首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Heart rate (HR) and mean arterial blood pressure (BP) were recorded from conscious, chair-restrained squirrel monkeys surgically prepared with chronically indwelling arterial and venous catheters to determine the effects of acute intravenous injections of two opiate antagonists and an agonist. Naloxone (0.3–10.0 mg/kg) or naltrexone (0.3–10.0 mg/kg) had little effect on HR or BP during a 30-minute post-injection period. Morphine (3.0–5.6 mg/kg) produced biphasic effects comprising an initial decrease followed by an increase in HR, and an increase followed by a decrease in BP. Lower morphine doses had lesser effects during a 100-minute post-injection period. Pre-treatment with 0.03 mg/kg naloxone attenuated the depressive effect of morphine on HR and BP, but increases in HR and BP due to morphine were enhanced. Pretreatment with 0.3 mg/kg naloxone prevented morphine-induced decreases in HR and BP, yet increases in HR and BP persisted. In previous behavioral studies, morphine in combination with naloxone similarly increased rates of responding in the squirrel monkey. Together, these data suggest an effect of naloxone that goes beyond mere pharmacological antagonism of the effects of morphine.  相似文献   

2.
Systemically administered beta-endorphin was tested in rats for its ability to modify the hypothermia and hypermotility induced by d-amphetamine. Colonic temperature and motor activity were measured in a cold (4°C) ambient temperature in animals given IP injections of beta-endorphin (0.1, 1.0, or 3.0 mg/kg), naloxone (10 mg/kg), or morphine (30 mg/kg). The same measurements were taken in animals given beta-endorphin (1.0 mg/kg) in combination with naloxone or saline pretreatment and d-amphetamine (15 mg/kg) or saline post-treatment. Morphine alone had a biphasic effect on thermoregulation, but did not affect d-amphetamine-induced hypothermia. Activity scores were decreased by morphine, in both d-amphetamine and saline treated animals. The thermal response of rats to beta-endorphin alone was variable, depending on dosage, but all 3 dosages partially blocked the hypothermic effect of d-amphetamine. Naloxone blocked the thermal effects of both beta-endorphin and d-amphetamine. Motor activity tended to be decreased by naloxone, regardless of amphetamine treatment, but beta-endorphin tended to increase activity in amphetamine-treated animals and reduce it in saline-treated controls. In their actions on both thermoregulation and activity, naloxone and beta-endorphin appeared to interact independently with d-amphetamine, often producing effects in the same direction, but in combination, they tended to be mutually inhibitory.  相似文献   

3.
The effects of nimodipine on the cocaine-induced alterations in blood pressure, heart rate, and plasma catecholamines were studied in the squirrel monkey. Cocaine in intravenously administered doses of 0.5, 1, and 2 mg/kg produced significant increases in blood pressure and significant decreases in heart rate. These cardiovascular changes were associated with transient episodes of arrhythmias and with significant increases in plasma concentrations of dopamine, epinephrine, and norepinephrine. Nimodipine, 1 micrograms/kg/min for 5 min administered intravenously 5 min after cocaine, corrects the cardiovascular and plasma catecholamine concentration changes induced by this alkaloid. The same dose of nimodipine administered 5 min before cocaine prevents elevations of blood pressure. Plasma catecholamine increments are also prevented except for the highest dose of cocaine. Cardiovascular changes induced by cocaine administration in the squirrel monkey are temporally associated with significant increments in plasma catecholamines. Administration of nimodipine prevents or minimizes these endocrine and physiologic changes.  相似文献   

4.
The discriminative effects of cyclorphan were studied in pigeons trained to discriminate 0.32 mg/kg ethylketazocine, 1.8 mg/kg cyclazocine, or 32 mg/kg naltrexone from saline. A fourth group of pigeons was administered 100 mg/kg/day morphine and trained to discriminate 0.1 mg/kg naltrexone from saline. Cyclorphan produced dose-related ethylketazocine-appropriate responding that reached a maximum of 83% of the total session responses at 0.3 mg/kg. Higher cyclorphan doses produced less ethylketazocine-appropriate responding. In pigeons trained to discriminate cyclazocine from saline, maximum drug-appropriate responding of greater than 90% occured at 5.6–10.0 mg/kg cyclorphan. In narcotic-naive pigeons trained to discriminate 32 mg/kg naltrexone from saline, cyclorphan produced a maximum of less than 50% drug-appropriate responding. In contrast, in pigeons chronically administered morphine and trained to discriminate 0.1 mg/kg naltrexone from saline, 1.0 mg/kg cyclorphan resulted in 100% drug-appropriate responding. In pigeons responding under a multiple fixed-interval, fixed-ratio schedule of food delivery, cyclorphan produced a complete dose-related reversal of the rate-decreasing effects of 10 mg/kg morphine, the maximally effective antagonist doses being 1.0–3.2 mg/kg. Higher cyclorphan doses (10 mg/kg) resulted in response rate decreases that were not reversed by naloxone (1 mg/kg). Thus, cyclorphan has discriminative effects that are similar to those of both ethylketazocine and, at 20-fold higher doses, cyclazocine. In addition, in morphine-treated pigeons, cyclorphan, across the same range of doses that produce ethylketazocine-appropriate responding, has discriminative effects that are similar to those of naltrexone, an effect that is probably related to the antagonist action of the drug.  相似文献   

