首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Adjacent to the northern suburbs of Darwin is a coastal wetland that contains important larval habitats for Aedes vigilax (Skuse), the northern salt marsh mosquito. This species is a vector for Ross River virus and Barmah Forest virus, as well as an appreciable human pest. In order to improve aerial larval control efforts, we sought to identify the most important vegetation categories and climatic/seasonal aspects associated with control operations in these wetlands. By using a generalized linear model to compare aerial control for each vegetation category, we found that Schoenoplectus/mangrove areas require the greatest amount of control for tide‐only events (30.1%), and also extensive control for tide and rain events coinciding (18.2%). Our results further indicate that tide‐affected reticulate vegetation indicated by the marsh grasses Sporobolus virginicus and Xerochloa imberbis require extensive control for Ae. vigilax larvae after rain‐only events (44.7%), and tide and rain events coinciding (38.0%). The analyses of vector control efforts by month indicated that September to January, with a peak in November and December, required the most control. A companion paper identifies the vegetation categories most associated with Aedes vigilax larvae population densities in the coastal wetland. To maximize the efficiency of aerial salt marsh mosquito control operations in northern Australia, aerial control efforts should concentrate on the vegetation categories with high larval densities between September and January.  相似文献   

2.
In northern Australia the northern salt marsh mosquito Aedes vigilax is a vector of Ross River virus and is an appreciable pest. A coastal wetland adjacent to Darwin's residential suburbs offers a favorable habitat for Ae. vigilax, and despite vigilant mosquito control efforts, peaks of Ae. vigilax occur in excess of 500/trap/night some months. To improve mosquito control for disease and nuisance biting to nearby residential areas, we sought to investigate meteorological drivers associated with these Ae. vigilax peaks. We fitted a cross‐sectional logistic regression model to weekly counts of female Ae. vigilax mosquitoes collected between July, 1998 and June, 2009 against variables, tide, rainfall, month, year, and larval control. Aedes vigilax peaks were associated with rainfall during the months September to November compared with January, when adjusted for larval control and tide. To maximize mosquito control efficiency, larval control should continue to be implemented after high tides and with increased emphasis on extensive larval hatches triggered by rainfall between September and November each year. This study reiterates the importance of monitoring and evaluating service delivery programs. Using statistical modelling, service providers can obtain solutions to operational problems using routinely collected data. These methods may be applicable in mosquito surveillance or control programs in other areas.  相似文献   

3.
The Darwin coastal wetlands provide suitable breeding conditions for Culex annulirostris, which is abundant between December and August each year. This species is the principal vector for arboviruses, including Ross River virus and Murray Valley encephalitis, and is an appreciable pest species. Aerial control is conducted when routine larval surveys for this species predict high numbers of emergent adults. We sought to determine the most productive vegetation categories and seasonal aspects associated with Cx. annulirostris breeding and control operations in these wetlands. By applying a generalized linear model to compare larval densities and aerial control efforts for each vegetation category, we found that Schoenoplectus reeds were the most productive vegetation type in May and June and were associated with the greatest amount of control required. Other vegetation categories associated with tidal mangroves and lower topographic elevation were also productive during these months for extended periods, while rain‐affected reticulate areas and grassland floodplains were most productive in January and April. In addition, areas associated with nutrient rich organic matter appeared to initiate Cx. annulirostris breeding and were highly productive seasonally. This study has highlighted the vegetation categories most significantly associated with Cx. annulirostris breeding in a Darwin wetland. This knowledge can be applied to current control efforts to improve aerial control efficiency for this species and could be applicable in other areas of northern Australia.  相似文献   

4.
Abstract Two mosquito species, Aedes camptorhynchus (Thomson) and Aedes vigilax (Skuse) (Diptera: Culicidae) are responsible for significant nuisance biting and disease transmission in southern coastal Australia. Mosquito abundance, tide height, temperature and rainfall data were collected over three summer seasons (2002, 2003, 2004) at Port Pirie, South Australia and subjected to statistical analysis to develop ecological models for predicting problem mosquito outbreaks. A logistic regression model for Ae. camptorhynchus gave a predictive R2 of 0.30 using mean air temperature, whereas, for Ae. vigilax, tide height, mean air temperature and day length yielded a regression with an R2 of 0.68. These models identify significant environmental drivers for both species and may be useful in the prediction of future outbreaks, particularly of Ae. vigilax.  相似文献   

