首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxidases, oxygenases and catalases have similar high-valent metal-ion intermediates in their respective reaction cycles. In this review, haem-based examples will be discussed. The intermediates of the haem-containing enzymes have been extensively studied for many years by different spectroscopic methods like UV-Vis, EPR (electron paramagnetic resonance), resonance Raman, M?ssbauer and MCD (magnetic circular dichroism). The first crystal structure of one of these high-valent intermediates was on cytochrome c peroxidase in 1987. Since then, structures have appeared for catalases in 1996, 2002, 2003, putatively for cytochrome P450 in 2000, for myoglobin in 2002, for horseradish peroxidase in 2002 and for cytochrome c peroxidase again in 1994 and 2003. This review will focus on the most recent structural investigations for the different intermediates of these proteins. The structures of these intermediates will also be viewed in light of quantum mechanical (QM) calculations on haem models. In particular quantum refinement, which is a combination of QM calculations and crystallography, will be discussed. Only small structural changes accompany the generation of these intermediates. The crystal structures show that the compound I state, with a so called pi-cation radical on the haem group, has a relatively short iron-oxygen bond (1.67-1.76A) in agreement with a double-bond character, while the compound II state or the compound I state with a radical on an amino acid residue have a relatively long iron-oxygen bond (1.86-1.92A) in agreement with a single-bond character where the oxygen-atom is protonated.  相似文献   

2.
Quelling the red menace: haem capture by bacteria   总被引:23,自引:0,他引:23  
Haem is an important bacterial nutrient. As a prosthetic group of several proteins, haem functions as a cofactor mediating oxygen transport, energy generation, and mixed-function oxidation. In addition, the iron chelated in the porphyrin ring may serve as an iron substrate for growth. However, because of its propensity for oxidizing cellular constituents, haem is always associated with proteins. Therefore, the uptake and transit of haem across bacterial membranes requires the participation of protein escorts. Bacteria have evolved a diverse array of surface-exposed receptors dedicated to binding haem and haem-proteins. Following this selective recognition at the bacterial cell surface, haem is transported across the outer membrane via a TonB-dependent process. The control of receptor expression appears to be multifactorial, probably involving a number of global regulators. A model integrating this information is presented.  相似文献   

3.
Gram-negative pathogenic bacteria have evolved novel strategies to obtain iron from host haem-sequestering proteins. These include the production of specific outer membrane receptors that bind directly to host haem-sequestering proteins, secreted haem-binding proteins (haemophores) that bind haem/haemoglobin/haemopexin and deliver the complex to a bacterial cell surface receptor and bacterial proteases that degrade haem-sequestering proteins. Once removed from haem-sequestering proteins, haem may be transported via the bacterial outer membrane receptor into the cell. Recent studies have begun to define the steps by which haem is removed from bacterial haem proteins and transported into the cell. This review describes recent work on the discovery and characterization of these systems. Reference is also made to the transport of haem in serum (via haemoglobin, haemoglobin/haptoglobin, haemopexin, albumin and lipoproteins) and to mechanisms of iron removal from the haem itself (probably via a haem oxygenase pathway in which the protoporphyrin ring is degraded). Haem protein-receptor interactions are discussed in terms of the criteria that govern protein-protein interactions in general, and connections between haem transport and the emerging field of metal transport via metallochaperones are outlined.  相似文献   

4.
The vital signalling molecule NO is produced by mammalian NOS (nitric oxide synthase) enzymes in two steps. L-arginine is converted into NOHA (Nω-hydroxy-L-arginine), which is converted into NO and citrulline. Both steps are thought to proceed via similar mechanisms in which the cofactor BH4 (tetrahydrobiopterin) activates dioxygen at the haem site by electron transfer. The subsequent events are poorly understood due to the lack of stable intermediates. By analogy with cytochrome P450, a haem-iron oxo species may be formed, or direct reaction between a haem-peroxy intermediate and substrate may occur. The two steps may also occur via different mechanisms. In the present paper we analyse the two reaction steps using the G586S mutant of nNOS (neuronal NOS), which introduces an additional hydrogen bond in the active site and provides an additional proton source. In the mutant enzyme, BH4 activates dioxygen as in the wild-type enzyme, but an interesting intermediate haem species is then observed. This may be a stabilized form of the active oxygenating species. The mutant is able to perform step 2 (reaction with NOHA), but not step 1 (with L-arginine) indicating that the extra hydrogen bond enables it to discriminate between the two mono-oxygenation steps. This implies that the two steps follow different chemical mechanisms.  相似文献   

