首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 391 毫秒
1.
Aims Soil respiration component partitioning is pivotal to understand the belowground carbon (C) cycle. Mycorrhizal fungi have been proven to play an important role in the soil C turnover, but only a few studies have been conducted to quantify the contribution of mycorrhizal respiration to total soil respiration in grassland ecosystems. Methods The mini-trenching mesh method was applied to partition soil respiration components of a semi-arid grassland in Inner Mongolia. A shallow collar (measuring soil total respiration), a deep collar (excluding roots and mycorrhizal hypahe) and a deep collar with 40 μm pore mesh window (excluding roots but not mycorrhizal hyphae) were installed in each plot. Soil respiration rate of each collar was measured every two weeks during the growing season from 2014 to 2016. The differences in the rate of soil respiration among different type of collars were used to partition the components of soil respiration. Important findings The results showed that the contribution of heterotrophic, root and mycorrhizal respiration to total soil respiration was 49%, 28%, and 23%, respectively. Across the three years, the proportion of mycorrhizal respiration varied from 21%-26%, which is comparable with the results reported by other studies recently. Our results demonstrated that the mini-trenching mesh method is a suitable method for separating mycorrhizal respiration component in grassland ecosystems. Evaluating the contribution of mycorrhizal respiration to total soil respiration is very important for predicting the responses of soil carbon release to future climate change. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

2.
Carbon fluxes were measured using a static chamber technique in an alpine steppe in the Qinghai-Tibet Plateau from July 2000 to July 2001. It was shown that carbon emissions decreased in autumn and increased in spring of the next year, with higher values in growth seasons than in winters. An exponential correlation (Ecarbon = 0.22(exp(0.09T) + In(0.31P + 1)), R^2 = 0.77, P 〈 0.001) was shown between carbon emissions and environmental factors such as temperature (T) and precipitation (P). Using the daily temperature (T) and total precipitation (R), annual carbon emission from soil to the atmosphere was estimated to be 79.6 g C/m^2, 46% of which was emitted by microbial respiration. Considering an average net primary production of 92.5 g C/m^2 per year within the 2 year experiment, alpine steppes can take up 55.9 g CO2-C/m^2 per year. This indicates that alpine steppes are a distinct carbon sink, although this carbon reservoir was quite small.  相似文献   

3.
The spatial and temporal variations in soil respiration and its relationship with biophysical factors In forests near the Tropic of Cancer remain highly uncertain. To contribute towards an Improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured In three successional subtropical forests at the Dlnghuahan Nature Reserve (DNR) In southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and Its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared In successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates In the cool dry season (October-March). Soil respiration measured at these forests showed a clear Increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate In the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm^2 per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm^2 per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm^2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation In DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture Increased with progressive succession processes. This increase is caused, in part, by abundant respirators In advanced-successional forest, where more soil moisture is needed to maintain their activities.  相似文献   

4.
An incubation method was used to investigate the nitrogen release characteristics from the residue of ten plant species which commonly grow in the northern part of the Loess Plateau. The effect of the residue on soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) was also determined. There were significant differences in the total N content and the C/N ratios among the different types of plant residue. The total N content of the residues ranged from 6.61 to 32.78 g kg?1. The C/N ratio of the residue ranged from 14 to 65. There was an immediate increase in soil N after alfalfa, erect milkvetch, and korshinsk peashrub residue was added to the soil. In contrast, soil N decreased after elm, sea buckthorn, and wild peach residue was added to the soil. The soil N content remained relatively low for 14–34 days and then increased. This indicated that N immobilization occurred during the early portion of the incubation period when elm, sea buckthorn and wild peach residue was added to the soil. Soil N levels were low during the entire incubation period when simon poplar, locust, Stipa bungeana, and old world bluestem residue were added to the soil. The addition of plant residue significantly increased SMBC and SMBN in all treatments. The SMBC and SMBN values were greatest in treatments containing plant residue with high total N content and low C/N ratios. The C/N ratios of korshinsk peashrub, sea buckthorn, and wild peach residues were similar, but the amount of N released from these residues and the effects of the residue on SMBC and SMBN in soil were significantly different. This indicates that not only the C/N ratio but also the chemical composition of the plant residue affected decomposition. It is important to consider C and N release characteristics from plant residue in order to adjust the C and N balance of soil when revegetating degraded ecosystems.  相似文献   

