首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary If the DNA nucleoside thymidine is replaced by bromodeoxyuridine, the fluorescence of the nuclei of Hoechst-stained cells is quenched. The decrease of fluorescence intensity determined by flow cytometry and fluorometry is neutralized independent of the degree of BrdU substitution by an UV-exposure with a dose of 5–10 kJ/m2 to the unfiltered spectrum of a 100 W mercury high-pressure lamp. This dose is equivalent to that obtained in fluorescence microscopy after exposure for about 1 s. We suppose that this approximate matching of the intensities both of normal and BrdU-substituted cells is caused by the splitting-off of bromine from BrdU in the DNA resulting in no further quenching. However, the fluorescence intensity of normal Hoechst-stained DNA also is increased by a previous exposure to UV light. We explain the time pattern of the Hoechst fluorescence in the course of an exposure with constant dose rate, by the superimposition of the well-known bleaching by an additional increase of the fluorescence intensity. Our results suggest that the UV-exposure of Hoechst dye creates a brightly fluorescing photoproduct which differs spectroscopically from the original dye. This product is stable in the dark and seems to fluorochrome DNA only if it is formed when the Hoechst dye is bound to DNA, thus increasing the nuclear fluorescence. Phosphorescence was not found.Non-standard abbreviations BrU-cells 5-bromodeoxyuridine holding S-180 cells - T-cells S-180 cells with normal (thymine) DNA - ICP pulse cytophotometer  相似文献   

2.
Chromosomes and interphase cells were harvested from cultures of the Chinese hamster line B14 F28 grown in medium containing BrdU up to four cell cycles and stained with the fluorescent dye 33342 Hoechst for flow cytometry. The newly synthetized BrdU-DNA is not stainable by the Hoechst dye which is highly specific for thymidine. The temporal development of the DNA fluorescence after addition of BrdU to the growth medium has been investigated. The chromosomal fluorescence intensity is reduced one step per generation. The extent of the intensity decrease by BrdU incorporation is proportional to the amount of new DNA and it is realized by repeated measurement following an UV-exposure. This UV-illumination stops the quenching by BrdU of the Hoechst stain induced DNA fluorescence. Therefore, the entire DNA content of these chromosomes now becomes measurable. The obtained intensity gain serves as a measure of the extent of the previous BrdU caused intensity shift. In this way we could establish 3 successive mitoses. Principally, this method is suitable also for measurement of whole cells in order to obtain both the number of generations in the experimental period and the phase distribution of the cell cycle.  相似文献   

3.
The interaction of the bisbenzimidazole dye 33258 Hoechst with DNA and chromatin is characterized by changes in absorption, fluorescence, and circular dichroism measurements. At low dye/phosphate ratios, dye binding is accompanied by intense fluorescence and circular dichroism and exhibits little sensitivity to ionic strength. At higher dye/phosphate ratios, additional dye binding can be detected by further changes in absorptivity. This secondary binding is suppressed by increasing the ionic strength. A-T rich DNA sequences enhance both dye binding and fluorescence quantum yield, while chromosomal proteins apparently exclude the dye from approximately half of the sites available with DNA. Fluorescence of the free dye is sensitive to pH and, below pH 8, to quenching by iodide ion. Substitution of 5-bromodeoxyuridine (BrdU) for thymidine in synthetic polynucleotides, DNA, or unfixed chromatin quenches the fluorescence of bound dye. This suppression of dye fluorescence permits optical detection of BrdU incorporation associated with DNA synthesis in cytological chromosome preparations. Quenching of 33258 Hoechst fluorescence by BrdU can be abolished by appropriate alterations in solvent conditions, thereby revealing changes in dye fluorescence of microscopic specimens specifically due to BrdU incorporation.  相似文献   

4.
BACKGROUND: 5-Bromo-2'-deoxyuridine (BrdU) is a powerful compound to study the mitotic activity of a cell. Most techniques that identify BrdU-labeled cells require conditions that kill the cells. However, the fluorescence intensity of the membrane-permeable Hoechst dyes is reduced by the incorporation of BrdU into DNA, allowing the separation of viable BrdU positive (BrdU+) cells from viable BrdU negative (BrdU-) cells. METHODS: Cultures of proliferating cells were supplemented with BrdU for 48 h and other cultures of proliferating cells were maintained without BrdU. Mixtures of viable BrdU+ and viable BrdU- cells from the two proliferating cultures were stained with Hoechst 33342. The viable BrdU+ and BrdU- cells were sorted into different fractions from a mixture of BrdU+ and BrdU- cells based on Hoechst fluorescence intensity and the ability to exclude the vital dye, propidium iodide. Subsequently, samples from the original mixture, the sorted BrdU+ cell population, and the sorted BrdU- cell population were immunostained using an anti-BrdU monoclonal antibody and evaluated using flow cytometry. RESULTS: Two mixtures consisting of approximately 55% and 69% BrdU+ cells were sorted into fractions consisting of greater than 93% BrdU+ cells and 92% BrdU- cells. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. CONCLUSIONS: Hoechst fluorescence intensity in combination with cell sorting is an effective tool to separate viable BrdU+ from viable BrdU- cells for further study. The separated cell populations were maintained in vitro after sorting to demonstrate their viability.  相似文献   