5.
Monomeric homing endonucleases of the LAGLIDADG family recognize DNA in a bipartite manner, reflecting the underlying structural assembly of two protein domains (A and B) related by pseudo 2-fold symmetry. This architecture allows for changes in DNA specificity via the distinct combination of these half-site domains. The key to engineering such hybrid proteins lies in the LAGLIDADG two-helix bundle that forms both the domain interface and the endonuclease active site. In this study, we utilize domain A of the monomeric I-DmoI to demonstrate the feasibility of generating functional homodimeric endonucleases that recognize palindromic DNA sequences derived from the original, non-palindromic target. Wild-type I-DmoI domain A is capable of forming a homodimer (H-DmoA) that binds tightly to, but does not cleave efficiently, its anticipated DNA target. Partial restoration of DNA cleavage ability was obtained by re-engineering the LAGLIDADG dimerization interface (H-DmoC). Upon fusing two copies of H-DmoC via a short peptide linker, a novel, site-specific DNA endonuclease was created (H-DmoC2). Like I-DmoI, H-DmoC2 is thermostable and cleaves the new target DNA to generate the predicted 4 nt 3'-OH overhangs but, unlike I-DmoI, H-DmoC2 retains stringent cleavage specificity when substituting Mn2+ for Mg2+ as co-factor. This novel endonuclease allows speculation regarding specificity of monomeric LAGLIDADG proteins, while it supports the evolutionary genesis of these proteins by a gene duplication event.  相似文献   

6.
Beef liver catalases showed peroxidative activity using 2,2'-azino-bis-(3-ethylbenzthiazoline)-6-sulfonic acid as the electron donor and hydrogen peroxide as the acceptor at a pH of 5. This activity was not observed at pH 7. The reaction depended on acetate concentration, although succinate and propionate could partly replace the acetate as a catalyst. Other haem proteins also catalyzed a peroxidative effect. The reaction using syringaldazine or the coupling between dimethylaminobenzoic acid and 3-methyl-2-benzothiazolinone hydrazone was less effective and less sensitive. Evidence is presented that the reaction is associated with a conformational change of the catalase.  相似文献   

7.
Haem is the major iron source for bacteria that develop in higher organisms. In these hosts, bacteria have to cope with nutritional immunity imposed by the host, since haem and iron are tightly bound to carrier and storage proteins. Siderophores were the first recognized fighters in the battle for iron between bacteria and host. They are non-proteinaceus organic molecules having an extremely high affinity for Fe(3+) and able to extract it from host proteins. Haemophores, that display functional analogy with siderophores, were more recently discovered. They are a class of secreted proteins with a high affinity for haem; they are able to extract haem from host haemoproteins and deliver it to specific receptors that internalize haem. In the past few years, a wealth of data has accumulated on haem acquisition systems that are dependent on surface exposed/secreted bacterial proteins. They promote haem transfer from its initial source (in most cases, a eukaryotic haem binding protein) to the transporter that carries out the membrane crossing step. Here we review recent discoveries in this field, with particular emphasis on similar and dissimilar mechanisms in haemophores and siderophores, from the initial host source to the binding protein/receptor at the cell surface.  相似文献   

