首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To date, most Miscanthus trials and commercial fields have been planted on arable land. Energy crops will need to be grown more on lower grade lands unsuitable for arable crops. Grasslands represent a major land resource for energy crops. In grasslands, where soil organic carbon (SOC) levels can be high, there have been concerns that the carbon mitigation benefits of bioenergy from Miscanthus could be offset by losses in SOC associated with land use change. At a site in Wales (UK), we quantified the relatively short‐term impacts (6 years) of four novel Miscanthus hybrids and Miscanthus × giganteus on SOC in improved grassland. After 6 years, using stable carbon isotope ratios (13C/12C), the amount of Miscanthus derived C (C4) in total SOC was considerable (ca. 12%) and positively correlated to belowground biomass of different hybrids. Nevertheless, significant changes in SOC stocks (0–30 cm) were not detected as C4 Miscanthus carbon replaced the initial C3 grassland carbon; however, initial SOC decreased more in the presence of higher belowground biomass. We ascribed this apparently contradictory result to the rhizosphere priming effect triggered by easily available C sources. Observed changes in SOC partitioning were modelled using the RothC soil carbon turnover model and projected for 20 years showing that there is no significant change in SOC throughout the anticipated life of a Miscanthus crop. We interpret our observations to mean that the new labile C from Miscanthus has replaced the labile C from the grassland and, therefore, planting Miscanthus causes an insignificant change in soil organic carbon. The overall C mitigation benefit is therefore not decreased by depletion of soil C and is due to substitution of fossil fuel by the aboveground biomass, in this instance 73–108 Mg C ha?1 for the lowest and highest yielding hybrids, respectively, after 6 years.  相似文献   

2.
The growing of bioenergy crops has been widely suggested as a key strategy in mitigating anthropogenic CO2 emissions. However, the full mitigation potential of these crops cannot be assessed without taking into account their effect on soil carbon (C) dynamics. Therefore, we analyzed the C dynamics through four soil depths under a 14‐year‐old Miscanthus plantation, established on former arable land. An adjacent arable field was used as a reference site. Combining soil organic matter (SOM) fractionation with 13C natural abundance analyses, we were able to trace the fate of Miscanthus‐derived C in various physically protected soil fractions. Integrated through the whole soil profile, the total amount of soil organic carbon (SOC) was higher under Miscanthus than under arable crop, this difference was largely due to the input of new C. The C stock of the macroaggregates (M) under Miscanthus was significantly higher than those in the arable land. Additionally, the C content of the micro‐within macroaggregates (mM) were higher in the Miscanthus soil as compared with the arable soil. Analysis of the intramicroaggregates particulate organic matter (POM) suggested that the increase C storage in mM under Miscanthus was caused by a decrease in disturbance of M. Thus, the difference in C content between the two land use systems is largely caused by soil C storage in physically protected SOM fractions. We conclude that when Miscanthus is planted on former arable land, the resulting increase in soil C storage contributes considerably to its CO2 mitigation potential.  相似文献   

3.
In the UK and other temperate regions, short rotation coppice (SRC) and Miscanthus x giganteus (Miscanthus) are two of the leading ‘second‐generation’ bioenergy crops. Grown specifically as a low‐carbon (C) fossil fuel replacement, calculations of the climate mitigation provided by these bioenergy crops rely on accurate data. There are concerns that uncertainty about impacts on soil C stocks of transitions from current agricultural land use to these bioenergy crops could lead to either an under‐ or overestimate of their climate mitigation potential. Here, for locations across mainland Great Britain (GB), a paired‐site approach and a combination of 30‐cm‐ and 1‐m‐deep soil sampling were used to quantify impacts of bioenergy land‐use transitions on soil C stocks in 41 commercial land‐use transitions; 12 arable to SRC, 9 grasslands to SRC, 11 arable to Miscanthus and 9 grasslands to Miscanthus. Mean soil C stocks were lower under both bioenergy crops than under the grassland controls but only significant at 0–30 cm. Mean soil C stocks at 0–30 cm were 33.55 ± 7.52 Mg C ha?1 and 26.83 ± 8.08 Mg C ha?1 lower under SRC (P = 0.004) and Miscanthus plantations (P = 0.001), respectively. Differences between bioenergy crops and arable controls were not significant in either the 30‐cm or 1‐m soil cores and smaller than for transitions from grassland. No correlation was detected between change in soil C stock and bioenergy crop age (time since establishment) or soil texture. Change in soil C stock was, however, negatively correlated with the soil C stock in the original land use. We suggest, therefore, that selection of sites for bioenergy crop establishment with lower soil C stocks, most often under arable land use, is the most likely to result in increased soil C stocks.  相似文献   