5.
The side population (SP) phenotype has been reported as a method to identify hematopoietic stem cells in the bone marrow based upon differential staining with the fluorescent dye, Hoechst 33342. This technique has drawn great interest in the stem cell community, as it may provide a simple approach to the enrichment of progenitor cells from a variety of normal and malignant tissues. The frequency of these cells and their performance in functional assays has varied considerably within the literature. To investigate mechanisms that may contribute to the SP phenotype, we measured the fluorescence emission of Hoechst-stained bone marrow cells as a function of both time and dye concentration using a custom flow cytometer and data acquisition software. These measurements demonstrate that all nucleated cells within the bone marrow undergo an identical staining pattern at varying rates, even under conditions previously reported to abrogate the SP. Therefore, the SP phenotype is not unique to stem cells, but rather represents a transient feature of marrow cells exposed to Hoechst 33342 for varying amounts of time. We propose that heterogeneity of SP-defined populations may be a consequence of the rate at which differing cell populations accumulate Hoechst 33342. Further, we suggest that dye uptake kinetics will likely be an important factor for optimal use of Hoechst 33342 in isolating stem cells.  相似文献   

6.
OBJECTIVE: To test the feasibility of in situ DNA quantitation of adherent cells' nuclei by fluorescence imaging, preserving chromatin structure and to follow-up S phase, in relation to DNA content, in order to assess the precision of DNA measurements. STUDY DESIGN: Double labeling experiments involved total DNA staining with Hoechst 33342 and BrdU immunostaining (after either Br photolysis and DNA strand break labeling by terminal transferase or acid denaturation) to detect replicating DNA. An epifluorescence microscope was used, images captured with a CCD camera and quantitative total DNA measurements done in 12 bits with IPLab software. BrdU results were related to DNA content on an individual cell basis. Cell cycle analyses were run with Imastat software (developed in the laboratory) on Hoechst-stained cells and on double labeled cells. RESULTS: In cells progressing through the cycle, as assessed by BrdU, a corresponding increase in DNA content was measured. Early S differed from G1 (P < .05). Imastat analyses gave a CV for GI peak of 6-7%. CONCLUSION: Quantitative fluorescence imaging allows a sensitive determination of DNA content for adherent-cell nuclei in situ. Topologic analyses of nuclear components will be possible in relation to DNA content.  相似文献   

7.
BACKGROUND: Many methods in flow cytometry rely on staining DNA with a fluorescent dye to gauge DNA content. From the relative intensity of the fluorescence signature, one can then infer position in cell cycle, amount of DNA (i.e., for sperm selection), or, as in the case of flow karyotyping, to distinguish individual chromosomes. This work examines the staining of murine thymocytes with a common DNA dye, Hoechst 33342, to investigate nonlinearities in the florescence intensity as well as chromatic shifts. METHODS: Murine thymocytes were stained with Hoechst 33342 and measured in a flow cytometer at two fluorescence emission bands. In other measurements, cells were stained at different dye concentrations, and then centrifuged. The supernatant was then used for a second round of staining to test the amount of dye uptake. Finally, to test for resonant energy transfer, we measured fluorescence anisotropy at two different wavelengths. RESULTS: The fluorescence of cells stained with Hoechst 33342 is a nonlinear process that shows an overall decrease in intensity with increased dye uptake, and spectral shift to the red. Along with the spectral shift of the fluorescence to the longer wavelengths, we document decreases in the fluorescence anisotropy that may indicate resonant energy transfer. CONCLUSIONS: At low concentrations, Hoechst 33342 binds to the minor groove of DNA and shows an increase in fluorescence and a blue shift upon binding. At higher concentrations, at which the dye molecules can no longer bind without overlapping, the blue fluorescence decreases and the red fluorescence increases until there is approximately one dye molecule per DNA base pair. The ratio of the blue fluorescence to the red fluorescence is an accurate indicator of the cellular dye concentration.  相似文献   