5.
An incubation method was used to investigate the nitrogen release characteristics from the residue of ten plant species which commonly grow in the northern part of the Loess Plateau. The effect of the residue on soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) was also determined. There were significant differences in the total N content and the C/N ratios among the different types of plant residue. The total N content of the residues ranged from 6.61 to 32.78 g kg?1. The C/N ratio of the residue ranged from 14 to 65. There was an immediate increase in soil N after alfalfa, erect milkvetch, and korshinsk peashrub residue was added to the soil. In contrast, soil N decreased after elm, sea buckthorn, and wild peach residue was added to the soil. The soil N content remained relatively low for 14–34 days and then increased. This indicated that N immobilization occurred during the early portion of the incubation period when elm, sea buckthorn and wild peach residue was added to the soil. Soil N levels were low during the entire incubation period when simon poplar, locust, Stipa bungeana, and old world bluestem residue were added to the soil. The addition of plant residue significantly increased SMBC and SMBN in all treatments. The SMBC and SMBN values were greatest in treatments containing plant residue with high total N content and low C/N ratios. The C/N ratios of korshinsk peashrub, sea buckthorn, and wild peach residues were similar, but the amount of N released from these residues and the effects of the residue on SMBC and SMBN in soil were significantly different. This indicates that not only the C/N ratio but also the chemical composition of the plant residue affected decomposition. It is important to consider C and N release characteristics from plant residue in order to adjust the C and N balance of soil when revegetating degraded ecosystems.  相似文献   

6.
Root density distribution of plants is a major Indicator of competition between plants and determines resource capture from the solh This experiment was conducted in 2005 at Anyang, located in the Yellow River region, Henan Province, China. Three cotton (Gossyplum hlrsutum L.) cultivars were chosen: hybrid Btcultlvar CRI46, conventional Btcultlvars CRI44 and CRI45. Six planting densities were designed, ranging from 1.5 to 12.0 plants/m^2. Root parameters such as surface area, diameter and length were analyzed by using the DT-SCAN Image analysis method. The root length density (RLD), root average diameter and root area Index (RAI), root surface area per unit land area, were studied. The results showed that RLD and RAI differed between genotypes; hybrid CRI46 had significantly higher (P 〈0.05) RLD and RAI values than conventlonal cultlvars, especially under low planting densities, less than 3.0 plants/m^2. The root area index (RAI) of hybrid CRI46 was 61% higher than of CRI44 and CRI45 at the flowering stage. The RLD and RAI were also significantly different (P = 0.000) between planting densities. The depth distribution of RAI showed that at Increasing planting densities RAI was Increasingly distributed in the soil layers below 50 cm. The RAI of hybrid CRI46 was for all planting densities, obviously higher than other cultivars during the flowering and boll stages. It was concluded that the hybrid had a strong advantage in root maintenance preventing premature senescence of roots. The root diameter of hybrid CRI46 had a genetically higher root diameter at planting densities lower than 6.0 plants/m^2. Good associations were found between yield and RAI In different stages. The optimum planting density ranged from 4.50 plants/m^2 to 6.75 plants/m^2 for conventional cultlvars and around 4.0-5.0 plants/m^2 for hybrids.  相似文献   

7.
Aims Our aim was to characterize the effects of nitrogen (N) addition on plant root standing crop, production, mortality and turnover in an alpine meadow on the Northwestern plateau of Sichuan Province, China. Methods A N addition experiment was conducted in an alpine meadow on the Northwestern plateau of Sichuan Province since 2012. Urea was applied at four levels: 0, 10, 20 and 30 g·m-2·a-1, referred to as CK, N10, N20 and N30. Root samples in surface (0-10 cm) and subsurface layers (10-20 cm) were observed using Minirhizotron from May 10th to Sept. 27th in 2015. The root standing crop, production, mortality and turnover rate were estimated using WinRHZIO Tron MF software. Repeated-measure ANOVA, one-way ANOVA and Pearson correlation were performed to analyze the effect of N addition on soil and root characteristics. Important findings N addition significantly increased soil available N content and decreased soil pH value, but did not alter soil total N and SOM contents under all treatments. N addition did not exhibit any significant effects on the mean root standing crop and cumulative root production in the 0-10 cm, but significantly reduced mean root standing crop and cumulative root production in 10-20 cm soil layer by 195.3 and 142.3 g·m-2 (N10), 235.8 and 212.1 g·m-2 (N20) and 198.0 and 204.4 g·m-2 (N30), respectively. The cumulative root mortality was significantly decreased by 206.1 g·m-2 in N10 treatment and root turnover rate was significantly increased with 17% for N30 treatment at the 0-10 cm soil depth, but the cumulative root mortality and root turnover rate was not significantly different at 10-20 cm soil depth. In addition, cumulative root production, mortality and turnover rate in 0-10 cm soil layer were significantly correlated with the soil available N content, whereas no significant associations were observed in 10-20 cm soil. Taken together, these results demonstrate that N addition alters the soil N availability and thus induces the root dynamics and changes in root distribution as well as C allocation in alpine meadow. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