4.
The removal of perennial bioenergy crops, such as Miscanthus, has rarely been studied although it is an important form of land use change. Miscanthus is a C4 plant, and the carbon (C) it deposits during its growth has a different isotopic signature (12/13C) compared to a C3 plant. Identifying the proportion of C stored and released to the atmosphere is important information for ecosystem models and life cycle analyses. During a removal experiment in June 2011 of a 20‐year old Miscanthus field (Grignon, France), vegetation was removed mechanically and chemically. Two replicate plots were converted into a rotation of annual crops, two plots had Miscanthus removed with no soil disturbance, followed by bare soil (set‐aside), one control plot was left with continued Miscanthus cultivation, and an adjacent field was used as annual arable crops control. There was a significant difference in the isotopic composition of the total soil C under Miscanthus compared with adjacent annual arable crops in all three measured soil layers (0–5, 5–10 and 10–20 cm). Before Miscanthus removal, total C in the soil under Miscanthus ranged from 4.9% in the top layer to 3.9% in the lower layers with δ13C values of ?16.3 to ?17.8 while soil C under the adjacent arable crop was significantly lower and ranged from 1.6 to 2% with δ13C values of ?23.2. This did not change much in 2012, suggesting the accumulation of soil C under Miscanthus persists for at least the first year. In contrast, the isotopic signals of soil respiration 1 year after Miscanthus removal from recultivated and set‐aside plots were similar to that of the annual arable control, while just after removal the signals were similar to that of the Miscanthus control. This suggests a rapid change in the form of soil C pools that are respired.  相似文献   

5.
Modelling of the carbon dynamics in arable soils is complex and the accuracy of the predictions is unknown before the model is applied to each specific site. Objectives were (i) to test the accuracy of predictions of the carbon dynamics using the Rothamsted Carbon (RothC) Model in a field trial in Quzhou, North China Plain, using different methods for initialization and estimation of carbon input into the soil and (ii) to test the applicability of the RothC model for plots with either conventional tillage (CT) or no-tillage (NT) systems. A field trial was conducted with applications of differing amounts of N (0, 112 or 187 kg N ha?1 year?1), P (0, 75 or 150 kg P2O5 ha?1 year?1) and wheat straw (0, 2.25 or 4.5 t DM ha?1 year?1) in differing combinations with either CT or NT for 18 years. CT and NT affected stocks of soil organic carbon (SOC) similarly. Carbon inputs from crops were either estimated from published regression functions that relate C inputs to crop yield including rhizodeposition (models 1 and 2) or published root:aboveground biomass ratios (model 3). Model 1, which was not calibrated to the site conditions, was successful in predicting the carbon dynamics in seven out of nine treatments (model efficiencies EF ranged from 0.28 to 0.87), whereas for two treatments, EF (?0.35 and?2.3) indicated an unsuccessful prediction. The prediction of the C dynamics in NT experiments using model 1 was generally successful, but this may have been due to the fact that NT did not have a specific effect on SOC stocks for this trial. Model 2, which was the same as model 1 except for an optimization of the stock of inert organic matter using one treatment, predicted SOC stocks in the remaining eight treatments overall better than model 1. Model 3 was less successful than models 1 and 2 in all treatments (?19 ≤ EF ≤ 0.56). The results indicate that the RothC model may successfully predict C dynamics—for the site studied even without prior calibration as in model 1—, but care should be taken in choosing an appropriate approach for estimating C inputs into the soil.  相似文献   

