首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 905 enterohemorrhagic Escherichia coli (EHEC) O157:H7 isolates that were recovered from experimentally infected cattle, in addition to the inoculated strain, were analyzed by pulsed-field gel electrophoresis (PFGE). Twelve PFGE profiles other than that of the inoculated strain were observed. We successfully identified five distinct chromosomal deletions that affected the PFGE profiles using whole-genome PCR scanning and DNA sequencing analysis. The changes in PFGE profiles of EHEC O157:H7 isolates after passage through the intestinal tract of cattle were partially generated by deletion of chromosomal regions.Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and hemolytic-uremic syndrome in humans worldwide (18). Cattle are considered the primary reservoir for this pathogen and play a central role in transmission to humans (6). Healthy cattle transiently carry EHEC O157:H7 and shed the bacteria in their feces (5, 7). Human infections have been associated with the consumption of contaminated meat and milk, direct contact with cattle, and the consumption of vegetables, fruits, and water contaminated with cattle manure (6).Because of its high discriminatory power, pulsed-field gel electrophoresis (PFGE) has been widely employed as a molecular typing method in many epidemiological investigations to identify various outbreaks and routes of transmission of EHEC O157:H7 (1, 12, 15, 17). Simpson''s index of diversity (9) was reported to be >0.985 in previous studies (1, 15), supporting the identification of richness (the number of types among isolates) and evenness (the relative distribution of individual strains among the different types) of molecular typing using PFGE.Instability of the PFGE patterns of EHEC O157:H7 isolates has been reported. Changes in PFGE patterns were observed among strains after repeated subculturing and prolonged storage at room temperature (11). Loss of Shiga toxin genes and a large-scale inversion within the genome were identified as genetic events generating changes in PFGE patterns in vitro (10, 13). Shifts in the genotypes of EHEC O157:H7 clinical isolates from patients and cattle have been reported (3, 14). This phenomenon was also observed in EHEC O157:H7 experimental infections of cattle. Spontaneous curing of a 90-kb plasmid resulted in the loss of two restricted fragments from the PFGE profiles of EHEC O157:H7 isolates obtained from experimentally infected cattle (2). The purpose of the present study was to identify the genetic events affecting the PFGE patterns of EHEC O157:H7 after passage through the intestinal tract of cattle, especially for restriction fragments that are >90 kb long.Four 5-month-old Holstein steers were housed individually in climate-controlled biosafety level 2 containment barns in accordance with the guidelines for animal experimentation defined by the National Institute of Animal Health of Japan. The pens had individual floor drains and were cleaned twice daily with water and disinfectant. All animals were healthy and culture negative for EHEC O157:H7 strains, as determined by a previously described technique (2), prior to inoculation.EHEC O157:H7 strain Sakai-215 (12, 23), which was isolated from an outbreak in Sakai, Osaka Prefecture, in 1996 was used for inoculation. This strain harbors the genes encoding Stx1 and Stx2. A spontaneous resistant strain was selected with nalidixic acid in order to facilitate the recovery of this strain from fecal samples. All calves were inoculated using a stomach tube with an exponential-phase culture (109 CFU) of the nalidixic acid-resistant Sakai-215 strain. Fecal samples were collected from the four calves daily for 45 days. Fecal culturing was performed as described previously (2). Eight non-sorbitol-fermenting colonies were selected daily from each animal and identified as EHEC O157:H7 colonies by routine diagnostic methods (25).All animals were clinically normal throughout the experimental period. The EHEC O157:H7-inoculated calves (calves 1 to 4) were culture positive for the organism 24 h after inoculation. Intermittent fecal shedding by the calves was observed until 27, 32, 26, and 39 days postinoculation for calves 1, 2, 3, and 4, respectively (Fig. (Fig.1).1). The numbers of EHEC O157:H7 isolates recovered from calves 1, 2, 3, and 4 were 200, 224, 200, and 281, respectively.Open in a separate windowFIG. 1.Changes in PFGE profiles of EHEC O157:H7 isolates recovered from calves 1 (A), 2 (B), 3 (C), and 4 (D). The absence of a bar indicates that no EHEC O157:H7 was detected. The open horizontal bars under the vertical bars indicate that the eight isolates obtained on a day were obtained from the enrichment culture.A total of 905 recovered isolates in addition to the inoculated strain were used for PFGE analysis. Genomic DNA from each EHEC O157:H7 isolate was prepared using the method of Persing (Mayo Clinic, Rochester, MN) described by Rice et al. (20). Agarose-embedded chromosomal DNA was cleaved with XbaI by following the manufacturer''s instructions. PFGE was performed in a 0.85% megabase agarose gel, using a CHEF DR III apparatus (Bio-Rad Laboratories). The pulse time was increased from 12 to 35 s for 18 h. The PFGE profiles of all of the EHEC O157:H7 isolates recovered from the four calves were compared with that of the inoculated strain. The number of band differences was determined by enumerating the loss and addition of fragments (22).Two hundred eighty-nine isolates had PFGE profiles different from that of the inoculated strain, and 12 distinct PFGE profiles were identified for these isolates (Table (Table1).1). The fact that only one to three band differences were observed for the 12 profiles suggested that these isolates were closely related (22) and were variants of the inoculated strain. In addition, the pens had individual floor drains and were cleaned twice daily with water and disinfectant, which reduced the likelihood of introduction of novel EHEC O157:H7 strains. We designated the PFGE profiles A to L. PFGE profiles A, C, and H were obtained for all four calves and accounted for 30.4% of the 905 isolates recovered. Different PFGE profiles were obtained for all animals at least 2 days postinoculation (Fig. (Fig.1).1). All eight isolates from calf 2 collected on day 15 postinoculation and from calf 3 collected on days 22 and 23 postinoculation had PFGE profiles different from that of the original isolate (Fig. (Fig.1).1). The isolates that had the same PFGE profile as the inoculated strain were detected again later.