8.
V N Umetskaia 《Biofizika》1992,37(1):39-42
It is found that with time a decrease of fluorescence intensity of the basic band at 460 nm and appearance of a new band of fluorescence of DNA-specific dye Hoechst 33258 in complex with the cell nucleus DNA under the action of UV emission are observed. It is shown that phototransformation is related to the withdrawal of the nitrogen atom proton of piperazine ring in an excited state of the complex of the dye Hoechst 33258 with the cell nucleus DNA.  相似文献   

9.
Cells that have incorporated 5-bromodeoxyuridine (BrdU) into their DNA become extremely sensitive to photoinduced killing after treatment with the dye, 33258 Hoechst. Under appropriate conditions the dye increases the efficiency of killing by a factor of approximately 10(4). This enhanced photosensitivity suggests that the combination of BrdU, dye, and light can be used to select conditional lethal mutants.  相似文献   

10.
Three new bisbenzimidazole (BBI) compounds, which differ from Hoechst 33258 mainly by substitution of a N-dimethylaminopro-pylcarboxamide group in place of the N-methyl-piperazine ring, were studied for their DNA- and AT-base pair specificity as well as for their ability to be quenched by incorporated 5-bromodeoxy-uridine (BrdU). Each of them had DNA binding specificity comparable to or greater than that of Hoechst 33258 and each had a greater specificity for AT-rich regions than did Hoechst 33258. The dependence of fluorescence of new dyes on the BrdU-incorporation into DNA is different from that of Hoechst 33258 and related compounds with piperazine ring. The quenching effect is much weaker, and two of the new compounds (BBI-1 and BBI-2) even show somewhat enhanced binding (fluorescence) at lower concentrations. Certain BBI dyes without piperazine ring may have some advantage over Hoechst for accurate DNA [AT-specific] measurements. The piperazine ring appears to play an important role in the yet unknown mechanism of Hoechst quenching by incorporated BrdU.  相似文献   

11.
Fluorescence spectra of Hoechst 33258 bound to rat thymocytes were measured by flow cytometry. At low dye concentrations (less than or equal to 2 micrograms/ml) the fluorescence maximum was situated at 460 nm irrespective of solvent composition. With higher dye concentrations the fluorescence maximum was shifted upwards, the intensity decreased and the width of the fluorescence peak increased. Linear combinations of a spectrum obtained at a low dye concentration (0.5 microgram/ml, type 1 binding) and one obtained at a high dye concentration (42.4 micrograms/ml, type 2 binding) failed to reproduce spectra measured at intermediate dye concentrations (0.15 M NaCl). Hence, Hoechst 33258 forms at least three different fluorescing complexes with DNA in chromatin. The shift in the fluorescence maximum of the Hoechst 33258/chromatin complex towards higher wavelengths decreased with ionic strength. 25% ethanol in the 0.15 M NaCl staining buffer reduced the wavelength shift at high dye concentrations, indicating that the strength of type 2 binding depends on DNA conformation in addition to ionic strength. The fluorescence spectrum was independent of whether DNA in chromatin was complexed with histones or not. However, histone-depleted thymocytes fluoresced more intensely than cells in which DNA was complexed with histones, the difference being greater at low concentrations of Hoechst 33258. Hence, type 2 binding to DNA in chromatin appears to be less restricted by histones than type 1 binding.  相似文献   

12.
Studies on BrdU labeling of hematopoietic cells: stem cells and cell lines   总被引:4,自引:0,他引:4  
Studies using chronic in vivo BrdU exposure, isolating primitive stem cells, and determining BrdU labeling, indicate that stem cells cycle. BrdU is also incorporated into DNA during damage/repair. DNA, which has incorporated BrdU due to cycle transit is heavier than normal, while the density of DNA with damage/repair incorporation is intermediate. DNA density of purified lineage-rhodamine low (rho(low)) Hoechst low (Ho(low)) stem cells or FDC-P1 cell line cells-was assessed in vitro, after exposure to cytokines and BrdU (cycling model) or cytokines and BrdU with bleomycin to induce strand breaks and hydroxyurea to halt cycle progression (damage/repair model). We determined DNA density using cesium chloride (CsCl) gradients and either fluorometry or dot blot chemiluminesence. DNA from BrdU labeled cycling Lin-rho(lo)Ho(lo) or FDC-P1 cells was heavier than normal DNA, while damage repair DNA had an intermediate density. We then assessed BrdU labeling of Lin-rho(lo)Ho(lo) cells in vivo. We found that 70.9% of lin-rho(lo)Ho(lo) cells labeled at 5 weeks. DNA density of these cells was low, in the damage/repair range, but similar results were obtained with stem cells, which had proliferated in vivo. Dilution of BrdU in in vitro culture of proliferating FDC-P1 cells also resulted in damage/repair density. We conclude that in vitro BrdU labeling models can distinguish between proliferation and damage/repair, but that we cannot obtain high enough in vivo levels to address this issue. All together, while we cannot absolutely exclude damage/repair as contributing to stem cell BrdU labeling, the data indicate that primitive bone marrow stem cells are probably a cycling population.  相似文献   