8.
The cytochrome c nitrite reductase complex (NrfHA) is the terminal enzyme in the electron transport chain catalysing nitrite respiration of Wolinella succinogenes. The catalytic subunit NrfA is a pentahaem cytochrome c containing an active site haem group which is covalently bound via the cysteine residues of a unique CWTCK motif. The lysine residue serves as the axial ligand of the haem iron. The other four haem groups of NrfA are bound by conventional haem-binding motifs (CXXCH). The nrfHAIJ locus was restored on the genome of the W. succinogenes DeltanrfAIJ deletion mutant by integration of a plasmid, thus enabling the expression of modified alleles of nrfA and nrfI. A mutant (K134H) was constructed which contained a nrfA gene encoding a CWTCH motif instead of CWTCK. NrfA of strain K134H was found to be synthesized with five bound haem groups, as judged by matrix-assisted laser-desorption/ionization (MALDI) mass spectrometry. Its nitrite reduction activity with reduced benzyl viologen was 40% of the wild-type activity. Ammonia was formed as the only product of nitrite reduction. The mutant did not grow by nitrite respiration and its electron transport activity from formate to nitrite was 5% of that of the wild-type strain. The predicted nrfI gene product is similar to proteins involved in system II cytochrome c biogenesis. A mutant of W. succinogenes (stopI) was constructed that contained a nrfHAIJ gene cluster with the nrfI codons 47 and 48 altered to stop codons. The NrfA protein of this mutant did not catalyse nitrite reduction and lacked the active site haem group, whereas the other four haem groups were present. Mutant (K134H/stopI) which contained the K134H modification in NrfA in addition to the inactivated nrfI gene had essentially the same properties as strain K134H. NrfA from strain K134H/stopI contained five haem groups. It is concluded that NrfI is involved in haem attachment to the CWTCK motif in NrfA but not to any of the CXXCH motifs. The nrfI gene is obviously dispensable for maturation of a modified NrfA protein containing a CWTCH motif instead of CWTCK. Therefore, NrfI might function as a specific haem lyase that recognizes the active site lysine residue of NrfA. A similar role has been proposed for NrfE, F and G of Escherichia coli, although these proteins share no overall sequence similarity to NrfI and belong to system I cytochrome c biogenesis, which differs fundamentally from system II.  相似文献   

9.
About thirty years ago the crystal structures of the heme catalases from Penicillium vitale (PVC) and, a few months later, from bovine liver (BLC) were published. Both enzymes were compact tetrameric molecules with subunits that, despite their size differences and the large phylogenetic separation between the two organisms, presented a striking structural similarity for about 460 residues. The high conservation, confirmed in all the subsequent structures determined, suggested a strong pressure to preserve a functional catalase fold, which is almost exclusively found in these mono-functional heme catalases. However, even in the absence of the catalase fold an efficient catalase activity is also found in the heme containing catalase-peroxidase proteins. The structure of these broad substrate range enzymes, reported for the first time less than ten years ago from the halophilic archaebacterium Haloarcula marismortui (HmCPx) and from the bacterium Burkholderia pseudomallei (BpKatG), showed a heme pocket closely related to that of plant peroxidases, though with a number of unique modifications that enable the catalase reaction. Despite the wealth of structural information already available, for both monofunctional catalases and catalase-peroxidases, a number of unanswered major questions require continuing structural research with truly innovative approaches.  相似文献   

10.
Bacterial extracellular haemophores also named HasA for haem acquisition system form an independent family of haemoproteins that take up haem from host haeme carriers and shuttle it to specific receptors (HasR). Haemophore receptors are required for the haemophore-dependent haem acquisition pathway and alone allow free or haemoglobin-bound haem uptake, but the synergy between the haemophore and its receptor greatly facilitates this uptake. The three-dimensional structure of the Serratia marcescens holo-haemophore (HasASM) has been determined previously and revealed that the haem iron atom is ligated by tyrosine 75 and histidine 32. The phenolate of tyrosine 75 is also tightly hydrogen bonded to the Ndelta atom of histidine 83. Alanine mutagenesis of these three HasASM residues was performed, and haem-binding constants of the wild-type protein, the three single mutant proteins, the three double mutant proteins and the triple mutant protein were compared by absorption spectrometry to probe the roles of H32, Y75 and H83 in haem binding. We show that one axial iron ligand is sufficient to ligate haem efficiently and that H83 may become an alternative iron ligand in the absence of Y75 or both H32 and Y75. All the single mutant proteins retained the ability to stimulate haemophore-dependent haem uptake in vivo. Thus, the residues H32, Y75 and H83 are not individually necessary for haem delivery to the receptor. The binding of haem-free and haem-loaded HasASM proteins to HasRSM-producing strains was studied. Both proteins bind to HasRSM with similar apparent Kd. The double mutant H32A-Y75A competitively inhibits binding to the receptor of both holo-HasASM and apo-HasASM, showing that there is a unique or overlapping site on HasRSM for the apo- and holo-haemophores. Thus, we propose a new mechanism for haem uptake, in which haem is exchanged between haem-loaded haemophores and unloaded haemophores bound to the receptor without swapping of haemophores on the receptor.  相似文献   

