首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have constructed a nearly full length cDNA clone, pGTA/C44, complementary to the rat liver glutathione S-transferase Yb1 mRNA. The nucleotide sequence of pGTA/C44 has been determined, and the complete amino acid sequence of the Yb1 subunit has been deduced. The cDNA clone contains an open reading frame of 654 nucleotides encoding a polypeptide comprising 218 amino acids with Mr = 25,919. The NH2-terminal sequence deduced from DNA sequence analysis of pGTA/C44 is in agreement with the first 19 amino acids determined for purified glutathione S-transferase A, a Yb1 homodimer, by Frey et al. (Frey, A. B., Friedberg, T., Oesch, F., and Kreibich, G. (1983) J. Biol. Chem. 258, 11321-11325). The DNA sequence of pGTA/C44 shares significant sequence homology with a cDNA clone, pGT55, which is complementary to a mouse liver glutathione S-transferase (Pearson, W. R., Windle, J. J., Morrow, J. F., Benson, A. M., and Talalay, P. (1983) J. Biol. Chem. 258, 2052-2062). We have also determined 37 nucleotides of the 5'-untranslated region and 348 nucleotides of the 3'-untranslated region of the Yb1 mRNA. The Yb1 mRNA and subunit do not share any sequence homology with the rat liver glutathione S-transferase Ya or Yc mRNAs or their corresponding subunits. These data provide the first direct evidence that the Yb1 subunit is derived from a gene or gene family which is distinct from the Ya-Yc gene family.  相似文献   

2.
With the use of cDNA probes reverse transcribed from purified glutathione S-transferase mRNA templates, four cDNA clones complementary to transferase mRNAs have been identified and characterized. Two clones, pGTB38 and pGTB34, have cDNA inserts of approximately 950 and 900 base pairs, respectively, and hybridize to a mRNA(s) whose size is approximately 980 nucleotides. In hybrid-select translation experiments, pGTB38 and pGTB34 select mRNAs specific for the Ya and Yc subunits of rat liver glutathione S-transferases. Clone pGTB33, which harbors a truncated cDNA insert, hybrid-selects only the Ya mRNA. All of the clones, pGTB38, pGTB34, and pGTB33, hybrid-select another mRNA which is specific for a polypeptide with an electrophoretic mobility slightly greater than the Ya subunit. The entire nucleotide sequence of the full length clone, pGTB38, has been determined and the complete amino acid sequence of the corresponding polypeptide has been deduced. The mRNA codes for a protein comprising 222 amino acids with Mr = 25,547. We have also identified a cDNA clone complementary to a Yb mRNA of the rat liver glutathione S-transferases. This clone, pGTA/C36, hybrid-selects only Yb mRNA(s) and hybridizes to a mRNA(s) whose size is approximately 1200 nucleotides. Although the Ya, Yb, and Yc mRNAs are elevated coordinately by phenobarbital and 3-methylcholanthrene, the Ya-Yc mRNAs are induced to a much greater extent compared to the Yb mRNA(s). These data suggest that the mRNAs for each transferase isozyme are regulated independently.  相似文献   

3.
We have characterized a cDNA with complete coding sequence for the rat liver glutathione S-transferase subunit 4 (Yb2) isolated from a constructed lambda gt10 cDNA library. Functional expression of the cDNA sequence has resulted in the purification to homogeneity of an enzymatically active anionic glutathione S-transferase. In addition to three previously described Yb-type subunits (Yb1, Yb2, Yb3), we now report characterization of a fourth Yb subunit sequence in the form of a genomic DNA clone lambda GTR15-2. The Yb4 gene has no apparent defect, and the deduced Yb4 polypeptide sequence differs from the other three Ybs by 40 to 53 amino acids. The Yb4 gene organization is similar to that of the Yb2 gene in having a minimum of eight exons. Three out of the seven introns between the two genes are conserved to the extent of more than 88% nucleotide identity. We propose that gene conversion may have played a role in the evolution of these Yb genes.  相似文献   

4.
H C Lai  G Grove    C P Tu 《Nucleic acids research》1986,14(15):6101-6114
We have isolated a Yb-subunit cDNA clone from a GSH S-transferase (GST) cDNA library made from rat liver polysomal poly(A) RNAs. Sequence analysis of one of these cDNA, pGTR200, revealed an open reading frame of 218 amino acids of Mr = 25,915. The deduced sequence is in agreement with the 19 NH2-terminal residues for GST-A. The sequence of pGTR200 differs from another Yb cDNA, pGTA/C44 by four nucleotides and two amino acids in the coding region, thus revealing sequence microheterogeneity. The cDNA insert in pGTR200 also contains 36 nucleotides in the 5' noncoding region and a complete 3' noncoding region. The Yb subunit cDNA shares very limited homology with those of the Ya or Yc cDNAs, but has relatively higher sequence homology to the placental subunit Yp clone pGP5. The mRNA of pGTR200 is not expressed abundantly in rat hearts and seminal vesicles. Therefore, the GST subunit sequence of pGTR200 probably represents a basic Yb subunit. Genomic DNA hybridization patterns showed a complexity consistent with having a multigene family for Yb subunits. Comparison of the amino acid sequences of the Ya, Yb, Yc, and Yp subunits revealed significant conservation of amino acids (approximately 29%) throughout the coding sequences. These results indicate that the rat GSTs are products of at least four different genes that may constitute a supergene family.  相似文献   