5.
The saltwater mosquito, Aedes vigilax, is prolific in coastal wetlands including mangroves and saltmarshes. Ae. vigilax is a vector for arboviruses such as Ross River and Barmah Forest viruses, with significant consequences for human health and economic productivity. In Australia the dominant form of mosquito control is chemicals. For mangroves, this is because there is a critical lack of knowledge supporting alternative approaches, such as environmental modification or biological control using larvivorous fish. This review examines the potential of fish as biological agents for the control of mosquito larvae in mangroves. We consider two key aspects: how larvivorous fish use mangroves; and can larvivorous fish reduce larval mosquito populations sufficiently to provide effective mosquito control? The link between fish and mangroves is reasonably well established, where mangroves act as refuge habitat for small and juvenile fish. Also, research has established that fish can be significant predators of mosquitoes, and therefore may be effective control agents. However, studies of fish activity within mangroves are limited to study of the fringe of the mangroves and not the internal structure of mangrove basins and as a result, fish populations within these areas remain unstudied. Also, until recently there was little appreciation of the mangrove-mosquito habitat relationship and, as a consequence, the importance of the mangrove basin as the key mosquito habitat has also been overlooked in the literature. Similarly, the predator/prey relationships between fish and mosquitoes within mangrove basin environments also remain unstudied, and therefore the importance of fish for mosquito management in mangrove basins is not known. There are substantial knowledge gaps regarding the potential of fish in controlling larval mosquitoes in mangroves. The gaps include: understanding of how larvivorous fish use mangrove basins; the nature of the fish-mosquito predator/prey relationship in mangrove basins; and whether larvivorous fish are effective as a mosquito control option in mangroves.  相似文献   

6.
Changes following culvert removal in the production of the saltmarsh mosquito, Aedes vigilax (Skuse), and the cover and occurrence of halophytes were investigated on Kooragang Island, New South Wales, Australia. Mosquito eggshells were collected from saltmarsh soil and used as an index of mosquito production. Saltmarsh bordering each of four tidal creeks was sampled prior to the removal of culverts from two of these creeks in 1995. All creeks were resampled two years later. In most instances, eggshell densities decreased significantly at saltmarshes affected by culvert removal, with relatively small change at reference saltmarshes. However, oviposition by Ae. vigilax was initiated in upland areas following culvert removal at one site. Sarcocornia quinqueflora cover decreased significantly at sites affected by culvert removal relative to reference sites. The cover of Sporobolus virginicus and frequency of occurrence of Triglochin striata increased significantly at one modified site, while the frequency of occurrence of Avicennia marina seedlings increased significantly at the other modified site. We suggest that culvert removal and other alterations intended to increase tidal flushing will lead to vegetation patterns and mosquito eggshell densities that typically occur in the more frequently inundated saltmarsh–mangrove complex.  相似文献   

7.
Many species are expanding their distributions to higher latitudes due to global warming. Understanding the mechanisms underlying these distribution shifts is critical for better understanding the impacts of climate changes. The climate envelope approach is widely used to model and predict species distribution shifts with changing climates. Biotic interactions between species, however, may also influence species distributions, and a better understanding of biotic interactions could improve predictions based solely on climate envelope models. Along the northern Gulf of Mexico coast, USA, subtropical black mangrove (Avicennia germinans) at the northern limit of its distribution grows sympatrically with temperate salt marsh plants in Florida, Louisiana, and Texas. In recent decades, freeze‐free winters have led to an expansion of black mangrove into salt marshes. We examined how biotic interactions between black mangrove and salt marsh vegetation along the Texas coast varied across (i) a latitudinal gradient (associated with a winter‐temperature gradient); (ii) the elevational gradient within each marsh (which creates different marsh habitats); and (iii) different life history stages of black mangroves (seedlings vs. juvenile trees). Each of these variables affected the strength or nature of biotic interactions between black mangrove and salt marsh vegetation: (i) Salt marsh vegetation facilitated black mangrove seedlings at their high‐latitude distribution limit, but inhibited black mangrove seedlings at lower latitudes; (ii) mangroves performed well at intermediate elevations, but grew and survived poorly in high‐ and low‐marsh habitats; and (iii) the effect of salt marsh vegetation on black mangroves switched from negative to neutral as black mangroves grew from seedlings into juvenile trees. These results indicate that the expansion of black mangroves is mediated by complex biotic interactions. A better understanding of the impacts of climate change on ecological communities requires incorporating context‐dependent biotic interactions into species range models.  相似文献   