TABLE 1.

Temporal distribution of PFGE profiles of EHEC O157:H7 isolates recovered from experimentally infected cattle
PFGE profileNo. of isolates recovered at different times postinoculation from:
Total no. of isolates (%)
Calf 1
Calf 2
Calf 3
Calf 4
1 to 10 days11 to 20 days21 to 27 days1 to 10 days11 to 20 days21 to 30 days31 to 32 days1 to 10 days11 to 20 days21 to 36 days1 to 10 days11 to 20 days21 to 30 days31 to 39 days
Ina63562562465066046559454746616 (68.1)
A1119101372121324410191612181 (20.0)
B11 (0.1)
C132471362776572 (8.0)
D11 (0.1)
E11 (0.1)
F123 (0.3)
G11 (0.1)
H1314133221122 (2.4)
I1113 (0.3)
J11 (0.1)
K112 (0.2)
L11 (0.1)
Total no. of variants (%)b17 (21.3)24 (30.0)15 (37.5)18 (22.5)18 (25.0)22 (30.6)2 (25.0)20 (25.0)34 (42.5)35 (87.5)21 (26.3)27 (37.5)17 (26.6)19 (29.2)289 (31.9)
Open in a separate windowaPFGE profile of inoculated strain Sakai-215.bTotal numbers of isolates having PFGE profiles A to L.Kudva et al. (16) demonstrated that the difference in PFGE profiles between EHEC O157:H7 strains was due to distinct insertions or deletions that contained XbaI sites rather than to single-nucleotide polymorphisms in the XbaI sites themselves. To identify the locations of insertions or deletions in the genome of the EHEC O157:H7 isolates recovered from experimentally infected cattle, whole-genome PCR scanning (WGP scanning) was performed as described previously (19). Briefly, 549 pairs of PCR primers were used to amplify 549 segments covering the whole chromosome of EHEC O157:H7 strain RIMD 0509952, with overlaps of a certain length at every segment end. The inoculated strain (strain Sakai-215) and the strain whose genome was sequenced (RIMD 0509952) were isolated from the same outbreak in Japan in 1996 (23) and had same PFGE profile after XbaI digestion. All primer sequences are available at http://genome.gen-info.osaka-u.ac.jp/bacteria/o157/pcrscan.html. PCR were performed using genomic DNA as the template and long accurate PCR (LA-PCR) kits. The cycling conditions for the LA-PCR included an initial incubation at 96°C for 100 s, followed by 30 cycles of 96°C for 20 s and 69°C for 10 min.Prior to the WGP scanning of the isolates, we scanned an approximately 1.2-Mb region covered by 116 segments (71/72 to 146/147) of the EHEC O157:H7 genome using 24 strains, including inoculated strain Sakai-215, 4 isolates with the same PFGE profile as the inoculated strain, 3 isolates with PFGE profile A, 3 isolates with PFGE profile C, 2 isolates with PFGE profile F, 2 isolates with PFGE profile H, 2 isolates with PFGE profile I, and one isolate each with PFGE profiles B, D, E, G, J, K, and L. The main purpose of this preliminary scanning was to determine the extent of variation in the data for isolates having the same PFGE profiles.As shown in Fig. Fig.2,2, we successfully amplified products that were the expected sizes for 103 of the 116 segments for the 24 strains tested. No amplification in a segment was observed for the 24 strains. Polymorphism (expected amplification was observed in some but not all strains) was observed in 12 segments. Eleven of the 12 polymorphic segments consisted of two different sequentially unamplified regions. An IS629 insertion was also observed in a polymorphic segment in one strain. In other words, variation in the data for isolates with the same PFGE profile was not observed except for the isolates having the same PFGE profile as the inoculated strain. Hence, we performed WGP scanning using one isolate with each of the selected PFGE profiles.Open in a separate windowFIG. 2.Summary of the results of PCR scanning analysis of part of the EHEC O157:H7 genome using 24 strains recovered from experimentally infected cattle. The line at the top indicates data for the inoculated strain. The positions of Sp5 and Sp6 are indicated above the data lines. Segments showing polymorphism (expected amplification was observed in some strains but not in all strains) are indicated below the data lines. In, inoculated strain.The results of WGP scanning of the seven isolates with different PFGE profiles in addition to inoculated strain Sakai-215 are summarized in Fig. Fig.3.3. We successfully amplified products of the expected sizes for 530 of 549 segments for the eight strains tested. No amplification was observed for any of the eight strains for three segments (133.2/133.3, 164.4/164.5, and 164.5/164.6). Polymorphism was observed in 16 segments. Fourteen of the 16 polymorphic segments were located in four different regions.Open in a separate windowFIG. 3.Summary of the results of WGP scanning analysis of the EHEC O157:H7 isolates recovered from experimentally infected cattle and the inoculated strain. The positions of Sp5 and Sp13 are indicated above the data lines. Segments showing polymorphism (expected amplification was observed in some strains but not in all strains) are indicated below the data lines. In, inoculated strain.The 110/110.1-to-110.5/111 region in PFGE profile I, the 122/122.1-to-122.4/123 region in PFGE profile K, and the 199/199.1-to-199.2/200 region in PFGE profiles B, C, and G corresponded to prophages Sp5, Sp6, and Sp13, respectively. The 283/284-to-285/286 region in PFGE profile E and the 448/448.1-to-448.1/448.2 region in PFGE profile B corresponded to nonprophage regions on the chromosome. The sizes of the deletion sites of nonprophage regions 283/284 to 285/286 and 448/448.1 to 448.1/448.2 were 17 kb and 9.5 kb, respectively. We synthesized new primer pairs upstream and downstream of these five regions and performed LA-PCR (data not shown). The results of the sequencing analysis of the products indicated that the three prophage genomes were cured at their integration sites (Fig. 4A to C). It is not clear from this study whether deletion of the three prophages represented phage excisions or simple deletions. We identified short direct CCGCCA and GC repeats at both ends of the 17-kb and 9.5-kb deletion sites, respectively, compared with the sequence data for the Sakai-215 strain, although the deleted regions included one side of the direct repeats (Fig. 5D and E).Open in a separate windowFIG. 