5.
Hemodynamic (blood pressure and heart rate) responses of conscious drug-naive rats were studied following intravenous (i.v.) infusion of sterile saline, morphine sulphate, and then naloxone hydrochloride, as well as of other groups previously injected with morphine sulphate. Those groups chronically given morphine sulphate received twice daily injections of morphine sulphate (5 mg/kg, s.c. per injection) for 3 or 6 days before testing with the i.v. infusion of morphine sulphate. Drugs were infused (135 microL/min) through an indwelling femoral venous catheter via a Harvard infusion pump, and blood pressure was recorded from the abdominal aorta via a femoral arterial catheter. Other pretreatment studies were done to determine the receptor mechanisms mediating the blood pressure responses of drug-naive and chronic morphine-treated rats, whereby equimolar doses (0.32 mumol) of specific receptor antagonists were given as a bolus i.v. injection 5 min after saline but before subsequent infusion with morphine sulphate. Intravenous infusion of morphine sulphate (7.5 mg/kg total over 15 min) to drug-native rats caused a transient but precipitous fall in mean arterial pressure and mean heart rate with an associated rise in mean pulse pressure; these effects were blocked in other groups pretreated with atropine. Interestingly, however, rats chronically injected with morphine sulphate for 3 days previously evoked a transient pressor response when subsequently infused i.v. with morphine sulphate, actions that were blocked in other groups when pretreated i.v. with 0.32 mumol of phentolamine, yohimbine, prazosin, or guanethidine. A greater and persistent pressor response occurred following morphine infusion to groups of rats previously injected over 6 days with morphine sulphate, which was associated with tachycardia during the later stages of the 15-min morphine sulphate infusion period. The prolonged pressor and tachycardic responses of this 6-day chronically injected group were completely blocked in another group pretreated i.v. with both phentolamine and propranolol (0.32 mumol). The results suggest that morphine sulphate infusion to conscious, drug-naive rats evokes classical hypotensive effects due to decreases in mean heart rate caused by activation of parasympathetic vagal activity. With 3 or 6 days of chronic morphine sulphate administration beforehand, subsequent i.v. infusion of morphine sulphate evoked pressor actions felt to be caused by a progressive activation of the sympathetic nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
T.D. Giles  G.E. Sander 《Peptides》1983,4(2):171-175
Leucine-enkephalin (Leu5-ENK) (35 μg/kg) increased heart rate and mean systemic arterial blood pressure following intravenous injection into chronically-instrumented, conscious dogs. Repeated injections at five-minute intervals were not associated with a diminished response. Naloxone (1 mg/kg) pre-treatment inhibited both heart rate and blood pressure increases. Prazosin (1 mg/kg) attenuated the increase in blood pressure but did not influence the heart rate response. Propranolol (1 mg/kg) attenuated the heart rate response but not the pressor response. Clonidine (30 μg/kg) attenuated the positive chronotropic effect of Leu5-ENK. Atropine (1 mg/kg) plus propranolol (1 mg/kg) blocked the heart rate response but the pressor effect was still present. The attenuation of the heart rate response by propranolol and the pressor response by prazosin suggests an adrenergic component to the enkephalin response; the reduction in the heart rate response by clonidine and atropine-propranolol indicates a role for cholinergic mechanisms in the chronotropic response. Hexamethonium (10 mg/kg) blocked the heart rate response and markedly inhibited the pressor response. Vagal interruption attenuated both heart rate and blood pressure responses. It is concluded that intravenous Leu5-ENK stimulates afferent pathways located in fibers which are contained in the vagosympathetic trunk to reflexly increase heart rate and blood pressure.  相似文献   