8.
Aquatic environments can be restricted with the amount of available food resources especially with changes to both abiotic and biotic conditions. Mosquito larvae, in particular, are sensitive to changes in food resources. Resource limitation through inter-, and intra-specific competition among mosquitoes are known to affect both their development and survival. However, much less is understood about the effects of non-culicid controphic competitors (species that share the same trophic level). To address this knowledge gap, we investigated and compared mosquito larval development, survival and adult size in two experiments, one with different densities of non-culicid controphic conditions and the other with altered resource conditions. We used Aedes camptorhynchus, a salt marsh breeding mosquito and a prominent vector for Ross River virus in Australia. Aedes camptorhynchus usually has few competitors due to its halo-tolerance and distribution in salt marshes. However, sympatric ostracod micro-crustaceans often co-occur within these salt marshes and can be found in dense populations, with field evidence suggesting exploitative competition for resources. Our experiments demonstrate resource limiting conditions caused significant increases in mosquito developmental times, decreased adult survival and decreased adult size. Overall, non-culicid exploitation experiments showed little effect on larval development and survival, but similar effects on adult size. We suggest that the alterations of adult traits owing to non-culicid controphic competition has potential to extend to vector-borne disease transmission.  相似文献   

9.
10.
Tidal flow to salt marshes throughout the northeastern United States is often restricted by roads, dikes, impoundments, and inadequately sized culverts or bridge openings, resulting in altered ecological structure and function. In this study we evaluated the response of vegetation and nekton (fishes and decapod crustaceans) to restoration of full tidal flow to a portion of the Sachuest Point salt marsh, Middletown, Rhode Island. A before, after, control, impact study design was used, including evaluations of the tide‐restricted marsh, the same marsh after reintroduction of tidal flow (i.e., tide‐restored marsh), and an unrestricted control marsh. Before tidal restoration vegetation of the 3.7‐ha tide‐restricted marsh was dominated by Phragmites australis and was significantly different from the adjacent 6.3‐ha Spartina‐dominated unrestricted control marsh (analysis of similarities randomization test, p < 0.001). After one growing season vegetation of the tide‐restored marsh had changed from its pre‐restoration condition (analysis of similarities randomization test, p < 0.005). Although not similar to the unrestricted control marsh, Spartina patens and S. alterniflora abundance increased and abundance and height of Phragmites significantly declined, suggesting a convergence toward typical New England salt marsh vegetation. Before restoration shallow water habitat (creeks and pools) of the unrestricted control marsh supported a greater density of nekton compared with the tide‐restricted marsh (analysis of variance, p < 0.001), but after one season of restored tidal flow nekton density was equivalent. A similar trend was documented for nekton species richness. Nekton density and species richness from marsh surface samples were similar between the tide‐restored marsh and unrestricted control marsh. Fundulus heteroclitus and Palaemonetes pugio were the numerically dominant fish and decapod species in all sampled habitats. This study provides an example of a quantitative approach for assessing the response of vegetation and nekton to tidal restoration.  相似文献   

11.
We undertook a 2-year (2002–2004) mark–recapture study to investigate demographic performance and habitat use of salt marsh harvest mice (Reithrodontomys raviventris halicoetes) in the Suisun Marsh. We examined the effects of different wetland types and microhabitats on 3 demographic variables: density, reproductive potential, and persistence. Our results indicate that microhabitats dominated by mixed vegetation or pickleweed (Salicornia spp.) supported similar salt marsh harvest mouse densities, reproductive potential, and persistence throughout much of the year, whereas few salt marsh harvest mice inhabited upland grass-dominated microhabitats. We found that densities were higher in diked wetlands, whereas post-winter persistence was higher in tidal wetlands, and reproductive potential did not differ statistically between wetland types. Our results emphasize the importance of mixed vegetation for providing adequate salt marsh harvest mouse habitat and suggest that, despite their physiognomic and hydrological differences, both diked and tidal wetlands support salt marsh harvest mouse populations by promoting different demographic attributes. We recommend that habitat management, restoration, and enhancement efforts include areas containing mixed vegetation in addition to pickleweed in both diked and tidal wetlands. © 2011 The Wildlife Society.  相似文献   