5.
Nucleotide sequence of the yeast glutathione S-transferase cDNA   总被引:1,自引:0,他引:1  
The nucleotide sequence (658 bp) of the cDNA coding for glutathione S-transferase Y-2 of yeast Issatchenkia orientalis was obtained. The cDNA clone contains an open reading frame of 570 nucleotides encoding a polypeptide comprising 190 amino acids with a molecular weight of 21,520. The primary amino acid sequence of the enzyme exhibits only 25.0% and 21.1% identity with 177 and 151 amino acid residues of maize glutathione S-transferase I and rat glutathione S-transferase Yb2, respectively.  相似文献   

6.
We have isolated from a lambda gt10 cDNA library a clone lambda GTH4 which encodes a human liver glutathione S-transferase Hb subunit, designated as subunit 4. Expression of this cDNA in E. coli and subsequent purification and immunoblotting analysis provided a definitive assignment of a structure and function relationship. RNA blot hybridization with human liver poly(A) RNA revealed a single band of approximately 1200 nucleotides, comparable in size to the rat brain Yb3 mRNA. Divergence analysis of amino acid replacement sites in subunit 4 relative to the four rat Yb subunits revealed that it is most closely related to the brain-specific Yb3 subunit. This conclusion is further substantiated by the nucleotide sequence homology between lambda GTH4 and the Yb3 cDNA in their 3' untranslated region. In situ chromosome mapping has located this glutathione S-transferase gene in the region of p31 on chromosome 1. Results from many laboratories, including ours, indicate that the human glutathione S-transferases are encoded by a gene superfamily which is located on at least two different chromosomes.  相似文献   

7.
We have isolated a glutathione S-transferase Yb1 subunit cDNA from a lambda gt11 cDNA collection constructed from rat testis poly(A) RNA enriched for glutathione S-transferase mRNA activities. This Yb1 cDNA, designated pGTR201, is identical to our liver Yb1 cDNA clone pGTR200 except for a shorter 5'-untranslated sequence. Active glutathione S-transferase is expressed from this Yb1 cDNA driven by the tac promoter on the plasmid construct pGTR201-KK. The expressed glutathione S-transferase protein begins with the third codon (Met) of the cDNA, and is missing the N-terminal proline of rat liver glutathione S-transferase 3-3. Therefore, our Escherichia coli expressed glutathione S-transferase protein represents a variant form of glutathione S-transferase 3-3 (Yb1Yb1), designated GST 3-3(-1). The expressed Yb1 subunits are assembled into a dimer as purified from sonicated E. coli crude extracts. In the absence of dithiothreitol three active isomers can be resolved by ion-exchange chromatography. The pure protein has an extinction coefficient of 9.21 x 10(4) M-1 cm-1 at 280 nm or E0.1% 280 = 1.78 and a pI at 8.65. It has a substrate specificity pattern similar to that of the authentic glutathione S-transferase 3-3. The GST 3-3(-1) has a KM of 202 microM for reduced GSH and of 36 microM for 1-chloro-2,4-dinitrobenzene. The turnover number for this conjugation reaction is 57 s-1. Results of kinetic studies of this reaction with GST 3-3(-1) are consistent with a sequential substrate binding mechanism. We conclude that the first amino acid proline of glutathione S-transferase 3-3 is not essential for enzyme activities.  相似文献   

8.
A full-length cDNA clone was isolated for rat liver Yb1 glutathione S-transferase (EC 2.5.1.18). The coding sequence of Yb1 cDNA was inserted into a baculovirus vector for infection of Spodoptera frugiperda (SF9) cells. The enzymatically active recombinant Yb1 glutathione S-transferase protein has a native molecular weight of 42,000 daltons (by molecular sieve chromatography), a subunit molecular weight of 26,500 daltons (by SDS-polyacrylamide gel electrophoresis), a pI of 8.4 and an extinction coefficient E1%280 of 5.6 +/- 0.4.  相似文献   