8.
Soil carbon sequestration was estimated in a conifer forest and an alpine meadow on the Tibetan Plateau using a carbon- 14 radioactive label provided by thermonuclear weapon tests (known as bomb-^14C). Soil organic matter was physically separated into light and heavy fractions. The concentration spike of bomb-^14C occurred at a soil depth of 4 cm in both the forest soil and the alpine meadow soil. Based on the depth of the bomb-^14C spike, the carbon sequestration rate was determined to be 38.5 g C/m^2 per year for the forest soil and 27.1 g C/m^2 per year for the alpine meadow soil. Considering that more than 60% of soil organic carbon (SOC) is stored in the heavy fraction and the large area of alpine forests and meadows on the Tibetan Plateau, these alpine ecosystems might partially contribute to "the missing carbon sink".  相似文献   

9.
Plant-derived carbon (C) inputs via foliar litter, root litter and root exudates are key drivers of soil organic C stocks. However, the responses of these three input pathways to climate warming have rarely been studied in alpine shrublands. By employing a 3-year warming experiment (increased by 1.3 °C), we investigated the effects of warming on the relative C contributions from foliar litter, root litter and root exudates from Sibiraea angustata, a dominant shrub species in an alpine shrubland on the eastern Qinghai-Tibetan Plateau. The soil organic C inputs from foliar litter, root litter and root exudates were 77.45, 90.58 and 26.94 g C m−2, respectively. Warming only slightly increased the soil organic C inputs from foliar litter and root litter by 8.04 and 11.13 g C m−2, but significantly increased the root exudate C input by 15.40 g C m−2. Warming significantly increased the relative C contributions of root exudates to total C inputs by 4.6% but slightly decreased those of foliar litter and root litter by 2.5% and 2.1%, respectively. Our results highlight that climate warming may stimulate plant-derived C inputs into soils mainly through root exudates rather than litter in alpine shrublands on the Qinghai-Tibetan Plateau.  相似文献   

10.
Forty different medicinal plants were investigated for arbuscular mycorrhizal association in the Rajshahi University Campus in Bangladesh. The results indicated that 35 different plants were infected by AM (arbuscular mycorrhizal) fungi as found by trypan blue staining procedure. The percentage of root colonization by AM fungi varied from 13.3% to 100%. Mangifera indica and Morus indica have maximum percentage of colonization (100%). The intensity of root colonization were abundant in the plants belonging to the families Anacardiaceae, Asclepiadaceae, Moraceae, Leguminosae and Apocynaceae whereas the intensity of colonization of crop roots were moderate and poor belonging to Gramineae and Leguminosae. The presence of greater number of spore in soil was always associated with the incidence of abundant mycelia. In plant roots the formation of spore and mycelia was restricted by low pH. Number of mycorrhizal fungus spores ranged between 35 to100 per 100g air dried soil in different family respective soils. The frequency of mycorrhizal fungus infection showed positive correlation with soil pH, moisture, water holding capacity, texture, total nitrogen, organic carbon, phosphorus, calcium, potassium, and magnesium. Especially phosphorus and nitrogen in the soil greatly influenced the plant root infection by AM fungi.  相似文献   

11.
The spatial and temporal variations of soil respiration were studied from May 2004 to June 2005 in a C3/C4 mixed grassland of Japan. The linear regression relationship between soil respiration and root biomass was used to determine the contribution of root respiration to soil respiration. The highest soil respiration rate of 11-54 Μmol m-2 s-1 was found in August 2004 and the lowest soil respiration rate of 4.99 Μmol m-2 s-1 was found in April 2005. Within-site variation was smaller than seasonal change in soil respiration. Root biomass varied from 0.71 kg m-2 in August 2004 to 102 in May 2005. Within-site variation in root biomass was larger than seasonal variation. Root respiration rate was highest in August 2004 (5.7 Μmol m-2 s-1) and lowest in October 2004 (1.7 Μmol m-2 s-1). Microbial respiration rate was highest in August 2004 (5.8 Μmol m-2 s-1) and lowest in April 2005 (2.59 Μmol m-2 s-1). We estimated that the contribution of root respiration to soil respiration ranged from 31% in October to 51% in August of 2004, and from 45% to 49% from April to June 2005.  相似文献   