12.
Mosquitoes are a major vector for tropical diseases, so understanding aspects that modify their population dynamics is vital for their control and protecting human health. Maximising the efficiency of control strategies for reducing transmission risk requires as a first step the understanding of the intrinsic population dynamics of vectors. We fitted a set of density-dependent and density-independent models to the long-term time series of six tropical mosquito species from northern Australia. The models’ strength of evidence was assessed using Akaike’s Information Criterion (AIC c ), Bayesian Information Criterion (BIC) and jack-knifed cross-validation (C-V). Density dependence accounted for more than 99% of the model weight in all model-selection methods, with the Gompertz-logistic (Cushing model) being the best-supported model for all mosquito species (negative density feedback expressed even at low densities). The second-most abundant species, Aedes vigilax (a saline breeder), showed no spatial heterogeneity in its density-dependent response, but the remaining five species had different intrinsic growth rates across 11 study sites. Population densities of saline species were high only during the late dry to early wet season following the highest tides of the month or early flood rains when swamps were mostly saline, whereas those of freshwater species were highest during the mid-wet and mid-dry seasons. These findings demonstrate remarkably strong density dependence in mosquito populations, but also suggest that environmental drivers, such as rainfall and tides, are important in modifying seasonal densities. Neglecting to account for strong density feedback in tropical mosquito populations will clearly result in less effective control.  相似文献   

13.
A series of laboratory experiments compared predation rates of three native eastern Australian mangrove fish species (Psuedomugil signifer, Hyseleotris galii, Pseudogobius sp.) and the exotic Gambusia holbrooki on 2nd and 4th instar Aedes vigilax larvae, in order to determine their potential as mosquito control agents in mangrove forests. All four species preyed on significant numbers of both 2nd and 4th instar larvae. All showed a similar pattern of larval consumption, gorging on larvae in the first hour of each experiment, before reducing to a relatively constant background feeding rate. Gambusia holbrooki showed the highest larval consumption rates, but is unsuitable as a mosquito control agent due to it being an exotic pest species in Australia. Of the three native species, P. signifer showed the greatest potential as a mosquito control agent, having consumption rates comparable to G. holbrooki, and was the only species that did not show a significant reduction in larval consumption in the night experiments.  相似文献   

14.
An understanding of urban aquatic environments as mosquito larval habitats is necessary to prioritize sites for surveillance and control of arbovirus vectors in urban areas. Natural and artificial water bodies at ground level that may be larval mosquito habitats in Córdoba city, Argentina were surveyed. Data on the characteristics of aquatic sites and the presence and abundance of mosquito larvae and pupae were collected in the summer of 2006, coinciding with the first report of human WNV and following an outbreak of St. Louis encephalitis in 2005. Eight species in the genera Aedes, Culex, and Mansonia were identified. At 64.2% (34 of 53) of the sites, only one species was collected, while 3.8% (2 of 53) had three associated species, the highest richness found per site. Culex quinquefasciatus represented over 99% (out of 32,729) of the specimens. It was also the most widely distributed and detected under diverse habitat conditions. Although puddles and semi‐permanent pools harbored a greater number of species, drainages and channels may be more relevant as risk factors from an epidemiological point of view because they showed the highest larval densities, mainly of Cx. quinquefasciatus (vector of SLE and WNV). Also, higher densities of this species were associated with stormwater runoff and sewage water, thus water management systems should be targeted and closely monitored for mosquito control purposes.  相似文献   