9.
We have determined the nucleotide sequence of a cloned cDNA derived from liver poly(A) RNA of pentobarbital-treated rats encoding a glutathione S-transferase subunit. This cDNA clone pGTR261 contains one open reading frame of 222 amino acids, a complete 3' noncoding region, and 63 nucleotides in the 5' noncoding region. The cloned DNA hybridizes to rat poly(A) RNA in a tissue-specific fashion, with strong signals to liver and kidney poly(A) RNA(s) of approximately 1100 and approximately 1400 nucleotides in size but little or no hybridization to poly(A) RNAs from heart, lung, seminal vesicles, spleen, or testis under stringent conditions. Our sequence covers the cDNA sequence of pGST94 which contains a partial coding sequence for a liver glutathione S-transferase subunit of Ya size. Comparison of sequences with our earlier clone pGTR112 suggests that there are at least two mRNA species coding for two different subunits of the Ya (Mr = 25,600) subunit family with very limited amino acid substitutions mainly of conserved polarity. The divergent 3' noncoding sequences should be useful molecular probes in differentiating these two different but otherwise very similar subunits in induction and genomic structure analyses. Our results suggest that tissue-specific expression of the glutathione S-transferase subunits represented by the sequences of pGTR261 and pGTR112 may occur at or prior to the level of RNA processing.  相似文献   

10.
Using polysomal immunoselected rat liver glutathione S-transferase mRNAs, we have constructed cDNA clones using DNA polymerase I, RNase H, and Escherichia coli ligase (NAD+)-mediated second strand cDNA synthesis as described by Gubler and Hoffman (Gubler, U., and Hoffman, B. S. (1983) Gene 25, 263-269). Recombinant clone, pGTB42, contained a cDNA insert of 900 base pairs whose 3' end showed specificity for the Yc mRNA in hybrid-select translation experiments. The nucleotide sequence of pGTB42 has been determined, and the complete amino acid sequence of a Yc subunit has been deduced. The cDNA clone contains an open reading frame of 663 nucleotides encoding a polypeptide comprising 221 amino acids with a molecular weight of 25,322. The NH2-terminal sequence deduced from pGTB42 is in agreement with the first 39 amino acids determined for a Ya-Yc heterodimer by conventional protein-sequencing techniques. A comparison of the nucleotide sequence of pGTB42 with the sequence of a Ya clone, pGTB38, described previously by our laboratory (Pickett, C. B., Telakowski-Hopkins, C. A., Ding, G. J.-F., Argenbright, L., and Lu, A.Y.H. (1984) J. Biol. Chem. 259, 5182-5188) reveals a sequence homology of 66% over the same regions of both clones; however, the 5'- and 3'-untranslated regions of the Ya and Yc mRNAs are totally divergent in their sequences. The overall amino acid sequence homology between the Ya and Yc subunits is 68%, however, the NH2-terminal domain is more highly conserved than the middle or carboxyl-terminal domains. Our data suggest that the Ya and Yc subunits of the rat liver glutathione S-transferases are products of two different mRNAs which are derived from two related yet different genes.  相似文献   

11.
12.
Total rat liver poly(A+)-RNA has been isolated from phenobarbital-treated rats and fractionated on sucrose gradients to enrich for glutathione S-transferase B mRNA. Poly(A+)-RNA fractions were assayed for glutathione S-transferase B mRNA activity by in vitro translation and those fractions enriched in glutathione S-transferase B mRNA were used as a template for cDNA synthesis. The cDNA was cloned into the PstI site of pBR322 by G-C tailing. Bacterial clones harboring inserts complementary to glutathione S-transferase mRNA were identified by colony hybridization using a [32P]cDNA probe reverse transcribed from poly(A+)-RNA enriched significantly in glutathione S-transferase B mRNA and by hybrid-select translation. Two recombinant clones, pGTB6 and pGTB15 hybrid-selected the mRNAs specific for the Ya and Yc subunits, indicating these two mRNAs share significant sequence homology. Radiolabeled pGTB6 was utilized in RNA gel-blot experiments to determine that the size of glutathione S-transferase B mRNA is 980 nucleotides and the degree of induction of the mRNA in response to 3-methylcholanthrene administration is threefold.  相似文献   

13.
To identify gene products involved in castration-induced involution of the rat ventral prostate, we constructed a subtraction cDNA library of the ventral prostate from rats castrated for 48 h. The library was screened with subtracted cDNA probes enriched for sequences with a low copy number expressed in intact or castrated rats. As a result of differential screening, 48 cDNA clones representing 10 different induced mRNAs were isolated. The time course of these mRNA inductions after castration was examined. Within the first 24 h after castration, the level of mRNAs for these cDNA clones was significantly increased and it reached its peak by 48-72 h after castration. Although mRNAs for these cDNA clones were expressed in various tissues from intact rats, an increase in mRNA as a response to castration was observed only in the ventral prostate. Partial sequence analyses of the 10 cDNA clones indicate that three cDNA clones represent rat glutathione S-transferase Yb-1, Yb-2 and Yb-3 subunit mRNA sequences, but for others respective homologues could not be found in a search of the GenBank database (release 67).  相似文献   

