be responsible for the abnormal properties of sickle cell hemoglobin. 相似文献
5.
H M Goff E Gonzalez-Vergara D C Ales 《Biochemical and biophysical research communications》1985,133(2):794-799
The first high resolution proton nuclear magnetic resonance spectra are reported for the native ferric and ferric cyano complexes of bovine lactoperoxidase. The spectrum of the native species exhibits broad heme signals in a far downfield region characteristic of the high-spin ferric state. The low-spin cyano complex yields a proton nuclear magnetic resonance spectrum with signals as far as 68.5 ppm downfield and as far as -28 ppm upfield of the tetramethylsilane reference. These peak positions are anomalous with respect to those seen only as far as 35 ppm downfield in other cyano hemoprotein complexes. An extreme asymmetry in the unpaired spin delocalization pattern of the iron porphyrin is suggested. The unusual proton nuclear magnetic resonance properties parallel distinctive optical spectral properties and the exceptional resistance to heme displacement from the enzyme. Lactoperoxidase utilized in these studies was isolated from raw milk and purified by an improved, rapid chromatographic procedure. 相似文献
6.
High-resolution 1H nuclear magnetic resonance (NMR) spectroscopy at 300 MHz has been used to study the behavior of human gastrin in aqueous solution. A large number of resonances have been assigned by analysis of one- and two-dimensional NMR spectra and the effects of pH and by comparison with the spectrum of des-less than Glu1-gastrin. In gastrin, the ratio of cis to trans conformations around the Gly-2 to Pro-3 peptide bond is 3:7. This is reflected in splitting of the resonances of several neighboring residues and of a residue distant in the sequence, Tyr-12. The pKa of Tyr-12 is 10.7. Sulfation of this residue perturbs the resonances of Tyr-12 and Gly-13 but has very little effect on the rest of the spectrum. A study of the temperature dependence shows that several perturbed resonances move toward their expected positions as the temperature is raised but with a linear dependence on temperature, consistent with a redistribution of populations among accessible local conformations rather than a cooperative conformational change. Addition of Na+ or Ca2+ causes only minor changes in the spectrum. The paramagnetic metal ion Co2+ produces a number of spectral changes, reflecting strong binding to at least one site involving the Glu residues and weaker binding to Asp-16. 相似文献
7.
The proton nuclear magnetic resonance spectrum of sulfmyoglobin cyanide was studied at 400 MHz. The position of a methyl-group resonance at low field is consistent with a chlorin-like structure for the prosthetic group. The proton NMR spectrum of the cyanide derivative of the purified prosthetic group which decomposes upon extraction from the protein was found to be the same as that of the cyanide derivative of the prosthetic group extracted from myoglobin and a sample prepared from hemin-Cl. 相似文献
8.
High-resolution proton nuclear magnetic resonance studies of the glucocerebrosidase activator protein from Gaucher spleen 总被引:1,自引:0,他引:1
A heat-stable protein factor (HSF) obtained from the spleen of a patient with Gaucher's disease that activates glucocerebrosidase was studied by 600-MHz proton NMR spectroscopy. Assignments for a number of aromatic and aliphatic resonances were made on the basis of spin-decoupling, pH-titration, and resolution-enhancement experiments. The upfield ring current shifted aliphatic region and the downfield aromatic region were examined by nuclear Overhauser effect (NOE) methods using both pulsed Fourier-transform spectroscopy and correlation spectroscopy. It was found that a number of upfield-shifted methyl groups and certain methylene groups of specific aliphatic amino acid residues are in proximity relationships with several aromatic residues, forming a compact hydrophobic clustering site. Of special interest, tyrosine A, phenylalanine A, tryptophan B1, and tryptophan B2 were found to be located close to a cluster of aliphatic residues, indicating that the hydrophobic site of the HSF is conformationally rigid and its tertiary structure very compact. A two-dimensional structural model of the hydrophobic site of HSF is proposed. 相似文献
9.
10.
11.