12.
Fine root dynamics have the potential to contribute significantly to ecosystem‐scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root dynamics on two soil types in a lowland moist Amazonian forest, and determined the effect of root decay on rates of C and N trace gas fluxes. Root production averaged 229 (±35) and 153 (±27) g m?2 yr?1 for years 1 and 2 of the study, respectively, and did not vary significantly with soil texture. Root decay was sensitive to soil texture with faster rates in the clay soil (k=?0.96 year?1) than in the sandy loam soil (k=?0.61 year?1), leading to greater standing stocks of dead roots in the sandy loam. Rates of nitrous oxide (N2O) emissions were significantly greater in the clay soil (13±1 ng N cm?2 h?1) than in the sandy loam (1.4±0.2 ng N cm?2 h?1). Root mortality and decay following trenching doubled rates of N2O emissions in the clay and tripled them in sandy loam over a 1‐year period. Trenching also increased nitric oxide fluxes, which were greater in the sandy loam than in the clay. We used trenching (clay only) and a mass balance approach to estimate the root contribution to soil respiration. In clay soil root respiration was 264–380 g C m?2 yr?1, accounting for 24% to 35% of the total soil CO2 efflux. Estimates were similar using both approaches. In sandy loam, root respiration rates were slightly higher and more variable (521±206 g C m2 yr?1) and contributed 35% of the total soil respiration. Our results show that soil heterotrophs strongly dominate soil respiration in this forest, regardless of soil texture. Our results also suggest that fine root mortality and decomposition associated with disturbance and land‐use change can contribute significantly to increased rates of nitrogen trace gas emissions.  相似文献   

13.
Changes in the composition of plant species induced by grassland degradation may alter soil respiration rates and decrease carbon sequestration; however, few studies in this area have been conducted. We used net primary productivity (NPP), microbial biomass carbon (MBC), and soil organic carbon (SOC) to examine the changes in soil respiration and carbon balance in two Chinese temperate grassland communities dominated by Leymus chinensis (undisturbed community; Community 1) and Puccinellia tenuiflora (degraded community; Community 2), respectively. Soil respiration varied from 2.5 to 11.9 g CO2 m−2 d−1 and from 1.5 to 9.3 g CO2 m−2 d−1, and the contribution of root respiration to total soil respiration from 38% to 76% and from 25% to 72% in Communities 1 and 2, respectively. During the growing season (May–September), soil respiration, shoot biomass, live root biomass, MBC and SOC in Community 2 decreased by 28%, 39%, 45%, 55% and 29%, respectively, compared to those in Community 1. The considerably lower net ecosystem productivity in Community 2 than in Community 1 (104.56 vs. 224.73 g C m−2 yr−1) suggests that the degradation has significantly decreased carbon sequestration of the ecosystems.  相似文献   

14.
Soil respiration is derived from heterotrophic (decomposition of soil organic matter) and autotrophic (root/rhizosphere respiration) sources, but there is considerable uncertainty about what factors control variations in their relative contributions in space and time. We took advantage of a unique whole‐ecosystem radiocarbon label in a temperate forest to partition soil respiration into three sources: (1) recently photosynthesized carbon (C), which dominates root and rhizosphere respiration; (2) leaf litter decomposition and (3) decomposition of root litter and soil organic matter >1–2 years old. Heterotrophic sources and specifically leaf litter decomposition were large contributors to total soil respiration during the growing season. Relative contributions from leaf litter decomposition ranged from a low of ~1±3% of total soil respiration (6± 3 mg C m?2 h?1) when leaf litter was extremely dry, to a high of 42±16% (96± 38 mg C m?2 h?1). Total soil respiration fluxes varied with the strength of the leaf litter decomposition source, indicating that moisture‐dependent changes in litter decomposition drive variability in total soil respiration fluxes. In the surface mineral soil layer, decomposition of C fixed in the original labeling event (3–5 years earlier) dominated the isotopic signature of heterotrophic respiration. Root/rhizosphere respiration accounted for 16±10% to 64±22% of total soil respiration, with highest relative contributions coinciding with low overall soil respiration fluxes. In contrast to leaf litter decomposition, root respiration fluxes did not exhibit marked temporal variation ranging from 34±14 to 40±16 mg C m?2 h?1 at different times in the growing season with a single exception (88±35 mg C m?2 h?1). Radiocarbon signatures of root respired CO2 changed markedly between early and late spring (March vs. May), suggesting a switch from stored nonstructural carbohydrate sources to more recent photosynthetic products.  相似文献   