7.
Beta-endorphin is an endogenous opioid peptide that has been hypothesized to be involved in the behavioral effects of drugs of abuse including psychostimulants. Using microdialysis, we studied the effect of cocaine on extracellular levels of beta-endorphin in the nucleus accumbens, a brain region involved in the reinforcing effects of psychostimulant drugs. Experimenter-delivered cocaine (2 mg/kg, i.v.) increased extracellular beta-endorphin immunoreactive levels in the nucleus accumbens, an effect attenuated by 6-hydroxy-dopamine lesions or systemic administration of the D1-like receptor antagonist, SCH-23390 (0.25 mg/kg, i.p.). The effect of cocaine on beta-endorphin release in the nucleus accumbens was mimicked by a local perfusion of dopamine (5 microm) and was blocked by coadministration of SCH-23390 (10 microm). Self-administered cocaine (1 mg/kg/infusion, i.v.) also increased extracellular beta-endorphin levels in the nucleus accumbens. In addition, using functional magnetic resonance imaging, we found that cocaine (1 mg/kg, i.v.) increases regional brain activity in the nucleus accumbens and arcuate nucleus. We demonstrate an increase in beta-endorphin release in the nucleus accumbens following experimenter-delivered and self-administered cocaine mediated by the local dopaminergic system. These findings suggest that activation of the beta-endorphin neurons within the arcuate nucleus-nucleus accumbens pathway may be important in the neurobiological mechanisms underlying the behavioral effects of cocaine.  相似文献   

8.
The potential involvement of D1 and D2 dopamine receptors in the effects of cocaine on cardiovascular function in squirrel monkeys was evaluated. A low dose of cocaine (0.1 mg/kg i.v.) produced increases in both blood pressure and heart rate. At the higher doses of cocaine (1.0-3.0 mg/kg) the heart rate response was biphasic, consisting of an early decrease followed by an increase in heart rate 10-20 min following injection. The dopamine D2 antagonist haloperidol (0.1 mg/kg i.m.) attenuated the heart rate increasing effect of cocaine, but doses as high as 0.03 mg/kg did not alter the blood pressure increase. The D1 antagonist SCH 23390 (0.01-0.03 mg/kg i.m.) did not attenuate either the blood pressure or heart rate increasing effects of cocaine. The D2 agonist quinpirole (1.0 mg/kg i.v.) produced increases in heart rate similar to cocaine, with little effect on blood pressure. Although effective against the heart rate increasing effect of cocaine, haloperidol (0.01 mg/kg) did not antagonize the heart rate increasing effects of quinpirole. The D1 agonist SKF 38393 (3.0 mg/kg i.v.) decreased heart rate and increased blood pressure. The blood pressure increasing effect of SKF 38393 was antagonized by 0.01 mg/kg SCH 23390. Haloperidol's ability to partially antagonize the tachycardiac response to cocaine suggests the involvement of D2 receptors in that response. However, the failure of haloperidol to antagonize quinpirole's tachycardiac effect suggests that non-dopaminergic mechanisms may also be involved in haloperidol's antagonism of cocaine's tachycardiac effect. The pressor effects of cocaine do not appear to be controlled by selective dopamine receptors.  相似文献   

9.
L F Jones  R L Tackett 《Life sciences》1990,46(10):723-728
The present study was designed to determine the central effects of cocaine on heart rate and blood pressure in Wistar Kyoto rats (WKY) and to evaluate mechanisms involved in the response. Cocaine (0.025-4 mg/kg) was administered to unanesthetized, unrestrained rats via a cannula placed into the lateral ventricle. Procaine (0.1 and 4 mg/kg) was also administered centrally. Cocaine did not significantly alter blood pressure at doses of 0.025, 0.1, or 0.5 mg/kg, icv. Only the highest dose, 4 mg/kg, icv produced a significant pressor response. Cocaine produced significant dose-dependent tachycardia, with the maximum increase in heart rate occurring within 5 min. Procaine (4 mg/kg, icv) produced tachycardia, but the effect was significantly less than that produced by cocaine (4 mg/kg, icv). Cocaine also produced tachycardia at a dose of 0.1 mg/kg, but procaine did not significantly alter heart rate at the same dose. Central phentolamine pretreatment (0.1 mg/kg, icv) significantly attenuated the increase in heart rate produced by cocaine. These results indicate that the centrally mediated tachycardia produced by cocaine is partly due to its local anesthetic activity and to indirect stimulation of alpha receptors.  相似文献   