6.
In Ireland, Miscanthus × giganteus has the potential to become a major feedstock for bioenergy production. However, under current climatic conditions, Ireland is situated on the margin of the geographical range where Miscanthus production is economically feasible. It is therefore important to optimize the yield and other ecosystem services such as carbon sequestration delivered by the crop. A survey of commercial Miscanthus fields showed a large number of areas with no Miscanthus crop cover. These patches can potentially lead to reduced crop yields and soil carbon sequestration and have a significant negative impact on the economic viability of the crop. The aim of this research is to assess patchiness on a field scale and to analyse the impacts on crop yield and soil carbon sequestration. Analysis of aerial photography images was carried out on six commercial Miscanthus plantations in south east Ireland. The analysis showed an average of 372.5 patches per hectare, covering an average of 13.7% of the field area. Using net present value models and a financial balance approach it was shown that patchiness has a significant impact on payback time for initial investments and might reduce gross margins by more than 50%. Total and Miscanthus‐derived soil organic carbon was measured in open patches and adjacent plots of high crop density showing significantly lower Miscanthus‐derived carbon stocks in open patches compared to high crop‐density patches (0.47Mg C ha?1 ± 0.42 SD and 0.91Mg C ha?1 ± 0.55 SD). Using geographic information system (GIS) it was shown that on a field scale Miscanthus‐derived carbon stocks were reduced by 7.38% ± 7.25 SD. However, total soil organic carbon stocks were not significantly different between open patches and high crop density plots indicating no impact on the overall carbon sequestration on a field scale over 3–4 years since establishment for these Miscanthus sites.  相似文献   

7.
Bioenergy has to meet increasing sustainability criteria in the EU putting conventional bioenergy crops under pressure. Alternatively, perennial bioenergy crops, such as Miscanthus, show higher greenhouse gas savings with similarly high energy yields. In addition, Miscanthus plantations may sequester additional soil organic carbon (SOC) to mitigate climate change. As the land‐use change in cropland to Miscanthus involves a C3‐C4 vegetation change (VC), it is possible to determine the dynamic of Miscanthus‐derived SOC (C4 carbon) and of the old SOC (C3 carbon) by the isotopic ratio of 13C to 12C. We sampled six croplands and adjacent Miscanthus plantations exceeding the age of 10 years across Europe. We found a mean C4 carbon sequestration rate of 0.78 ± 0.19 Mg ha?1 yr?1, which increased with mean annual temperature. At three of six sites, we found a significant increase in C3 carbon due to the application of organic fertilizers or difference in baseline SOC, which we define as non‐VC‐induced SOC changes. The Rothamsted Carbon Model was used to disentangle the decomposition of old C3 carbon and the non‐VC‐induced C3 carbon changes. Subsequently, this method was applied to eight more sites from the literature, resulting in a climate‐dependent VC‐induced SOC sequestration rate (0.40 ± 0.20 Mg ha?1 yr?1), as a step toward a default SOC change function for Miscanthus plantations on former croplands in Europe. Furthermore, we conducted a SOC fractionation to assess qualitative SOC changes and the incorporation of C4 carbon into the soil. Sixteen years after Miscanthus establishment, 68% of the particulate organic matter (POM) was Miscanthus‐derived in 0–10 cm depth. POM was thus the fastest cycling SOC fraction with a C4 carbon accumulation rate of 0.33 ± 0.05 Mg ha?1 yr?1. Miscanthus‐derived SOC also entered the NaOCl‐resistant fraction, comprising 12% in 0–10 cm, which indicates that this fraction was not an inert SOC pool.  相似文献   