C A Cowgill B G Nichols J W Kenny P Butler E M Bradbury R R Traut 《The Journal of biological chemistry》1984,259(24):15257-15263
Ribosomes and subunits from eukaryotic and prokaryotic sources were studied by high-resolution proton magnetic-resonance spectroscopy. If all ribosomal components are firmly bound within the particle, then only broad spectra would be expected. However, relatively sharp resonances were found both in ribosomal subunits and in 70 or 80 S ribosomes. The regions of these mobile protein domains have been partially assigned in Escherichia coli ribosomes. Large and small ribosomal subunits were treated to remove selectively proteins L7/12 and S1, respectively. Sharp proton magnetic resonance spectra were not observed for the stripped large subunit showing that proteins L7/12 comprise the flexible protein region and that there is little other flexibility in the stripped subunit. Complete removal of S1 from the small subunit greatly reduced but did not abolish the sharp protein resonance peaks, indicating that protein S1 contains a substantial flexible component but that other flexible components remain in the stripped small subunit. Evidence for generality of these features of ribosome organization is provided by similar studies on ribosomes from eukaryotic sources. 相似文献
12.
Biotransformations monitored in situ by proton nuclear magnetic resonance spectroscopy 总被引:2,自引:0,他引:2
One-dimensional Fourier-transform proton nuclear magnetic resonance (1H-NMR) spectroscopy can be used to study biotransformations in situ, in vivo and in aqua (1H2O). Although an insensitive method, it rapidly provides solution-structural information of mixtures of diverse compounds that are used and formed during enzymic reactions and culture fermentations; the samples do not require any physical or chemical processing for analysis. The absolute stereochemistry of some reactions can also be determined, and assessments of metabolic fluxes made. This technique, with appropriate modifications, is of obvious value for on-line assessments of industrial fermentation processes. 相似文献
13.
J Feeney G C Roberts J W Thomson R W King D V Griffiths A S Burgen 《Biochemistry》1980,19(11):2316-2321
We have prepared a selectively deuterated dihydrofolate reductase in which all the aromatic protons except the C(2) protons of tryptophan have been replaced by deuterium and have examined the 1H NMR spectra of its complexes with folate, trimethoprim, methotrexate, NADP+, and NADPH. One of the four Trp C(2)-proton resonance signals (signal P at 3.66 ppm from dioxane) has been assigned to Trp-21 by examining the NMR spectrum of a selectively deuterated N-bromosuccinimide-modified dihydrofolate reductase. This signal is not perturbed by NADPH, indicating that the coenzyme is not binding close to the 2 position of Trp-21. This contrasts markedly with the 19F shift (2.7 ppm) observed for the 19F signal of Trp-21 in the NADPH complex with the 6-fluorotryptophan-labeled enzyme. In fact the crystal structure of the enzyme . methotrexate . NADPH shows that the carboxamide group of the reduced nicotinamide ring is near to the 6 position of Trp-21 but remote from its 2 position. The nonadditivity of the 1H chemical-shift contributions for signals tentatively assigned to Trp-5 and -133 indicates that these residues are influenced by ligand-induced conformational changes. 相似文献
14.
15.
Elucidation of glycolipid structure by proton nuclear magnetic resonance spectroscopy 总被引:3,自引:0,他引:3
The primary structure of the oligosaccharide moiety of a glycosphingolipid can be elucidated by employing high-field proton nuclear magnetic resonance (NMR) spectroscopy. Information with respect to the composition and configuration of its sugar residues, and the sequence and linkage sites of the oligosaccharide chain can be obtained by employing a variety of one- and two-dimensional techniques. The latter include both scalar and dipolar correlated two-dimensional NMR spectroscopy. These techniques are also useful in establishing the solution conformation (secondary structure) of the oligosaccharide moiety. Examples in utilizing these techniques in elucidating the primary and secondary structures of glycolipids are presented. 相似文献
16.
Bleomycin-A2 complexes with poly(dA--dT): a proton nuclear magnetic resonance study of the nonexchangeable hydrogens 总被引:6,自引:0,他引:6
D M Chen T T Sakai J D Glickson D J Patel 《Biochemical and biophysical research communications》1980,92(1):197-205
The mRNA coding for uteroglobin, a progesterone-induced uterine protein, has been partially purified from 4-day pregnant rabbit uterus. Double-stranded DNA synthesized from the partially purified mRNA preparation was inserted into the Pst I site of pBR 322. Bacterial transformants containing uteroglobin DNA sequences were identified by their ability to enrich for uteroglobin mRNA on hybridization with total uterine poly A-RNA. The identity of one recombinant was confirmed unambiguously by matching its nucleotide sequence with the amino acid sequence of the uteroglobin polypeptide. 相似文献
17.