13.
We examined the biophysical characteristics of the interaction of Hoechst 33258 and 33342 dyes with normal rat colorectal cells as functions of fixation and solution composition. Classical dye-binding techniques were used to investigate the stoichiometry and binding constants with whole cells, and quantitative fluorescence image analysis was used to specifically study nuclear dye binding in intact cells. In aqueous solution, H-33258 dye bound cooperatively with intact cells, with a binding constant of between 3-4 x 10(5). In ethanolic solution, binding appeared less cooperative, although Scatchard analysis could not be used. The binding constant was slightly lower (2 x 10(5)), but the total number of cell binding sites was decreased by a factor of 5, reflecting a great decrease in cytoplasmic sites. QFIA studies identified conditions optimal for DNA quantitation under which the fluorescence signal was independent of dye or cell concentration. The proportionality between absolute nuclear fluorescence intensity and DNA content was established, and the upper limit of DNA content of normal colorectal cells was also determined.  相似文献   

14.
The denaturation behaviour of DNA-protein complexes in metaphase chromosomes in suspension was analysed in situ by Hoechst 33258 fluorescence. The results indicate that due to the stability of the dye molecule and the product of the molecular extinction coefficient and the quantum yield at different temperatures, Hoechst 33258 is a suitable probe for the detection of double-stranded DNA. Thus, it is possible to monitor the concentration of double-stranded DNA in a suspension by measuring the total fluorescence intensity. The fluorescence denaturation profiles of DNA (calf thymus) were found to be comparable to absorption measurements. The decrease in fluorescence of metaphase chromosomes in suspension with increasing temperature may therefore be used to detect conformational changes of DNA in situ.  相似文献   

15.
Characterization of neurosphere cell phenotypes by flow cytometry   总被引:14,自引:0,他引:14  
BACKGROUND: Neural stem cell research regularly utilizes neurosphere cultures as a continuous source of primitive neural cells. Results from current progenitor cell assays show that these cultures contain a low number of neural progenitors. Our goal is to characterize neurosphere cultures and define subpopulations in order to purify neural progenitor cells. METHODS: Cells from embryonic mouse neurosphere cultures were stained with Hoechst 33342 and analyzed by flow cytometry. Subpopulations were sorted based on their relative fluorescence intensity in the blue and red regions of the spectrum. Individual sorted subpopulations were reanalyzed after 7 days in culture. RESULTS: Neurosphere cultures contain a relatively high number of cells that stain weakly with Hoechst 33342. This subpopulation is present when cultured as an entire batch in the presence of epidermal growth factor (EGF). When cultured separately, this subpopulation gives rise to a neurosphere population with essentially the same characteristics as freshly isolated embryonic mouse brain cells but contains substantially fewer weakly Hoechst-stained cells. CONCLUSIONS: Similar to hemopoietic systems, neurosphere cultures contain a subpopulation that can be characterized by a low emission of Hoechst fluorescence. When cultured separately, this subpopulation gives rise to a phenotype similar to freshly isolated, uncultured neural cells.  相似文献   

16.
The optical absorption and fluorescence characteristics of 4-6-diamidino-2-phenylindole (DAPI) with DNA and chromosomes were studied. There is a decrease in extinction coefficient and shift in the absorption spectra to a higher wavelength when the dye binds to DNA. The fluorescence of DAPI is enhanced by both A-T and G-C base-pairs. The enhancement by A-T rich is significantly greater than by G-C rich DNA. The dye produces a localized bright fluorescence in centromeric regions of mouse chromosomes and the constrictions of human chromosomes 1 and 16; these regions are known to contain A-T rich DNA and show dull fluorescence when treated with quinacrine. This dye may be useful for identifying A-T rich region in chromosomes. The fluorescence of DAPI bound to polynucleotides or chromosomes is partially quenched by the introduction of BrdU. This suppression of dye fluorescence allows optical detection of sister chromatid exchanges and chromosome region containing DNA with an unequal distribution of thymidine between polynucleotide chains after BrdU incorporation.  相似文献   