11.
In all organisms, haem is post-translationally and covalently attached to c apocytochromes to produce c holocytochromes via a process called c-type cytochromes maturation, which involves numerous components. In bacteria it was not clear which of these components catalyses the extracytoplasmic haem-apocytochrome ligation per se. In this issue of Molecular Microbiology, Feissner and colleagues report that a single polypeptide from Helicobacter pylori, corresponding to the fusion of two proteins found in other organisms, performs haem ligation to a coexpressed Bordetella pertussis apocytochrome c in an Escherichia coli mutant lacking its own cytochrome c maturation proteins. This simple experimental system pinpoints the components catalysing extracytoplasmic covalent haem ligation and raises intriguing issues about the requirements for delivery of haem and apocytochrome c substrates to produce c holocytochromes.  相似文献   

12.
The kinetics of haem binding to human serum albumin and haemopexin were studied by means of the stopped flow technique. The reaction could be divided into three kinetically clearly distinguished steps: (1) extremely fast reaction of haem with nonspecific binding sites on the surface of the apoprotein molecule; this type of haem binding site seems to exist in proteins in general; (2) by meaas of equilibrium with its monomer, haem is transferred to the specific binding site; this second order reaction takes about 1–2 s, the reaction rate constant amounts to ≈106 l mol?1 s?1 both for albumin and haemopexin: (3) conformational changes of haemoprotein molecule, accompanied by changes of absorption spectra in the Soret region; this series of slow monomolecular reactions takes about 20 min. These results are discussed in connection with the mechanism of haem transport from blood to liver cells.  相似文献   

13.
Zámocký M  Janecek S  Koller F 《Gene》2000,256(1-2):169-182
Catalase-peroxidases belong to Class I of the plant, fungal, bacterial peroxidase superfamily, together with yeast cytochrome c peroxidase and ascorbate peroxidases. Obviously these bifunctional enzymes arose via gene duplication of an ancestral hydroperoxidase. A 230-residues long homologous region exists in all eukaryotic members of Class I, which is present twice in both prokaryotic and archaeal catalase-peroxidases. The overall structure of eukaryotic Class I peroxidases may be retained in both halves of catalase-peroxidases, with major insertions in several loops, some of which may participate in inter-domain or inter-subunit interactions.Interspecies distances in unrooted phylogenetic trees, analysis of sequence similarities in distinct structural regions, as well as hydrophobic cluster analysis (HCA) suggest that one single tandem duplication had already occurred in the common ancestor prior to the segregation of the archaeal and eubacterial lines. The C-terminal halves of extant catalase-peroxidases clearly did not accumulate random changes, so prolonged periods of independent evolution of the duplicates can be ruled out. Fusion of both copies must have occurred still very early or even in the course of the duplication. We suggest that the sparse representatives of eukaryotic catalase-peroxidases go back to lateral gene transfer, and that, except for several fungi, only single copy hydroperoxidases occur in the eukaryotic lineage.The N-terminal halves of catalase-peroxidases, which reveal higher homology with the single-copy members of the superfamily, obviously are catalytically active, whereas the C-terminal halves of the bifunctional enzymes presumably control the access to the haem pocket and facilitate stable folding. The bifunctional nature of catalase-peroxidases can be ascribed to several unique sequence peculiarities conserved among all N-terminal halves, which most likely will affect the properties of both haem ligands.  相似文献   