8.
Planting the perennial biomass crop Miscanthus in the UK could offset 2–13 Mt oil eq. yr?1, contributing up to 10% of current energy use. Policymakers need assurance that upscaling Miscanthus production can be performed sustainably without negatively impacting essential food production or the wider environment. This study reviews a large body of Miscanthus relevant literature into concise summary statements. Perennial Miscanthus has energy output/input ratios 10 times higher (47.3 ± 2.2) than annual crops used for energy (4.7 ± 0.2 to 5.5 ± 0.2), and the total carbon cost of energy production (1.12 g CO2‐C eq. MJ?1) is 20–30 times lower than fossil fuels. Planting on former arable land generally increases soil organic carbon (SOC) with Miscanthus sequestering 0.7–2.2 Mg C4‐C ha?1 yr?1. Cultivation on grassland can cause a disturbance loss of SOC which is likely to be recovered during the lifetime of the crop and is potentially mitigated by fossil fuel offset. N2O emissions can be five times lower under unfertilized Miscanthus than annual crops and up to 100 times lower than intensive pasture. Nitrogen fertilizer is generally unnecessary except in low fertility soils. Herbicide is essential during the establishment years after which natural weed suppression by shading is sufficient. Pesticides are unnecessary. Water‐use efficiency is high (e.g. 5.5–9.2 g aerial DM (kg H2O)?1, but high biomass productivity means increased water demand compared to cereal crops. The perennial nature and belowground biomass improves soil structure, increases water‐holding capacity (up by 100–150 mm), and reduces run‐off and erosion. Overwinter ripening increases landscape structural resources for wildlife. Reduced management intensity promotes earthworm diversity and abundance although poor litter palatability may reduce individual biomass. Chemical leaching into field boundaries is lower than comparable agriculture, improving soil and water habitat quality.  相似文献   

9.
In this paper, we focus on the impact on soil organic carbon (SOC) of two dedicated energy crops: perennial grass Miscanthus x Giganteus (Miscanthus) and short rotation coppice (SRC)‐willow. The amount of SOC sequestered in the soil is a function of site‐specific factors including soil texture, management practices, initial SOC levels and climate; for these reasons, both losses and gains in SOC were observed in previous Miscanthus and SRC‐willow studies. The ECOSSE model was developed to simulate soil C dynamics and greenhouse gas emissions in mineral and organic soils. The performance of ECOSSE has already been tested at site level to simulate the impacts of land‐use change to short rotation forestry (SRF) on SOC. However, it has not been extensively evaluated under other bioenergy plantations, such as Miscanthus and SRC‐willow. Twenty‐nine locations in the United Kingdom, comprising 19 paired transitions to SRC‐willow and 20 paired transitions to Miscanthus, were selected to evaluate the performance of ECOSSE in predicting SOC and SOC change from conventional systems (arable and grassland) to these selected bioenergy crops. The results of the present work revealed a strong correlation between modelled and measured SOC and SOC change after transition to Miscanthus and SRC‐willow plantations, at two soil depths (0–30 and 0–100 cm), as well as the absence of significant bias in the model. Moreover, model error was within (i.e. not significantly larger than) the measurement error. The high degrees of association and coincidence with measured SOC under Miscanthus and SRC‐willow plantations in the United Kingdom, provide confidence in using this process‐based model for quantitatively predicting the impacts of future land use on SOC, at site level as well as at national level.  相似文献   