4.Schematic diagrams showing the relationships between deletions of chromosomal regions and changes in the sizes of restricted fragments. (A) The 467-kb restricted fragment of PFGE profile I was generated by deletion of prophage Sp5 located in the 530-kb fragments of the inoculated strain. (B) The 759-kb restricted fragment of PFGE profile K was generated by deletion of Sp6 located in the adjacent 530-kb and 278-kb fragments of the inoculated strain. (C) The 291-kb restricted fragment of PFGE profiles C, G, and H was generated by deletion of prophage Sp13 located in the adjacent 255-kb and 55-kb fragments of the inoculated strain. (D) The 188-kb restricted fragment of PFGE profile E was generated by deletion of the 17-kb chromosomal region in the 205-kb fragment of the inoculated strain. (E) The 334-kb restricted fragment of PFGE profile B was generated by deletion of the 9.5-kb region located in the adjacent 343-kb and 6.2-kb fragments of the inoculated strain.Open in a separate windowFIG. 5.Comparison of the PFGE profiles of the EHEC O157:H7 isolates recovered from experimentally infected cattle and the inoculated strain. Lane M, λ ladder used as a size marker; lane 1, inoculated strain; lanes 2 to 13, isolates with PFGE profiles A to L, respectively.The deleted 17-kb region contains 16 open reading frames, including formate hydrogenase-related genes (4), mutS (21), and rpoS (8), suggesting that the strain with PFGE profile E is more susceptible to environmental stresses than the inoculated strain. In fact, the isolate with PFGE profile E was more susceptible to low-pH, high-temperature, and high-osmolarity conditions or to the presence of deoxycholate in vitro than the other isolates obtained in this study (data not shown). The fact that this isolate was obtained 4 days after inoculation from calf 1 and could not be detected after that time suggested that the isolate with PFGE profile E could not survive in the intestine of the calf due to the loss of genes related to stress resistance. The deleted 9.5-kb region contains nine open reading frames whose functions are unknown. The strain with this deletion was isolated 1 day after inoculation from calf 3 and could not be detected after that time.Sp5 is one of the prophages in EHEC O157:H7 RIMD 0509952 carrying the stx2 gene. Deletion of this prophage affected the PFGE profile of inoculated strain Sakai-215. The loss of a 530-kb fragment and the gain of a 467-kb fragment due to deletion of the 63-kb prophage Sp5 were identified in PFGE profile I (Fig. (Fig.4A4A and and55).Sp6 is one of the lambda-like phages and has a single XbaI site in its genome. The loss of 530-kb and 278-kb fragments and the gain of a 759-kb fragment due to deletion of this phage were identified in PFGE profile K (Fig. (Fig.4B4B and and55).Sp13 is one of the P2-like phages that have a single XbaI site in the genome. The loss of 255-kb and 55-kb fragments and the gain of a 291-kb fragment due to deletion of this prophage were identified in PFGE profiles C, G, and H (Fig. (Fig.4C4C and and5).5). The same changes in PFGE profile B were not observed, although we found a sequentially unamplified region in which Sp13 was located in the genomes of isolates with PFGE profile B (Fig. (Fig.3).3). We detected part of the Sp13 sequence by Southern blot analysis; however, this part of the sequence was not detected in isolates with PFGE profiles C, G, and H (data not shown). One possible explanation for this phenomenon is that deletion of part of the Sp13 sequence included deletion of primer annealing sites. However, the details of mutation in this region for the isolates with PFGE profile B are not clear.Deletion of the two nonprophage regions also affected the PFGE profiles. The loss of a 205-kb fragment and the gain of a 188-kb fragment due to deletion of a 17-kb region were identified in PFGE profile E (Fig. (Fig.4D4D and and5).5). The loss of a 343-kb fragment and the gain of a 334-kb fragment due to deletion of a 9.5-kb region were identified in PFGE profile B (Fig. (Fig.4E4E and and55).Two single unamplified segments were both observed in the strain with PFGE profile F (106.3/106.4 and 204.2/204.3). We could not amplify these regions using additional primer pairs (data not shown). Insertion of DNA or large-scale inversion might have occurred in these regions. The other unamplified segments all corresponded to deletion of chromosomal regions. Recombination successfully occurred and cured three prophages and two other chromosomal regions. These data suggest that the changes in PFGE profiles after passage through the intestinal tract of cattle are generated in part by deletion of chromosomal regions. Obviously, deletion of five chromosomal regions does not explain the other changes in the PFGE profiles, including profiles A, D, F, J, and L. The genetic events behind such changes are not clear.Prior to drawing a conclusion, we need to consider the use of nalidixic acid, a potent inducer of bacteriophage induction (24), for selection of the isolates. In addition, most of the EHEC O157:H7 isolates obtained on day 8 postinoculation and later were isolated from enrichment cultures (Fig. (Fig.1).1). The possibility that the culturing process itself affected the deletion events affecting the PFGE profiles cannot be ruled out. Taken together, the results suggest that deletions can cause a single strain to mutate into several variants while it is passing through the gastrointestinal tract of a host, provided that the culture technique used does not contribute to this process. Hence, this study may explain why EHEC O157:H7 isolates with various PFGE profiles can be isolated from a single animal. What causes the deletion mutations and why the PFGE profiles show such patterns after passage through cattle are subjects for future studies.  相似文献   