14.
Protoporphyrinogen IX oxidase (PPO), the last common enzyme of haem and chlorophyll biosynthesis, catalyses the oxidation of protoporphyrinogen IX to protoporphyrin IX. The membrane-embedded flavoprotein is the target of a large class of herbicides. In humans, a defect in PPO is responsible for the dominantly inherited disease variegate porphyria. Here we present the crystal structure of mitochondrial PPO from tobacco complexed with a phenyl-pyrazol inhibitor. PPO forms a loosely associated dimer and folds into an FAD-binding domain of the p-hydroxybenzoate-hydrolase fold and a substrate-binding domain that enclose a narrow active site cavity beneath the FAD and an alpha-helical membrane-binding domain. The active site architecture suggests a specific substrate-binding mode compatible with the unusual six-electron oxidation. The membrane-binding domains can be docked onto the dimeric structure of human ferrochelatase, the next enzyme in haem biosynthesis, embedded in the opposite side of the membrane. This modelled transmembrane complex provides a structural explanation for the uncoupling of haem biosynthesis observed in variegate porphyria patients and in plants after inhibiting PPO.  相似文献   

15.
《Inorganica chimica acta》1988,153(2):105-113
The temperature dependency of ligand binding processes lend support to the proposed mechanisms and the factors affecting ligand binding reported earlier in this series. The free energy contribution from each factor affecting ligand binding was estimated for a number of haem proteins. The structures of the haem proteins used, as conveyed from ligand binding data, are in agreement with the structures of these haem proteins as determined by other methods (e.g. X-ray crystallography, NMR, etc.). Therefore, ligand binding could be used as a facile probe to investigate some of the structural and functional properties of haem proteins. In this respect, it was concluded that the structure of native cytochrome c at pH 10 is similar to the structure of carboxymethyl-Met 80 cytochrome c between pH 7 and 10.  相似文献   

16.
Emergence of tuberculosis as a global health threat has necessitated an urgent search for new antitubercular drugs entailing determination of 3-dimensional structures of a large number of mycobacterial proteins for structure-based drug design. The essential requirement of ferritins/bacterioferritins (proteins involved in iron storage and homeostasis) for the survival of several prokaryotic pathogens makes these proteins very attractive targets for structure determination and inhibitor design. Bacterioferritins (Bfrs) differ from ferritins in that they have additional noncovalently bound haem groups. The physiological role of haem in Bfrs is not very clear but studies indicate that the haem group is involved in mediating release of iron from Bfr by facilitating reduction of the iron core. To further enhance our understanding, we have determined the crystal structure of the selenomethionyl analog of bacterioferritin A (SeMet-BfrA) from Mycobacterium tuberculosis (Mtb). Unexpectedly, electron density observed in the crystals of SeMet-BfrA analogous to haem location in bacterioferritins, shows a demetallated and degraded product of haem. This unanticipated observation is a consequence of the altered spatial electronic environment around the axial ligands of haem (in lieu of Met52 modification to SeMet52). Furthermore, the structure of Mtb SeMet-BfrA displays a possible lost protein interaction with haem propionates due to formation of a salt bridge between Arg53-Glu57, which appears to be unique to Mtb BfrA, resulting in slight modulation of haem binding pocket in this organism. The crystal structure of Mtb SeMet-BfrA provides novel leads to physiological function of haem in Bfrs. If validated as a drug target, it may also serve as a scaffold for designing specific inhibitors. In addition, this study provides evidence against the general belief that a selenium derivative of a protein represents its true physiological native structure.  相似文献   