10.
红壤侵蚀地马尾松林恢复后土壤有机碳库动态   总被引:2,自引:0,他引:2  
运用RothC(version 26.3)模型,并结合“时空代换法”对长汀河田红壤侵蚀退化地马尾松人工恢复后林地表层(0-20cm)土壤有机碳库的动态变化进行了反演和预测,研究结果表明:RothC 26.3模型的模拟结果能够较好地反映红壤侵蚀地植被恢复过程中土壤有机碳的变化趋势;RothC 26.3模型适用于中亚热带季风气候条件下马尾松林地土壤碳库的动态模拟;侵蚀退化地在马尾松林建植后,林地表层土壤碳吸存速率以非线性的形式上升,并在15-25a时间内达到最大,马尾松恢复后前30a林地土壤平均碳吸存速率约为0.385 tC·hm-2· a-1,自马尾松建植后演替至当地顶级群落(次生林)全过程中平均碳吸存速率约0.156 tC·hm-2·a-1;根据模拟结果得到的拟合方程,计算得到研究区红壤侵蚀退化地的碳饱和容量约为36.85 tC/hm2,固碳潜力约为33.26 tC/hm2.  相似文献   

11.
The stability and turnover of soil organic matter (SOM) are a very important but poorly understood part of carbon (C) cycling. Conversion of C3 grassland to the C4 energy crop Miscanthus provides an ideal opportunity to quantify medium‐term SOM dynamics without disturbance (e.g., plowing), due to the natural shift in the δ13C signature of soil C. For the first time, we used a repeated 13C natural abundance approach to measure C turnover in a loamy Gleyic Cambisol after 9 and 21 years of Miscanthus cultivation. This is the longest C3–C4 vegetation change study on C turnover in soil under energy crops. SOM stocks under Miscanthus and reference grassland were similar down to 1 m depth. However, both increased between 9 and 21 years from 105 to 140 mg C ha?1 (< 0.05), indicating nonsteady state of SOM. This calls for caution when estimating SOM turnover based on a single sampling. The mean residence time (MRT) of old C (>9 years) increased with depth from 19 years (0–10 cm) to 30–152 years (10–50 cm), and remained stable below 50 cm. From 41 literature observations, the average SOM increase after conversion from cropland or grassland to Miscanthus was 6.4 and 0.4 mg C ha?1, respectively. The MRT of total C in topsoil under Miscanthus remained stable at ~60 years, independent of plantation age, corroborating the idea that C dynamics are dominated by recycling processes rather than by C stabilization. In conclusion, growing Miscanthus on C‐poor arable soils caused immediate C sequestration because of higher C input and decreased SOM decomposition. However, after replacing grasslands with Miscanthus, SOM stocks remained stable and the MRT of old C3‐C increased strongly with depth.  相似文献   

12.
The carbon (C) dynamics of a bioenergy system are key to correctly defining its viability as a sustainable alternative to conventional fossil fuel energy sources. Recent studies have quantified the greenhouse gas mitigation potential of these bioenergy crops, often concluding that C sequestration in soils plays a primary role in offsetting emissions through energy generation. Miscanthus is a particularly promising bioenergy crop and research has shown that soil C stocks can increase by more than 2 t C ha?1 yr?1. In this study, we use a stable isotope (13C) technique to trace the inputs and outputs from soils below a commercial Miscanthus plantation in Lincolnshire, UK, over the first 7 years of growth after conversion from a conventional arable crop. Results suggest that an unchanging total topsoil (0–30 cm) C stock is caused by Miscanthus additions displacing older soil organic matter. Further, using a comparison between bare soil plots (no new Miscanthus inputs) and undisturbed Miscanthus controls, soil respiration was seen to be unaffected through priming by fresh inputs or rhizosphere. The temperature sensitivity of old soil C was also seen to be very similar with and without the presence of live root biomass. Total soil respiration from control plots was dominated by Miscanthus-derived emissions with autotrophic respiration alone accounting for ~50 % of CO2. Although total soil C stocks did not change significantly over time, the Miscanthus-derived soil C accumulated at a rate of 860 kg C ha?1 yr?1 over the top 30 cm. Ultimately, the results from this study indicate that soil C stocks below Miscanthus plantations do not necessarily increase during the first 7 years.  相似文献   