2.
A total of 236 enterohemorrhagic Escherichia coli (EHEC) O157:H7 isolates in Japan were investigated by bacteriophage typing, and the results were compared with those of pulsed-field gel electrophoresis (PFGE). Seven phage types (PTs) were observed in 71 isolates which were derived from 22 outbreaks. All of the isolates from ten outbreaks in the Kinki region (midwestern part of Japan) in July-August 1996 were grouped into the same PFGE type (IIa) and PT 32, while among total isolates, there were such varieties as PFGE type IIa containing five phage types and PT32 containing two PFGE types. These results suggest that the ten outbreaks should be considered to be a single outbreak, and show that the combined use of bacteriophage typing and PFGE enhances reliability in epidemiological surveys.  相似文献   

3.
Using colony blot hybridization with stx2 and eae probes and agglutination in anti-O157 lipopolysaccharide serum, we isolated stx2-positive and eae-positive sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:NM (nonmotile) strains from initial stool specimens and stx-negative and eae-positive SF E. coli O157:NM strains from follow-up specimens (collected 3 to 8 days later) from three children. The stx-negative isolates from each patient shared with the corresponding stx2-positive isolates fliCH7, non-stx virulence traits, and multilocus sequence types, which indicates that they arose from the stx2-positive strains by loss of stx2 during infection. Analysis of the integrity of the yecE gene, a possible stx phage integration site in EHEC O157, in the consecutive stx2-positive and stx-negative isolates demonstrated that yecE was occupied in stx2-positive but intact in stx-negative strains. It was possible to infect and lysogenize the stx-negative E. coli O157 strains in vitro using an stx2-harboring bacteriophage from one of the SF EHEC O157:NM isolates. The acquisition of the stx2-containing phage resulted in the occupation of yecE and production of biologically active Shiga toxin 2. We conclude that the yecE gene in SF E. coli O157:NM is a hot spot for excision and integration of Shiga toxin 2-encoding bacteriophages. SF EHEC O157:NM strains and their stx-negative derivatives thus represent a highly dynamic system that can convert in both directions by the loss and gain of stx2-harboring phages. The ability to recycle stx2, a critical virulence trait, makes SF E. coli O157:NM strains ephemeral EHEC that can exist as stx-negative variants during certain phases of their life cycle.  相似文献   