17.
Repair-proficient murine fibroblasts transfected with the denV gene of bacteriophage T4 repaired 70-80% of pyrimidine dimers within 24 h after exposure to 150 J/m2 ultraviolet radiation (UVR) from an FS-40 sunlamp. Under the same conditions, control cells repaired only about 20% of UVR-induced pyrimidine dimers. After UVR exposure, both control and denV-transfected cells exhibited some degree of DNA-synthesis inhibition, as determined by flow cytometric analysis of cell-cycle kinetics in propidium iodide-stained cells. DenV-transfected cells had a longer and more profound S phase arrest than control cells, but both control and denV-transfected cells had largely recovered from UVR effects on cell-cycle kinetics by 48 h after UVR exposure. Inhibition of DNA synthesis by UVR was also measured by determining post-UVR incorporation of bromodeoxyuridine (BrdU). The amount of BrdU incorporated was quantitated by determining with flow cytometry the quenching of Hoechst dye 33342 by BrdU incorporated in cellular DNA. DenV-transfected cells showed more marked inhibition of BrdU incorporation after low fluences of UVR than control cells. Differences between denV-transfected and control cells in cell-cycle kinetics following UVR exposure may be related to differences in mechanisms of repair when excision repair of pyrimidine dimers is initiated by endonuclease V instead of cellular repair enzymes.  相似文献   

18.
A flow cytometric analysis of DNA structural changes induced by cleavage with nucleases was performed on isolated HeLa nuclei by assessing changes in stainability with the DNA-specific fluorochrome propidium iodide (PI). After mild digestion with DNAse I, micrococcal nuclease, or with the single-strand-specific S1 and Neurospora crassa nucleases, fluorescence intensity of nuclei stained with PI increased by about 15-30% above the value of undigested control samples. No significant modifications were observed with the restriction enzymes Eco RI, Alu I, and Not I. The DNAse I-induced increase in fluorescence intensity was also observed with the non-intercalating dye Hoechst 33258, but not with mithramycin. Nuclease-induced fluorescence intensity changes as determined with PI were found to be dependent on the dye concentration. A constant increase (about 20%) was measured at dye/DNA-P ratios greater than 0.11. Below this value (2 micrograms/ml PI), the fluorescence intensity of digested samples was 15-30% lower than that of undigested controls. This behaviour towards intercalating dyes is similar to that of the relaxed (nicked) vs. the supercoiled (intact) form of circular DNA. These results suggest that conformation- but not sequence-specific nucleases induce a relaxation of DNA supercoils.  相似文献   

19.
We report that, in commonly used DNA fragmentation assays, polyamines and the radioprotective aminothiol WR1065 artifactually depress the degree of spontaneous or induced cellular apoptosis in two distinct ways. Firstly, in assays utilizing Hoechst 33258 dye to measure apoptotic DNA, both amines quench the fluorescence of low affinity dye/DNA binding resulting in preferential underestimation of DNA in the apoptotic DNA fraction and a resultant underestimation of the extent of DNA fragmentation. Secondly, these amines can cause aggregation and condensation of apoptotic DNA, causing anomalous sedimentation under conditions universally employed to separate apoptotic from intact DNA in cell lysates. This anomalous sedimentation of apoptotic DNA leads to underestimation of fragmentation in fluorescence assays as well as in agarose gel assays. We demonstrate that manipulation of the ionic strength of the lysis buffer or lowering the dye concentration ameliorates the effects of dye quenching in the Hoechst assay. Alternatively, this effect is alleviated by substituting DAPI for Hoechst in this assay. Inclusion of a polyanion to the lysis buffer antagonizes the condensation and anomalous sedimentation of apoptotic DNA observed regardless of which dye is used in the assay. These studies call into question the validity of previously reported studies suggesting that polyamines and the radioprotective aminothiol, WR1065, inherently suppress the apoptotic process and underline the need to consider alternative endpoints of apoptosis such as morphology in order to assess effects on cellular apoptosis of exogenously added agents, particularly di- or polycations.  相似文献   

20.
The authors studied accumulation of the fluorescent probe Hoechst 33258 in leukemia P 388 sensitive (P 388/0) and resistant to doxorubicin (P 388/DOX) cells. It was shown that intensity of fluorescence of the dye increased after binding with nuclear DNA during 25 min for both lines of the cells. Intensity of fluorescence was 40% greater in sensitive than resistant cells. If Triton X-100 was added no difference between two lines of the cell was observed. When doxorubicin was added to the cells with dye, the intensity of fluorescence decreased. It was suggested to use Hoechst 33258 for assessment extent doxorubicin accumulation in nuclei of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号