13.
A model was developed to calculate carbon fluxes from agricultural soils. The model includes the effects of crop (species, yield and rotation), climate (temperature, rainfall and evapotranspiration) and soil (carbon content and water retention capacity) on the carbon budget of agricultural land. The changes in quality of crop residues and organic material as a result of changes in CO2 concentration and changed management were not considered in this model. The model was parameterized for several arable crops and grassland. Data from agricultural, meteorological, soil, and land use databases were input to the model, and the model was used to evaluate the effects of different carbon dioxide mitigation measures on soil organic carbon in agricultural areas in Europe. Average carbon fluxes under the business as usual scenario in the 2008–2012 commitment period were estimated at 0.52 tC ha?1 y?1 in grassland and ?0.84 tC ha?1 y?1 in arable land. Conversion of arable land to grassland yielded a flux of 1.44 tC ha?1 y?1. Farm management related activities aiming at carbon sequestration ranged from 0.15 tC ha?1 y?1 for the incorporating of straw to 1.50 tC ha?1 y?1 for the application of farmyard manure. Reduced tillage yields a positive flux of 0.25 tC ha?1 y?1. The indirect effect associated with climate was an order of magnitude lower. A temperature rise of 1 °C resulted in a ?0.05 tC ha?1 y?1 change whereas the rising CO2 concentrations gave a 0.01 tC ha?1 y?1 change. Estimates are rendered on a 0.5 × 0.5° grid for the commitment period 2008–2012. The study reveals considerable regional differences in the effectiveness of carbon dioxide abatement measures, resulting from the interaction between crop, soil and climate. Besides, there are substantial differences between the spatial patterns of carbon fluxes that result from different measures.  相似文献   

14.
Although vegetation rehabilitation on semi-arid and arid regions may enhance soil carbon sequestration, its effects on soil carbon fractions remain uncertain. We carried out a study after planting Artemisia ordosica (AO, 17 years), Astragalus mongolicum (AM, 5 years), and Salix psammophila (SP, 16 years) on shifting sand land (SL) in the Mu Us Desert, northwest China. We measured total soil carbon (TSC) and its components, soil inorganic carbon (SIC) and soil organic carbon (SOC), as well as the light and heavy fractions within soil organic carbon (LF-SOC and HF-SOC), under the SL and shrublands at depths of 100 cm. TSC stock under SL was 27.6 Mg ha?1, and vegetation rehabilitation remarkably elevated it by 40.6 Mgha?1, 4.5 Mgha?1, and 14.1 Mgha?1 under AO, AM and SP land, respectively. Among the newly formed TSC under the three shrublands, SIC, LF-SOC and HF-SOC accounted for 75.0%, 10.7% and 13.1% for AO, respectively; they made up 37.0%, 50.7% and 10.6% for AM, respectively; they occupied 68.6%, 18.8% and 10.0% for SP, respectively. The accumulation rates of TSC within 0–100 cm reached 238.6 g m?2y?1, 89.9 g m?2y?1 and 87.9 g m?2y?1 under AO, AM and SP land, respectively. The present study proved that the accumulation of SIC considerably contributed to soil carbon sequestration, and vegetation rehabilitation on shifting sand land has a great potential for soil carbon sequestration.  相似文献   

15.
Field trials throughout Europe over the past 15 years have confirmed the potential for high biomass production from Miscanthus, a giant perennial rhizomatous grass with C4 photosynthesis. However, policies to promote the utilization of biomass crops require yield estimates that can be scaled up to regional, national and continental areas. The only way in which this information can be reliably provided is through the use of productivity models. Here, we describe MISCANMOD, a productivity model, which was used in conjunction with a GIS to plot potential, non‐water‐limited yields across Europe. Modelled rainfed yields were also calculated using a water balance approach based on FAO estimates of plant available water in the soil. The observed yields were consistent with modelled yields at 20 trial sites across Europe. We estimate that if Miscanthus was grown on 10% of suitable land area in the European Union (EU15), 231 TWh yr?1 of electricity could be generated, which is 9% of the gross electricity production in 2000. Using the same scenario, the total carbon mitigation could be 76 Mt C yr?1, which is about 9% of the EU total C emissions for the 1990 Kyoto Protocol baseline levels.  相似文献   