17.
For efficient removal of intra- and/or extracellular hydrogen peroxide by dismutation to harmless dioxygen and water (2H(2)O(2) → O(2) + 2H(2)O), nature designed three metalloenzyme families that differ in oligomeric organization, monomer architecture as well as active site geometry and catalytic residues. Here we report on the updated reconstruction of the molecular phylogeny of these three gene families. Ubiquitous typical (monofunctional) heme catalases are found in all domains of life showing a high structural conservation. Their evolution was directed from large subunit towards small subunit proteins and further to fused proteins where the catalase fold was retained but lost its original functionality. Bifunctional catalase-peroxidases were at the origin of one of the two main heme peroxidase superfamilies (i.e. peroxidase-catalase superfamily) and constitute a protein family predominantly present among eubacteria and archaea, but two evolutionary branches are also found in the eukaryotic world. Non-heme manganese catalases are a relatively small protein family with very old roots only present among bacteria and archaea. Phylogenetic analyses of the three protein families reveal features typical (i) for the evolution of whole genomes as well as (ii) for specific evolutionary events including horizontal gene transfer, paralog formation and gene fusion. As catalases have reached a striking diversity among prokaryotic and eukaryotic pathogens, understanding their phylogenetic and molecular relationship and function will contribute to drug design for prevention of diseases of humans, animals and plants.  相似文献   

18.
Carrondo MA 《The EMBO journal》2003,22(9):1959-1968
Ferritins constitute a broad superfamily of iron storage proteins, widespread in all domains of life, in aerobic or anaerobic organisms. Ferritins isolated from bacteria may be haem-free or contain a haem. In the latter case they are called bacterioferritins. The primary function of ferritins inside cells is to store iron in the ferric form. A secondary function may be detoxification of iron or protection against O(2) and its radical products. Indeed, for bacterioferritins this is likely to be their primary function. Ferritins and bacteroferritins have essentially the same architecture, assembling in a 24mer cluster to form a hollow, roughly spherical construction. In this review, special emphasis is given to the structure of the ferroxidase centres with native iron-containing sites, since oxidation of ferrous iron by molecular oxygen takes place in these sites. Although present in other ferritins, a specific entry route for iron, coupled with the ferroxidase reaction, has been proposed and described in some structural studies. Electrostatic calculations on a few selected proteins indicate further ion channels assumed to be an entry route in the later mineralization processes of core formation.  相似文献   

19.
P M Wood 《FEBS letters》1983,164(2):223-226
The hypothesis presented is that the different classes of c-type cytochrome originated as proteins located in the bacterial periplasmic space, or on the periplasmic side of the cytoplasmic membrane. In these locations, covalent bonds between haem and protein prevented the haem from being lost to the surrounding medium. Subsequent evolution has led to internal location of c-type cytochromes in eucaryotes and cyanobacteria. The covalent links have been retained because of their structural role; a b-type cytochrome could be created with similar molecular properties, but its formation would require a large evolutionary jump. If this hypothesis is correct, it should be useful in unravelling electron transport chains with unconventional donors or acceptors. Apparent exceptions deserve further investigation.  相似文献   

20.
The structure of cytochrome cL from Methylobacterium extorquens has been determined by X-ray crystallography to a resolution of 1.6 A. This unusually large, acidic cytochrome is the physiological electron acceptor for the quinoprotein methanol dehydrogenase in the periplasm of methylotrophic bacteria. Its amino acid sequence is completely different from that of other cytochromes but its X-ray structure reveals a core that is typical of class I cytochromes c, having alpha-helices folded into a compact structure enclosing the single haem c prosthetic group and leaving one edge of the haem exposed. The haem is bound through thioether bonds to Cys65 and Cys68, and the fifth ligand to the haem iron is provided by His69. Remarkably, the sixth ligand is provided by His112, and not by Met109, which had been shown to be the sixth ligand in solution. Cytochrome cL is unusual in having a disulphide bridge that tethers the long C-terminal extension to the body of the structure. The crystal structure reveals that, close to the inner haem propionate, there is tightly bound calcium ion that is likely to be involved in stabilization of the redox potential, and that may be important in the flow of electrons from reduced pyrroloquinoline quinone in methanol dehydrogenase to the haem of cytochrome cL. As predicted, both haem propionates are exposed to solvent, accounting for the unusual influence of pH on the redox potential of this cytochrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号