4.
5.
Membrane vesicles released by Escherichia coli O157:H7 into culture medium were purified and analyzed for protein and DNA content. Electron micrographs revealed vesicles that are spherical, range in size from 20 to 100 nm, and have a complete bilayer. Analysis of vesicle protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrates vesicles that contain many proteins with molecular sizes similar to outer membrane proteins and a number of cellular proteins. Immunoblot (Western) analysis of vesicles suggests the presence of cell antigens. Treatment of vesicles with exogenous DNase hydrolyzed surface-associated DNA; PCR demonstrated that vesicles contain DNA encoding the virulence genes eae, stx1 and stx2, and uidA, which encodes for β-galactosidase. Immunoblot analysis of intact and lysed, proteinase K-treated vesicles demonstrate that Shiga toxins 1 and 2 are contained within vesicles. These results suggest that vesicles contain toxic material and transfer experiments demonstrate that vesicles can deliver genetic material to other gram-negative organisms.  相似文献   

6.
Using cultivation, immunofluorescence microscopy, and scanning electron microscopy, we demonstrated the presence of viable enterohemorrhagic Escherichia coli O157:H7 not only on the outer surfaces but also in the inner tissues and stomata of cotyledons of radish sprouts grown from seeds experimentally contaminated with the bacterium. HgCl2 treatment of the outer surface of the hypocotyl did not kill the contaminating bacteria, which emphasized the importance of either using seeds free from E. coli O157:H7 in the production of radish sprouts or heating the sprouts before they are eaten.  相似文献   

7.
Isogenic strains of Escherichia coli O157:H7, missing either stx2 or the entire Stx2-encoding phage, were compared with the parent strain for their abilities to colonize sheep. The absence of the phage or of the Shiga toxin did not significantly impact the magnitude or duration of shedding of E. coli O157:H7.  相似文献   

8.
Escherichia coli O157:H7 is a leading cause of food-borne illness. This human pathogen produces Shiga toxins (Stx1 and Stx2) which inhibit protein synthesis by inactivating ribosome function. The present study describes a novel cell-based assay to detect Stx2 and inhibitors of toxin activity. A Vero cell line harboring a destabilized variant (half-life, 2 h) of the enhanced green fluorescent protein (d2EGFP) was used to monitor the toxin-induced inhibition of protein synthesis. This Vero-d2EGFP cell line produced a fluorescent signal which could be detected by microscopy or with a plate reader. However, a greatly attenuated fluorescent signal was detected in Vero-d2EGFP cells that had been incubated overnight with either purified Stx2 or a cell-free culture supernatant from Stx1- and Stx2-producing E. coli O157:H7. Dose-response curves demonstrated that the Stx2-induced inhibition of enhanced green fluorescent protein fluorescence mirrored the Stx2-induced inhibition of overall protein synthesis and identified a picogram-per-milliliter threshold for toxin detection. To establish our Vero-d2EGFP assay as a useful tool for the identification of toxin inhibitors, we screened a panel of plant compounds for antitoxin activities. Fluorescent signals were maintained when Vero-d2EGFP cells were exposed to Stx1- and Stx2-containing medium in the presence of either grape seed or grape pomace extract. The antitoxin properties of the grape extracts were confirmed with an independent toxicity assay that monitored the overall level of protein synthesis in cells treated with purified Stx2. These results indicate that the Vero-d2EGFP fluorescence assay is an accurate and sensitive method to detect Stx2 activity and can be utilized to identify toxin inhibitors.Shiga toxin-producing Escherichia coli, with E. coli O157:H7 as the most common serotype, is an enteric pathogen known to cause human gastrointestinal illnesses ranging from bloody diarrhea and hemorrhagic colitis to life-threatening hemolytic-uremic syndrome (HUS) (1, 20). It has been estimated that E. coli O157 causes approximately 73,000 cases of illness per year in the United States from food- and waterborne sources. Shiga toxins (Stx1 and Stx2) are major virulence factors in E. coli O157 pathogenicity. These toxins inhibit protein synthesis by inactivating the ribosome and are thought to contribute to the development of HUS, a potentially fatal disease for which treatment is currently limited to supportive care (13, 14, 26). Toxin inactivation would prevent the development of HUS, but antitoxin therapeutics are not currently available (26). Detection methods to prevent the distribution of E. coli O157 in foods are thus an important component of food safety programs.The rise in food-related outbreaks of E. coli O157 infection has heightened the importance of developing better methods to rapidly detect and characterize Stxs from E. coli O157 strains (26). Several methods have been developed to examine Stx activity against mammalian cells. Current assays that measure the viability of intoxicated Vero cells require several days of incubation and often produce poor quantitative data (5, 9, 19). Other methods that are more quantitative and sensitive measure the incorporation of radioactive amino acids into newly synthesized proteins (6, 15). However, these radioactivity assays are complex and laborious and allow only a limited number of conditions to be examined. A quantitative luciferase-based assay was recently developed to measure Stx toxicity in a high-throughput format (31), but this system requires several preparatory and processing steps to detect luciferase expression.In the present study, we describe a simple cell-based assay for the detection of Stx2 and inhibitors of toxin activity by using a Vero cell line that expresses a destabilized variant (half-life, 2 h) of the enhanced green fluorescent protein (d2EGFP) to monitor the Stx2-induced inhibition of protein synthesis. This cell-based Vero-d2EGFP assay was used to screen a panel of natural compounds for anti-Stx activities, and we found that grape seed and grape pomace extracts both provided strong cellular protection against Stx2.  相似文献   