16.
To date, only few studies have compared the soil organic carbon (SOC) sequestration potential between perennial woody and herbaceous crops. The main objective of this study was to assess the effect of perennial woody (poplar, black locust, willow) and herbaceous (giant reed, miscanthus, switchgrass) crops on SOC stock and its stabilization level after 6 years from plantation on an arable field. Seven SOC fractions related to different soil stabilization mechanisms were isolated by a combination of physical and chemical fractionation methods: unprotected (cPOM and fPOM), physically protected (iPOM), physically and chemically protected (HC‐μs + c), chemically protected (HC‐ds + c), and biochemically protected (NHC‐ds + c and NHC‐μs + c). The continuous C input to the soil and the minimal soil disturbance increased SOC stocks in the top 10 cm of soil, but not in deeper soil layers (10–30; 30–60; and 60–100 cm). In the top soil layer, greater SOC accumulation rates were observed under woody species (105 g m?2 yr‐1) than under herbaceous ones (71 g m?2 yr‐1) presumably due to a higher C input from leaf‐litter. The conversion from an arable maize monoculture to perennial bioenergy crops increased the organic C associated to the most labile organic matter (POM) fractions, which accounted for 38% of the total SOC stock across bioenergy crops, while no significant increments were observed in more recalcitrant (silt‐ and clay‐sized) fractions, highlighting that the POM fractions were the most prone to land‐use change. The iPOM fraction increased under all perennial bioenergy species compared to the arable field. In addition, the iPOM was higher under woody crops than under herbaceous ones because of the additional C inputs from leaf‐litter that occurred in the former. Conversion from arable cropping systems to perennial bioenergy crops can effectively increase the SOC stock and enlarge the SOC fraction that is physically protected within soil microaggregates.  相似文献   

17.
Land‐use change to bioenergy crop production can contribute towards addressing the dual challenges of greenhouse gas mitigation and energy security. Realisation of the mitigation potential of bioenergy crops is, however, dependent on suitable crop selection and full assessment of the carbon (C) emissions associated with land conversion. Using eddy covariance‐based estimates, ecosystem C exchange was studied during the early‐establishment phase of two perennial crops, C3 reed canary grass (RCG) and C4 Miscanthus, planted on former grassland in Ireland. Crop development was the main determinant of net carbon exchange in the Miscanthus crop, restricting significant net C uptake during the first 2 years of establishment. The Miscanthus ecosystem switched from being a net C source in the conversion year to a strong net C sink (?411 ± 63 g C m?2) in the third year, driven by significant above‐ground growth and leaf expansion. For RCG, early establishment and rapid canopy development facilitated a net C sink in the first 2 years of growth (?319 ± 57 (post‐planting) and ?397 ± 114 g C m?2, respectively). Peak seasonal C uptake occurred three months earlier in RCG (May) than Miscanthus (August), however Miscanthus sustained net C uptake longer into the autumn and was close to C‐neutral in winter. Leaf longevity is therefore a key advantage of C4 Miscanthus in temperate climates. Further increases in productivity are projected as Miscanthus reaches maturity and are likely to further enhance the C sink potential of Miscanthus relative to RCG.  相似文献   