10.
The effects of naloxone and morphine on mean arterial blood pressure (MBP) and heart rate (HR) responses to angiotensin II (AII) were studied in conscious cynomolgus monkeys. Graded doses of AII (0.3, 1 and 3 micrograms/min for 8-10 min) were infused i.v. 20 min apart, preceded by an i.v. injection of either naloxone (1, 3 or 10 mg/kg), morphine (0.3, 1 or 3 mg/kg) or saline. Pretreatment with naloxone (10 mg/kg) attenuated the pressor response to AII (0.3 or 1 microgram/min) by 25-50% but did not alter similar pressor responses to phenylephrine. Pretreatment with morphine had little or no effect on MBP or HR responses to AII.  相似文献   

11.
The chronotropic responses to angiotensins I and II (5 micrograms in 1 mL Tyrode's solution) injected into the sinus node artery were assessed before and after the intravenous administration of captopril (2 mg/kg) and saralasin (20 micrograms/kg) in anaesthetized dogs. The effects of angiotensin II given intravenously were also observed. The animals (n = 8) were vagotomized and pretreated with propranolol (1 mg/kg, i.v.) to prevent baroreceptor-mediated responses to increases in blood pressure. Injection of angiotensin I into the sinus node artery induced significant increases in heart rate (114 +/- 6 vs. 133 +/- 6 beats/min) and in systemic systolic (134 +/- 13 vs. 157 +/- 14 mmHg; 1 mmHg = 133.3 Pa) and diastolic (95 +/- 10 vs. 126 +/- 13 mmHg) blood pressures. Similar results were obtained when angiotensin II was injected into the sinus node artery, but intravenous injection induced changes in systolic (138 +/- 8 vs. 180 +/- 25 mmHg) and diastolic (103 +/- 8 vs. 145 +/- 20 mmHg) blood pressures only. Captopril induced a significant decrease in systolic (118 +/- 11 vs. 88 +/- 12 mmHg) and diastolic (84 +/- 9 vs. 59 +/- 9 mmHg) blood pressures without affecting the heart rate (109 +/- 6 vs. 106 +/- 6 beats/min). Saralasin produced a significant increase in systolic (109 +/- 7 vs. 126 +/- 12 mmHg) blood pressure only. Increments in heart rate and systolic and diastolic blood pressures in response to angiotensins I and II were, respectively, abolished by captopril and saralasin. It was concluded that angiotensin II has, in vivo, a direct positive chronotropic effect that can be blocked by saralasin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
X Z Khawaja  I C Green 《Peptides》1991,12(2):227-233
Intraperitoneal administration of beta-endorphin (1 mg/kg) to ob/ob mice doubled fasting plasma insulin concentrations within 30 min, while plasma glucose concentrations were unaltered. In lean mice, beta-endorphin failed to alter plasma insulin or glucose responses. In glucose-loaded ob/ob mice, beta-endorphin (1 mg/kg) reduced insulin levels at 40 min, and delayed glucose disposal. A lower dose of beta-endorphin (0.1 mg/kg) decreased plasma insulin at 90 min, with no effect on plasma glucose disposal. In lean mice, only the higher dose of beta-endorphin suppressed the glucose-stimulated rise in plasma insulin concentrations, without affecting plasma glucose. Beta-endorphin's actions were blocked by naltrexone and could not be mimicked by N-acetyl-beta-endorphin. Beta-endorphin (10(-8)M) enhanced insulin release from isolated ob/ob and lean mouse islets incubated in medium containing 6 mM glucose, but inhibited release when 20 mM glucose was present. These effects were naloxone reversible. The results indicate that 1) ob/ob mice display a greater magnitude of response in vivo to beta-endorphin's actions on insulin release compared with lean mice, 2) high concentrations of beta-endorphin exacerbate glucose disposal in ob/ob mice. 3) the prevailing glucose concentration is an important determinant of whether beta-endorphin's effects on insulin release will be stimulatory or inhibitory and 4) these actions are mediated via opiate receptors.  相似文献   