9.
Escherichia coli K-12 lysogens of three different Shiga toxin 2 (Stx2)-encoding bacteriophages were examined for variability in their pulsed-field gel electrophoresis (PFGE) fragment patterns. The PFGE fragment patterns could be classified into three types (i.e., PFGE types B, C, and D). For the PFGE type D, a 255-kbp fragment present in the original K-12 strain was apparently shifted by the size of Stx 2-encoding phage genomic DNA (ca. 65 kbp) to the position at 320 kbp. In contrast, the types B and C showed the above fragment shift plus further 6- and 10-fragment differences, respectively, from the original K-12 strain. The evidence suggests that even a single genetic event like lysogeny can cause marked genotypic modification of the host strain. Received: 21 June 2002 / Accepted: 5 July 2002  相似文献   

10.
We investigated the ability of a detoxified derivative of a Shiga toxin 2 (Stx2)-encoding bacteriophage to infect and lysogenize enteric Escherichia coli strains and to develop infectious progeny from such lysogenized strains. The stx2 gene of the patient E. coli O157:H7 isolate 3538/95 was replaced by the chloramphenicol acetyltransferase (cat) gene from plasmid pACYC184. Phage 3538(Δstx2::cat) was isolated after induction of E. coli O157:H7 strain 3538/95 with mitomycin. A variety of strains of enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), Stx-producing E. coli (STEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), and E. coli from the physiological stool microflora were infected with 3538(Δstx2::cat), and plaque formation and lysogenic conversion of wild-type E. coli strains were investigated. With the exception of one EIEC strain, none of the E. coli strains supported the formation of plaques when used as indicators for 3538(Δstx2::cat). However, 2 of 11 EPEC, 11 of 25 STEC, 2 of 7 EAEC, 1 of 3 EIEC, and 1 of 6 E. coli isolates from the stool microflora of healthy individuals integrated the phage in their chromosomes and expressed resistance to chloramphenicol. Following induction with mitomycin, these lysogenic strains released infectious particles of 3538(Δstx2::cat) that formed plaques on a lawn of E. coli laboratory strain C600. The results of our study demonstrate that 3538(Δstx2::cat) was able to infect and lysogenize particular enteric strains of pathogenic and nonpathogenic E. coli and that the lysogens produced infectious phage progeny. Stx-encoding bacteriophages are able to spread stx genes among enteric E. coli strains.  相似文献   

11.
IS1203v is an insertion sequence which has been found in inactivated Shiga toxin 2 genes of Escherichia coli O157:H7. We analyzed the transpositional mechanism of IS1203v in order to investigate whether the Shiga toxin 2 genes inactivated by IS1203v could revert to the wild type. When the transposase activity of IS1203v was enhanced by artificial frameshifting, IS1203v was obviously excised from the Shiga toxin 2 gene in a circular form. The IS1203v circle consisted of the entire IS1203v, but an extra 3-bp sequence (ATC) intervened between the 5′ and 3′ ends of IS1203v. The extra 3-bp sequence was identical to a direct repeat which was probably generated upon insertion. Moreover, we detected the Shiga toxin 2 gene with a precise excision of IS1203v. In the wild-type situation, the transposition products of IS1203v could be observed by PCR amplification. These results show that IS1203v can transpose in a nonreplicative manner and that the Shiga toxin gene inactivated by this insertion sequence can revert to the wild type.  相似文献   