Reinheimer P Hirschinger J Granger P Breton P Lagrange A Gilard P Lefebvre MA Goetz N 《Biochimica et biophysica acta》1999,1472(1-2):240-249
We report a solid-state NMR study of synthetic eumelanins prepared by oxidation of 5,6-dihydroxyindole (DHI) selectively 13C-labeled at positions 2 or 3 of the indole ring. The 13C-1H couplings have been used to quantify the carbons by selecting the non-protonated and protonated carbon resonances. By comparing the data of non-labeled melanin to that obtained using [2-(13)C]- and [3-(13)C]-enriched DHI, it was possible to clearly demonstrate the high chemical reactivity of position 2 and, to a lesser extent, position 3 of the DHI unit. These two sites together are responsible for three-quarters of the proton loss during polymerization. The cross-polarization/magic-angle-spinning spectra likewise point to a partial oxidation of positions 2 and 3 to the carboxyl and carbonyl oxidation states during the formation of melanin. Furthermore, it is shown that 13C-13C dipolar interactions in [2-(13)C]-enriched DHI melanins can be observed using radiofrequency-driven dipolar recoupling (RFDR) 2D experiments. An upper limit of about 4 A for the distance between the C-2 carbons is deduced from the RFDR experiments. This result is in agreement with the basic arrangement of the different atoms expected in the DHI melanins. 相似文献
18.
ATP hydrolysis and proton translocation in chromaffin granules were followed using 31P nuclear magnetic resonance. The intragranular pH affects the resonance frequency of the gamma-phosphate of granular ATP. By measuring frequency vs. pH in solutions which simulate the intragranular matrix, this may be calibrated to give quantitative pH measurements. The pH in the resting granule is 5.65 +/- 0.15. This drops by 0.4 to 0.5 pH unit when ATP is added externally and protons are actively pumped into the granules. Because of differences in the composition and pH of the internal and external solutions, the resonances of internal and external nucleotides and Pi can be distinguished. Consequently, ATP hydrolysis and changes in internal pH may be observed simultaneously and continuously in a single sample of chromaffin granules. From the measured buffering capacity of a reconstituted intragranular solution, pH changes were converted into an absolute number of protons translocated. The net proton flux (protons translocated/ATP hydrolyzed) was about 1.0 immediately after external ATP addition but fell toward zero as the pH gradient increased to a new steady state. These 31P NMR results agree with intragranular pH measurements determined from methylamine distribution and with H+/ATP stoichiometries calculated from pH changes observed in the external medium. 相似文献
19.
A proton nuclear magnetic resonance study of the conformation of bovine anaphylatoxin C5a in solution 总被引:1,自引:0,他引:1
The solution conformation of bovine anaphylatoxin C5a has been investigated by nuclear magnetic resonance (NMR) spectroscopy. The 1H-NMR spectrum is assigned in a sequential manner using a variety of two-dimensional NMR techniques. A qualitative interpretation of the short range nuclear Overhauser enhancement data involving the NH, C alpha H and C beta H protons suggests that C5a has four helices comprising residues 5-11, 15-25, 33-39 and 46-61, and is composed of a globular head (residues 5-61) and a C-terminal tail. The polypeptide fold was determined by hybrid distance geometry-dynamical simulated annealing calculations on the basis of 203 approximate interproton distance restraints, 22 distance restraints for 11 intrahelical hydrogen bonds (identified on the basis of the pattern of short range NOEs and slowly exchanging backbone amide protons) and restraints for the 3 disulfide bridges. The overall polypeptide fold is similar to that of the sequence related human recombinant anaphylatoxin C5a [(1988) Proteins 3, 139-145]. 相似文献
20.
Proteins are dynamic molecules that often undergo conformational changes while performing their specific functions, such as target recognition, ligand binding and catalysis. NMR spectroscopy is uniquely suited to study protein dynamics, because site-specific information can be obtained for motions that span a broad range of time scales. The information obtained from NMR dynamics experiments has provided insights into specific structural changes or conformational energetics associated with molecular function. In the last decade, a number of new advancements in NMR methodologies have further extended our ability to characterize protein dynamics. Here, we present an overview of current NMR technology that is used to monitor the dynamic properties of proteins. 相似文献