15.
Kuzyakov  Y.  Kretzschmar  A.  Stahr  K. 《Plant and Soil》1999,213(1-2):127-136
Carbon rhizodeposition and root respiration during eight development stages of Lolium perenne were studied on a loamy Gleyic Cambisol by 14CO2 pulse labelling of shoots in a two compartment chamber under controlled laboratory conditions. Total 14CO2 efflux from the soil (root respiration, microbial respiration of exudates and dead roots) in the first 8 days after 14C pulse labelling decreased during plant development from 14 to 6.5% of the total 14C input. Root respiration accounted for was between 1.5 and 6.5% while microbial respiration of easily available rhizodeposits and dead root remains were between 2 and 8% of the 14C input. Both respiration processes were found to decline during plant development, but only the decrease in root respiration was significant. The average contribution of root respiration to total 14CO2 efflux from the soil was approximately 41%. Close correlation was found between cumulative 14CO2 efflux from the soil and the time when maximum 14CO2 efflux occurred (r=0.97). The average total of CO2 Defflux from the soil with Lolium perenne was approximately 21 μg C-CO2 d−1 g−1. It increased slightly during plant development. The contribution of plant roots to total CO2 efflux from the soil, calculated as the remainder from respiration of bare soil, was about 51%. The total 14C content after 8 days in the soil with roots ranged from 8.2 to 27.7% of assimilated carbon. This corresponds to an underground carbon transfer by Lolium perenne of 6–10 g C m−2 at the beginning of the growth period and 50–65 g C m−2 towards the end of the growth period. The conventional root washing procedure was found to be inadequate for the determination of total carbon input in the soil because 90% of the young fine roots can be lost. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Instantaneous rates of (soil + root) respiration were measured periodically during grain filling in sunflower crops that were i) irrigated at weekly intervals and ii) subjected to water stress for the last 25 days of the 40-day grain filling period. Daily (soil + root) respiration was calculated using instantaneous respiration rates, an empirically determined temperature response function, and diurnal records of soil temperature. Daily soil respiration was estimated using empirically determined functions linking soil respiration to soil temperature and water content. Between anthesis and maturity, daily root respiration of the irrigated crop dropped by about one half from ca. 1.8 g C m-2 d-1, exhibiting a strong association with daily crop gross photosynthesis. Water stress brought about a rapid decrease in root respiration, which fell to about 0.1 g C m-2 d-1 at maturity. Root respiration during grain filling was 46 and 30 g C m-2 for irrigated and stressed crops, respectively.  相似文献   

17.
Chronic N additions to forest ecosystems can enhance soil N availability, potentially leading to reduced C allocation to root systems. This in turn could decrease soil CO2 efflux. We measured soil respiration during the first, fifth, sixth and eighth years of simulated atmospheric NO3? deposition (3 g N m?2 yr?1) to four sugar maple‐dominated northern hardwood forests in Michigan to assess these possibilities. During the first year, soil respiration rates were slightly, but not significantly, higher in the NO3?‐amended plots. In all subsequent measurement years, soil respiration rates from NO3?‐amended soils were significantly depressed. Soil temperature and soil matric potential were measured concurrently with soil respiration and used to develop regression relationships for predicting soil respiration rates. Estimates of growing season and annual soil CO2 efflux made using these relationships indicate that these C fluxes were depressed by 15% in the eighth year of chronic NO3? additions. The decrease in soil respiration was not due to reduced C allocation to roots, as root respiration rates, root biomass, and root turnover were not significantly affected by N additions. Aboveground litter also was unchanged by the 8 years of treatment. Of the remaining potential causes for the decline in soil CO2 efflux, reduced microbial respiration appears to be the most likely possibility. Documented reductions in microbial biomass and the activities of extracellular enzymes used for litter degradation on the NO3?‐amended plots are consistent with this explanation.  相似文献   