12.
AIMS: To evaluate the presence of Shiga toxin-producing strains of Escherichia coli (STEC) of the O157:H7 serotype in living layer hens so as to analyse the role of this avian species as potential reservoir. METHODS AND RESULTS: Cloacal swabs were collected between November 2004 and November 2005 from four intensive management layer hen farms and analysed for STEC O157:H7 by immunomagnetic separation methods and multiplex polymerase chain reaction for stx1 and/or stx2, the E. coli attaching and effacing (eae) and hly genes. STEC was detected in 26 of the 720 samples. CONCLUSIONS: The layer hens analysed were shown to carry STEC O157:H7. The presence of this bacterium in living layer hen farms investigated did not result in any detectable increase in gastrointestinal disease in this species. SIGNIFICANCE AND IMPACT OF THE STUDY: Living layer hens are a novel potential reservoir of E. coli O157:H7.  相似文献   

13.
Two-dimensional gel electrophoresis (2-DE) was performed to examine exoproteins and periplasmic proteins of Shiga toxin-producing Escherichia coli (STEC) O157:H7 strains isolated from cases associated with radish sprouts in two outbreaks. We found that STEC O157:H7 released a large number of proteins into the medium during the stationary phase of growth, as observed with 2-DE. Although pulsed-field gel electrophoresis (PFGE) patterns of STECs NGY9 (RIMD0509894), a Sakai isolate; NGY33, a Gamagoori isolate; and NGY120, a Kanagawa isolate, were all the same, comparison of 2-DE patterns of exoproteins and periplasmic proteins clarified that NGY9 was distinct from NGY33, whereas NGY33 and NGY120 were of close lineage. We therefore suggest that 2-DE analysis of exoproteins and periplasmic proteins is a powerful epidemiological method with high resolution. Received: 21 August 2000 / Accepted: 9 March 2001  相似文献   

14.
Produce isolates of the Escherichia coli Ont:H52 serotype carried Shiga toxin 1 and stable toxin genes but only expressed Stx1. These strains had pulsed-field gel electrophoresis profiles that were 90% homologous to clinical Ont:H52 strains that had identical phenotypes and genotypes. All Ont:H52 strains had identical single nucleotide polymorphism profiles that are suggestive of a unique clonal group.  相似文献   

15.

Background

Shiga toxin-producing Escherichia coli (STEC) O157:H7 is the causal agent for more than 96,000 cases of diarrheal illness and 3,200 infection-attributable hospitalizations annually in the United States.

Materials and Methods

We defined a confirmed case as a compatible illness in a person with the outbreak strain during 10/07/2011-11/30/2011. Investigation included hypothesis generation, a case-control study utilizing geographically-matched controls, and a case series investigation. Environmental inspections and tracebacks were conducted.

Results

We identified 58 cases in 10 states; 67% were hospitalized and 6.4% developed hemolytic uremic syndrome. Any romaine consumption was significantly associated with illness (matched Odds Ratio (mOR) = 10.0, 95% Confidence Interval (CI) = 2.1–97.0). Grocery Store Chain A salad bar was significantly associated with illness (mOR = 18.9, 95% CI = 4.5–176.8). Two separate traceback investigations for romaine lettuce converged on Farm A. Case series results indicate that cases (64.9%) were more likely than the FoodNet population (47%) to eat romaine lettuce (p-value = 0.013); 61.3% of cases reported consuming romaine lettuce from the Grocery Store Chain A salad bar.

Conclusions

This multistate outbreak of STEC O157:H7 infections was associated with consumption of romaine lettuce. Traceback analysis determined that a single common lot of romaine lettuce harvested from Farm A was used to supply Grocery Store Chain A and a university campus linked to a case with the outbreak strain. An investigation at Farm A did not identify the source of contamination. Improved ability to trace produce from the growing fields to the point of consumption will allow more timely prevention and control measures to be implemented.  相似文献   