13.
The effect on systolic blood pressure and heart rate of the acute and chronic intraperitoneal (i.p.) administration of d- and dl-propranolol was investigated on unanesthetised spontaneously hypertensive rats. The effect of naloxone on the propranolol induced hypotension was also studied to test the hypothesis that the antihypertensive effect of propranolol involves the release of an endogenous opiate. On i.p. administration, 3 mg/kg d-propranolol was inactive; 3 and 30 mg/kg dl-propranolol decreased blood pressure and heart rate in a dose-dependent manner. When the rats were pretreated with 2 mg/kg naloxone i.p., the effect of propranolol on the blood pressure was nearly completely abolished, while that on the heart rate was only partially blocked. Chronic administration of dl-propranolol (30 mg/kg b.i.d.) to spontaneously hypertensive rats from the age of 6 weeks (prehypertensive phase) for 29 days prevented the development of hypertension while the rats treated with physiological saline for 29 days (control group) developed hypertension. Naloxone (2 mg/kg i.p.) administered on the 29th day to chronically treated rats induced a reversal of the propranolol action on systolic blood pressure and heart rate, i.e., blood pressure and heart rate increased. Naloxone had no such effect in the control group. We suggest that the release of an endogenous opioid contributes to the acute and chronic antihypertensive action of i.p. propranolol in spontaneously hypertensive rats and that the secretion of endogenous opioids participating in the control of cardiovascular functions is influenced by adrenergic mechanisms.  相似文献   

14.
The cardiovascular and thermoregulatory effects of intrahypothalamically (preoptic/anterior hypothalamus) and intravenously injected arginine vasotocin (AVT) and [Val5]angiotensin II (ANG II) were measured at 2 degrees C in the pigeon (Columba livia). In addition, the effects of intrahypothalamic and intravenous injections of AVT on respiratory rates were measured at 10-15 degrees C. Intrahypothalamic and intravenous AVT (500 ng and 20 micrograms/kg, respectively) reduced shivering and body temperature but had no effects on blood pressure, heart rate or respiratory rate. Intrahypothalamic (500 ng and 1 microgram) and intravenous (3 micrograms/kg) ANG II elevated blood pressure. If the blood pressure increased slowly, the shivering and body temperature also increased, whereas a rapid rise in blood pressure inhibited shivering and lowered body temperature. Intravenous ANG II produced tachycardia but intrahypothalamic ANG II did not affect the heart rate.  相似文献   

15.
Effects of intravenous beta-endorphin on body temperature and body weight loss were studied in naive and morphine-dependent mice. beta-Endorphin at doses 2.6-25.5 mg/kg injected intravenously caused hyperthermia in naive mice as well as in morphine-dependent mice. In addition, beta-endorphin and morphine reduced body-weight loss during the morphine withdrawal.  相似文献   

16.
Larry D. Byrd 《Life sciences》1980,27(11):935-942
Heart rate (HR), mean arterial blood pressure (BP) and core temperature (TEMP) were recorded from conscious, chair-restrained squirrel monkeys surgically prepared with chronically indwelling arterial and venous catheters to determine the effects of acute intravenous injections of methohexital and secobarbital. Methohexital (0.3–17.0 mg/kg) and secobarbital (1.0–30.0 mg/kg) decreased HR, BP and TEMP in a dose-dependent manner. Methohexital resulted in a greater decrease in blood pressure than secobarbital, but the latter caused greater decreases in heart rate and temperature. The duration of all effects of methohexital was substantially briefer than the effects of secobarbital at the higher doses studied. The data show that these two barbiturates differ not only in duration of action but also in the magnitude of effect on cardiovascular activity in the squirrel monkey.  相似文献   