14.
High multiplicity of GSH S-transferases (GST) with overlapping substrate specificities may be essential to their multiple roles in xenobiotics metabolism, drug biotransformation, and protection against peroxidative damage. Subunit composition analysis of rat liver GSH S-transferases indicated that heterodimer associations were not random, limiting the generation of GST isozyme multiplicity. We have analyzed a Yb subunit cDNA clone, pGTR187, that may correspond to an anionic Yb subunit sequence. Comparison with other GSH S-transferase cDNA sequences and blot hybridization results indicates that the multiple Yb subunits are encoded by a multigene family. This Yb subunit sequence has very limited homology to Ya and Yc subunit cDNAs, but slightly more sequence homology to the Yp subunit cDNA. More consistent sequence homology is found at the amino acid level with 28% conservation throughout the coding sequences. These results and results published from other laboratories clearly indicate that rat GSH S-transferases are products of at least four different gene families that constitute a supergene family. Conceptually, the supergene family may encode GSH S-transferases of very different structures that are essential to metabolize a multitude of xenobiotics in addition to serving other physiologically important functions.  相似文献   

15.
Rat ligandin mRNA molecular cloning and sequencing   总被引:2,自引:0,他引:2  
Recombinant plasmids containing the double-stranded cDNA sequences of mRNA for the Mr 22,000 ligandin (glutathione S-transferase B) subunit (Ya) have been constructed. The DNA sequence of an insert corresponding to the middle and 3' regions of the mRNA was determined and an amino acid sequence was proposed for the ligandin Ya subunit. The proposed sequence reveals a high content of basic amino acids (Arg and Lys) and Leu, is consistent with the amino acid composition, and predicts the correct number of peptides derived from tryptic digests reported for ligandin.  相似文献   

16.
17.
18.
In the rat, a cytosolic isozyme of aldehyde dehydrogenase, designated ALDH-PB, can be induced in the liver by administration of phenobarbital (PB). ALDH-PB activity and mRNA are induced in Long-Evans rats that possess a responsive (R) allele but are not induced in homozygous nonresponsive rats (rr), although the rr genotype is competent to induce other PB-responsive mRNAs. ALDH-PB mRNA is expressed in the basal state (without PB administration) in hepatic tissue in both RR and rr genotypes. We report the complete nucleotide sequence of the rat ALDH-PB mRNA. The protein encoded by the ALDH-PB mRNA is 501 amino acids in length and has a predicted molecular mass of 54,540 daltons. The amino acid sequence predicted from the mRNA demonstrates a strong conservation between the rat ALDH-PB and the human cytosolic aldehyde dehydrogenase hALDH-1. We demonstrate the ALDH-PB, cytochrome P-450b, cytochrome P-450e, and glutathione S-transferase Ya subunit mRNA levels in the liver are altered noncoordinately by administration of PB in RR and rr genotypes. The strikingly different responses to PB administration between the various mRNA species in each of the genotypes suggest that the regulation of specific gene expression by PB may involve multiple pathways.  相似文献   

19.
A cDNA containing the entire coding sequence for the subunit protein of rat liver class theta glutathione S-transferase (GST) Yrs-Yrs was isolated from a rat liver lambda gt11 cDNA library. The cDNA, designated GST theta-1, consisted of 1,258 bp which had an open reading frame of 732 bp encoding a polypeptide of 244 amino acid (AA) residues, including the leading AA Met to be removed on expression. The authenticity of the cDNA structure was supported by matching its deduced AA sequence with N-termini of Yrs and peptides obtained thereof by tryptic digestion as well as by CNBr cleavage. The deduced AA sequence of the subunit Yrs (M.W. 27,311) had only a weak homology (19-23%) with those of rat liver classes alpha, mu, and pi GST isozymes. Thus, the first evidence for the molecular cloning of the class theta GST was provided.  相似文献   

20.
A cDNA library prepared from poly(A)+ RNA of 2-acetylaminofluorene (AAF) induced rat hepatocellular carcinoma was screened by synthetic DNA probes deduced from a partial amino acid sequence of glutathione S-transferase P subunit that had been isolated from the tumor by two-dimensional gel electrophoresis. One of the four clones analyzed contained an mRNA region encoding the total amino acid sequence of this enzyme subunit and the complete 3'-noncoding region. The nucleotide sequence indicates that this enzyme subunit has 209 amino acids (calculated Mr=23,307) distinct from other glutathione S-transferase subunits such as Ya and Yc. Comparison of the amino acid sequences between these proteins indicates that glutathione S-transferase P subunit gene has been evolved from the ancestral gene at an earlier stage than the separation of Ya and Yc and that there are at least three domains having a considerable homology with each other in these enzymes. The very large increase of this mRNA in chemically induced hepatocellular carcinoma suggests a characteristic derepression of this gene during hepatocarcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号