18.
Specific root respiration rates typically increase with increasing tissue N concentration. As a result, it is often assumed that external factors inducing greater root N concentration, such as chronic N deposition, will lead to increased respiration rates. However, enhanced N availability also alters root biomass, making the ecosystem‐level consequences on whole‐root‐system respiration uncertain. The objective of this study was to determine the effects of chronic experimental N deposition on root N concentrations, specific respiration rates, and biomass for four northern hardwood forests in Michigan. Three of the six measurement plots at each location have received experimental N deposition (3 g ‐N m?2 yr?1) since 1994. We measured specific root respiration rates and N concentrations of roots from four size classes (<0.5, 0.5–1, 1–2, and 2–10 mm) at three soil depths (0–10, 10–30, and 30–50 cm). Root biomass data for the same size classes and soil depths was used in combination with specific respiration rates to assess the response of whole‐root‐system respiration. Root N and respiration rate were greater for smaller diameter roots and roots at shallow depths. In addition, root N concentrations were significantly greater under chronic N deposition, particularly for larger diameter roots. Specific respiration rates and root biomass were unchanged for all depths and size classes, thus whole‐root‐system respiration was not altered by chronic N deposition. Higher root N concentrations in combination with equivalent specific respiration rates under experimental N deposition resulted in a lower ratio of respiration to tissue N. These results indicate that relationships between root respiration rate and N concentration do not hold if N availability is altered significantly. For these forests, use of the ambient respiration to N relationship would over‐predict actual root system respiration for the chronic N deposition treatment by 50%.  相似文献   

19.
The effect of stand age on soil respiration and its components was studied in a first rotation Sitka spruce chronosequence composed of 10‐, 15‐, 31‐, and 47‐year‐old stands established on wet mineral gley in central Ireland. For each stand age, three forest stands with similar characteristics of soil type and site preparation were used. There were no significant differences in total soil respiration among sites of the same age, except for the case of a 15‐year‐old stand that had lower soil respiration rates due to its higher productivity. Soil respiration initially decreased with stand age, but levelled out in the older stands. The youngest stands had significantly higher respiration rates than more mature sites. Annual soil respiration rates were modelled by means of temperature‐derived functions. The average Q 10 value obtained treating all the stands together was 3.8. Annual soil respiration rates were 991, 686, 556, and 564 g C m?2 for the 10‐, 15‐, 31‐, and 47‐year‐old stands, respectively. We used the trenching approach to separate soil respiration components. Heterotrophic respiration paralleled soil organic carbon dynamics over the chronosequence, decreasing with stand age to slightly increase in the oldest stand as a result of accumulated aboveground litter and root inputs. Root respiration showed a decreasing trend with stand age, which was explained by a decrease in fine root biomass over the chronosequence, but not by nitrogen concentration of fine roots. The decrease in the relative contribution of autotrophic respiration to total soil CO2 efflux from 59.3% in the youngest stand to 49.7% in the oldest stand was explained by the higher activity of the root system in younger stands. Our results show that stand age should be considered if simple temperature‐based models to predict annual soil respiration in afforestation sites are to be used.  相似文献   

20.
A trenching method was used to determine the contribution of root respiration to soil respiration. Soil respiration rates in a trenched plot (R trench) and in a control plot (R control) were measured from May 2000 to September 2001 by using an open-flow gas exchange system with an infrared gas analyser. The decomposition rate of dead roots (R D) was estimated by using a root-bag method to correct the soil respiration measured from the trenched plots for the additional decaying root biomass. The soil respiration rates in the control plot increased from May (240–320 mg CO2 m–2 h–1) to August (840–1150 mg CO2 m–2 h–1) and then decreased during autumn (200–650 mg CO2 m–2 h–1). The soil respiration rates in the trenched plot showed a similar pattern of seasonal change, but the rates were lower than in the control plot except during the 2 months following the trenching. Root respiration rate (R r) and heterotrophic respiration rate (R h) were estimated from R control, R trench, and R D. We estimated that the contribution of R r to total soil respiration in the growing season ranged from 27 to 71%. There was a significant relationship between R h and soil temperature, whereas R r had no significant correlation with soil temperature. The results suggest that the factors controlling the seasonal change of respiration differ between the two components of soil respiration, R r and R h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号