17.
In this study, a model of the clonidine withdrawal syndrome in normotensive rats was used to investigate the mechanisms and sites of the cardiovascular responses associated with this withdrawal. Clonidine (400 micrograms.kg-1.day-1), an alpha 2-adrenergic receptor agonist, was administered to rats via indwelling osmotic minipumps for 7 days. Withdrawal was precipitated by an intravenous injection of the alpha 2-adrenergic receptor antagonist yohimbine under alpha-chloralose anaesthesia, and the blood pressure and heart rate responses were recorded. Yohimbine (0.25, 0.50, and 1.0 mg/kg i.v.) in clonidine-treated rats provoked an immediate rise in blood pressure and heart rate. Similar injections in saline-treated rats produced slight hypotension and modestly increased the heart rate. Intracerebroventricular (i.c.v.) yohimbine injection (30 or 120 micrograms/kg in 10 microL volume) failed to elicit signs of withdrawal in clonidine-treated animals, but a subsequent intravenous injection of yohimbine (0.5 mg/kg) provoked brisk signs of withdrawal. hexamethonium (2 mg/kg) pretreatment did not abolish the increase in the heart rate, but it delayed the blood pressure increase. Pretreatment with atropine sulfate (1 mg/kg) did not block the yohimbine-induced increase in heart rate or blood pressure. This study demonstrates that yohimbine can effectively produce cardiovascular signs of withdrawal in rats chronically exposed to clonidine. The lack of i.c.v. yohimbine suggests that the antagonist-precipitated withdrawal may not have a central origin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
J M Witkin  J E Barrett 《Life sciences》1985,37(17):1587-1595
The selective benzodiazepine receptor antagonist, Ro 15-1788, produced behavioral effects in pigeons at doses at least 100 times lower than those previously reported to possess intrinsic pharmacological activity in mammals. In contrast to its effects in mammalian species, in pigeons, Ro 15-1788 does not exhibit partial agonist activity. Key-peck responses of pigeons were studied under a multiple fixed-interval 3-min, fixed-interval 3-min schedule in which the first response after 3-min produced food in the presence of red or white keylights. In addition, every 30th response during the red keylight produced a brief electric shock (punishment). Under control conditions, punished responding was suppressed to 30% of unpunished response levels. Ro 15-1788 (0.01 mg/kg, i.m.) increased unpunished response rates by 33% without affecting rates of punished responding. Doses of 0.1 to 1.0 mg/kg Ro 15-1788 produced dose-related decreases in both punished and unpunished responding. As is characteristic of other benzodiazepines, midazolam (0.1 and 0.3 mg/kg, i.m.) markedly increased punished responding but had little effect on rates of unpunished responding. Ro 15-1788 antagonized the increases in punished responding and also reversed the rate-decreasing effects of higher doses of midazolam. However, the effectiveness of Ro 15-1788 as a benzodiazepine antagonist was limited by its intrinsic activity: rate-decreasing doses of Ro 15-1788 were unable to completely reverse behavioral effects of midazolam. Midazolam was an effective antagonist of the behavioral effects of Ro 15-1788 (up to 0.1 mg/kg) but midazolam did not influence the rate-decreasing effects of 1.0 mg/kg Ro 15-1788 across a 100-fold dose range. In the pigeon, the behavioral effects of relatively low doses of Ro 15-1788 (0.01-0.1 mg/kg) appear to be related to benzodiazepine receptor mechanisms, whereas other systems appear to be involved in the effects of higher doses.  相似文献   

19.
We evaluated the cardiovascular effects of intravenously (i.v.) and buccally administered dexmedetomidine, a selective alpha2-adrenoceptor agonist. Six healthy male subjects were studied unmedicated and after 2 micro g/kg i.v. or buccal doses of dexmedetomidine, using repeated recordings of ECG and blood pressure. Cardiac parasympathetic activity was estimated by measurements of high-frequency (HF) heart rate variability. Intravenous, but not buccal, dexmedetomidine raised systolic blood pressure by 11 +/- 5 mmHg (mean +/- SEM) and diastolic by 16 +/- 3 mmHg (maxima at 10 min). Later on, both i.v., and buccal dexmedetomidine produced a very similar hypotensive effect: on average, >or=10 mmHg reductions in systolic and diastolic pressure at 3 h. Intravenous dosing was followed by a decline in heart rate (-11 +/- 2 beats/min) accompanied by a trend toward enhanced HF variability (maximal effect at 10 min), which probably reflected baroreflex-mediated parasympathetic efferent neuronal activation. Buccal dexmedetomidine increased significantly the HF variability (maximum at 45 min) without influencing heart rate. We conclude that dexmedetomidine, when administered by a method that avoids concentration peaks, e.g., buccal dosing, can be used to produce a prolonged augmentation of cardiac parasympathetic efferent neuronal activity.  相似文献   

20.
An irreversible beta-adrenergic blocker, bromoacetylalprenololmenthane (BAAM), was administered both peripherally and centrally to turkey poults, Meleagris gallopavo. Peripheral administration of BAAM (60 mg/kg body weight) effected a significant reduction in blood pressure and heart rate. Twenty minutes postinjection, mean blood pressure and heart rate were reduced 34.5 and 24.2%, respectively. Two days later, mean blood pressure values remained significantly depressed at 17.3% below preinjection determinations. Biochemical analysis of heart tissue following peripheral (intraperitoneal) injections of BAAM (60 mg/kg body weight) showed a significant decrease in beta-adrenergic receptors (BAR). Little or no change in the number of BAR in brain tissue was observed. Central (intraventricular) administration of BAAM (0.72 mg/g brain weight) resulted in no change in mean blood pressure or heart rate during a 20 min postinjection period. Biochemical analysis of heart tissue following central injections of BAAM showed little or no change in the number of BAR. There was, however, a significant decrease in the number of BAR in brain tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号