16.
Enterohemorrhagic Escherichia coli O157:H7 has evolved into an important human pathogen with cattle as the main reservoir. The recent discovery of E. coli O157:H7-induced pathologies in challenged cattle has suggested that previously discounted bacterial virulence factors may contribute to the colonization of cattle. The objective of the present study was to examine the impact of lineage type, cytotoxin activity, and cytotoxin expression on the amount of E. coli O157:H7 colonization of cattle tissue and cells in vitro. Using selected bovine- and human-origin strains, we determined that lineage type predicted the amount of E. coli O157:H7 strain colonization: lineage I > intermediate lineages > lineage II. All E. coli O157:H7 strain colonization was dose dependent, with threshold colonization at 103 to 105 CFU and maximum colonization at 107 CFU. We also determined that an as-yet-unknown factor of strain origin was the most dominant predictor of the amount of strain colonization in vitro. The amount of E. coli O157:H7 colonization was also influenced by strain cytotoxin activity and the inclusion of cytotoxins from lineage I or intermediate lineage strains increased colonization of a lineage II strain. There was a higher level of expression of the Shiga toxin 1 gene (stx1) in human-origin strains than in bovine-origin strains. In addition, lineage I strains expressed higher levels of the Shiga toxin 2 gene (stx2). The present study supports a role for strain origin, lineage type, cytotoxin activity, and stx2 expression in modulating the amount of E. coli O157:H7 colonization of cattle.Enterohemorrhagic Escherichia coli O157:H7 is a bacterium that causes serious human disease outbreaks through the consumption of contaminated food or water (39). Mature cattle are considered the primary reservoir for E. coli O157:H7 and historically were reported to have no symptoms or pathologies (17, 23, 38); this was attributed both to a lack of receptors for a critical E. coli O157:H7 virulence factor, Shiga toxin 1 (Stx1 [29]), and to a differential expression of type III protein secretion system effector molecules such as EspA, EspD, and Iha (25, 30) in cattle compared to humans. In 2008, it was established for the first time that E. coli O157:H7 causes mild to severe intestinal pathology in persistent shedding cattle (5, 26) and that the secreted cytotoxins enhanced E. coli O157:H7 colonization of intestinal tissues of cattle (6). This suggested that cattle were susceptible to E. coli O157:H7 infection and that previously discounted virulence factors could influence the amount of colonization in cattle.Three distinct E. coli O157:H7 lineages have been identified based on the lineage specific polymorphism assay (LSPA-6) that suggests both the evolutionary history of the strain and their propensity to be present among animals, the environment, and clinical human isolates (21, 22, 24, 33, 40, 42). Typically, two predominant lineages have been described, lineages I and II (22, 40) and, more recently, intermediate lineages that have characteristics of lineage I and/or II have been reported at higher frequency among cattle (34). Although all E. coli O157:H7 lineages have been isolated from feedlot cattle, the predominant recovery of lineage I from clinical human illnesses suggests that this particular lineage type has unique expression patterns that may contribute to its preferential colonization of humans. There is some evidence to suggest that lineage I strains do not express certain virulence factors in bovine hosts, whereas other factors such as cytotoxins are expressed equally irrespective of host (30). One virulence factor associated with all lineages is the bacterium''s ability to form intimate attaching-and-effacing lesions or colonization sites in the ilea of susceptible animals (28). The amount of colonization is enhanced by the expression of Shiga toxin 2 (Stx2) through both an increase in the expression of alternative non-TIR (translocated intimin receptor) colonization sites (31) and toxicity to the absorptive epithelial cells (32). In cattle, attaching-and-effacing lesions are also formed (5), and Stx2 increases colonization but is not cytotoxic to epithelial cells from the jejuna and descending colons of cattle (4). Differential expression of stx2 among E. coli O157:H7 lineages is also linked to the increased pathogenicity of lineage I strains in humans (25), and this may affect cattle similarly. Together, this information suggests that at least some similar virulence factors affecting E. coli O157:H7 colonization in humans also function in cattle.In order to gain a better understanding of the factors modulating E. coli O157:H7 colonization in cattle, we compared the ability of lineage I, lineage II, and intermediate lineages isolated from human sources to colonize the jejunum tissue and a colonic cell line from cattle. We hypothesized that the bovine colonic cell line could be used as a model system to reflect E. coli O157:H7 colonization of tissue. To confirm the value of this model, the role of strain origin in colonization of cattle was examined. In order to understand the differences in colonization associated with lineage and strain origins, we assessed cytotoxin expression, secreted cytotoxin activity, and cytotoxin-induced changes in E. coli O157:H7 colonization. Given the known lack of Stx1 activity in cattle, we examined the effects of LSPA-6 genotype, strain origin (human versus bovine), and cytotoxin activity on E. coli O157:H7 colonization of cattle.  相似文献   

17.
18.
19.
20.
Shiga toxin-converting bacteriophages are involved in the pathogenicity of some enteric bacteria, such as Escherichia coli O157:H7, but data on the occurrence and distribution of such phages as free particles in nature were not available. An experimental approach has been developed to detect the presence of the Shiga toxin 2 (Stx 2)-encoding bacteriophages in sewage. The Stx 2 gene was amplified by PCR from phages concentrated from 10-ml samples of sewage. Moreover, the phages carrying the Stx 2 gene were detected in supernatants from bacteriophage enrichment cultures by using an Stx 2-negative E. coli O157:H7 strain infected with phages purified from volumes of sewage as small as 0.02 ml. Additionally, the A subunit of Stx 2 was detected in the supernatants of the bacteriophage enrichment cultures, which also showed cytotoxic activity for Vero cells. By enrichment of phages concentrated from different volumes of sewage and applying the most-probable-number technique, it was estimated that the number of phages infectious for E. coli O157:H7 and carrying the Stx 2 gene was in the range of 1 to 10 per ml of sewage from two different origins. These values were approximately 1% of all phages infecting E. coli O157:H7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号