18.
Miscanthus has been identified as one of the most promising perennial grasses for renewable energy generation in Europe and the United States [Mitigation and Adaptation Strategies for Global Change 9 (2004) 433]. However, the decision to use Miscanthus depends to a considerable degree on its economic and environmental performance [Soil Use and Management 24 (2008) 235; Renewable and Sustainable Energy Reviews 13 (2009) 1230]. This article assessed the spatial distribution of the economic and greenhouse gas (GHG) costs of producing and supplying Miscanthus in the UK. The average farm‐gate production cost of Miscanthus in the UK is estimated to be 40 £ per oven‐dried tonne (£ odt?1), and the average GHG emissions from the production of Miscanthus are 1.72 kg carbon equivalent per oven‐dried tonnes per year (kg CE odt?1 yr?1). The production cost of Miscanthus varies from 35 to 55 £ odt?1 with the lowest production costs in England, Wales and Northern Ireland, and the highest costs in Scotland. Sensitivity analysis shows that yield of Miscanthus is the most influential factor in its production cost, with precipitation the most crucial input in determining yield. GHG emissions from the production of Miscanthus range from 1.24 to 2.11 kg CE odt?1 yr?1. To maximize the GHG benefit, Miscanthus should be established preferentially on croplands, though other considerations obviously arise concerning suitability and value of the land for food production.  相似文献   

19.
The lignocellulosic perennial grass Miscanthus has received considerable attention as a potential bioenergy crop over the last 25 years, but few commercial plantations exist globally. This is partly due to the uncertainty associated with claims that land‐use change (LUC) to Miscanthus will result in both commercially viable yields and net increases in carbon (C) storage. To simulate what the effects may be after LUC to Miscanthus, six process‐based models have been parameterized for Miscanthus and here we review how these models operate. This review provides an overview of the key Miscanthus soil organic matter models and then highlights what measurers can do to accelerate model development. Each model (WIMOVAC, BioCro, Agro‐IBIS, DAYCENT, DNDC and ECOSSE) is capable of simulating biomass production and soil C dynamics based on specific site characteristics. Understanding the design of these models is important in model selection as well as being important for field researchers to collect the most relevant data to improve model performance. The rapid increase in models parameterized for Miscanthus is promising, but refinements and improvements are still required to ensure that model predictions are reliable and can be applied to spatial scales relevant for policy. Specific improvements, needed to ensure the models are applicable for a range of environmental conditions, come under two categories: (i) increased data generation and (ii) development of frameworks and databases to allow simulations of ranging scales. Research into nonfood bioenergy crops such as Miscanthus is relatively recent and this review highlights that there are still a number of knowledge gaps regarding Miscanthus specifically. For example, the low input requirements of Miscanthus make it particularly attractive as a bioenergy crop, but it is essential that we increase our understanding of the crop's nutrient remobilization and ability to host N‐fixing organisms to derive the most accurate simulations.  相似文献   

20.
Livestock grazing is known to influence carbon (C) storage in vegetation and soil. Yet, for grazing management to be used to optimize C storage, large scale investigations that take into account the typically heterogeneous distribution of grazers and C across the landscape are required. In a landscape-scale grazing experiment in the Scottish uplands, we quantified C stored in swards dominated by the widespread tussock-forming grass species Molinia caerulea. The impact of three sheep stocking treatments (‘commercial’ 2.7 ewes ha?1 y?1, ‘low’ 0.9 ewes ha?1 y?1 and no livestock) on plant C stocks was determined at three spatial scales; tussock, sward and landscape, and these data were used to predict long-term changes in soil organic carbon (SOC). We found that tussocks were particularly dense C stores (that is, high C mass per unit area) and that grazing reduced their abundance and thus influenced C stocks held in M. caerulea swards across the landscape; C stocks were 3.83, 5.01 and 6.85 Mg C ha?1 under commercial sheep grazing, low sheep grazing and no grazing, respectively. Measured vegetation C in the three grazing treatments provided annual C inputs to RothC, an organic matter turnover model, to predict changes in SOC over 100 years. RothC predicted SOC to decline under commercial sheep stocking and increase under low sheep grazing and no grazing. Our findings suggest that no sheep and low-intensity sheep grazing are better upland management practices for enhancing plant and soil C sequestration than commercial sheep grazing. This is evaluated in the context of other upland management objectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号