15.
Aedes albopictus (Skuse) is an invasive mosquito species found across the southern U.S. with range expansion into many northern states. Intra‐ and interspecific larval competition have been evaluated for Ae. albopictus with respect to subsequent adult size, immature and adult survivability, and its capacity to vector pathogens as an adult. However, limited data are available on egg production as related to larval rearing conditions. Because Ae. albopictus is a container‐inhabiting mosquito that oviposits in resource‐limited habitats, it is found under variable density‐dependent conditions. Therefore, we examined the impact of specific rearing conditions on Ae. albopictus clutch size and adult body size; comparing the egg production values and wing lengths from known developmental densities to those from field‐collected populations. Field populations varied significantly among collection sites in mean clutch size (23 to 46). These clutch sizes were comparable to the mean clutch sizes of females reared at the larval densities of nine (20 eggs) and three (53 eggs) larvae per 3 ml of water in the laboratory. Field populations experienced density‐dependent effects impacting adult mosquito size. Mosquitoes from the four sample sites had mean wing lengths of 1.99, 2.47, 2.51, and 2.54 mm, which were less than the mean wing length of mosquitoes reared at larval densities of three larvae per 3 ml of water (2.57 mm).  相似文献   

16.
The transmission of mosquito-borne diseases is strongly linked to the abundance of the host vector. Identifying the environmental and biological precursors which herald the onset of peaks in mosquito abundance would give health and land-use managers the capacity to predict the timing and distribution of the most efficient and cost-effective mosquito control. We analysed a 15-year time series of monthly abundance of Aedes vigilax, a tropical mosquito species from northern Australia, to determine periodicity and drivers of population peaks (high-density outbreaks). Two sets of density-dependent models were used to examine the correlation between mosquito abundance peaks and the environmental drivers of peaks or troughs (low-density periods). The seasonal peaks of reproduction (r) and abundance () occur at the beginning of September and early November, respectively. The combination of low mosquito abundance and a low frequency of a high tide exceeding 7 m in the previous low-abundance (trough) period were the most parsimonious predictors of a peak''s magnitude, with this model explaining over 50% of the deviance in . Model weights, estimated using AICc, were also relatively high for those including monthly maximum tide height, monthly accumulated tide height or total rainfall per month in the trough, with high values in the trough correlating negatively with the onset of a high-abundance peak. These findings illustrate that basic environmental monitoring data can be coupled with relatively simple density feedback models to predict the timing and magnitude of mosquito abundance peaks. Decision-makers can use these methods to determine optimal levels of control (i.e., least-cost measures yielding the largest decline in mosquito abundance) and so reduce the risk of disease outbreaks in human populations.  相似文献   

17.
Wetland restoration can mitigate aerobic decomposition of subsided organic soils, as well as re-establish conditions favorable for carbon storage. Rates of carbon storage result from the balance of inputs and losses, both of which are affected by wetland hydrology. We followed the effect of water depth (25 and 55 cm) on the plant community, primary production, and changes in two re-established wetlands in the Sacramento San-Joaquin River Delta, California for 9 years after flooding to determine how relatively small differences in water depth affect carbon storage rates over time. To estimate annual carbon inputs, plant species cover, standing above- and below-ground plant biomass, and annual biomass turnover rates were measured, and allometric biomass models for Schoenoplectus (Scirpus) acutus and Typha spp., the emergent marsh dominants, were developed. As the wetlands developed, environmental factors, including water temperature, depth, and pH were measured. Emergent marsh vegetation colonized the shallow wetland more rapidly than the deeper wetland. This is important to potential carbon storage because emergent marsh vegetation is more productive, and less labile, than submerged and floating vegetation. Primary production of emergent marsh vegetation ranged from 1.3 to 3.2 kg of carbon per square meter annually; and, mid-season standing live biomass represented about half of the annual primary production. Changes in species composition occurred in both submerged and emergent plant communities as the wetlands matured. Water depth, temperature, and pH were lower in areas with emergent marsh vegetation compared to submerged vegetation, all of which, in turn, can affect carbon cycling and storage rates.  相似文献   

18.
A 450 cm sediment core from Taperebal, in the mangrove region of northeastern Pará State in northern Brazil has been studied through pollen analysis in order to reconstruct mangrove development and dynamics and to infer relative sea-level (RSL) changes during the Holocene. Six AMS radiocarbon dates, which provide a somewhat limited age control with some uncertainties, suggest early and late Holocene deposits interrupted by a hiatus between them. A patchy vegetation of coastal Amazon rain forest, restinga, salt marsh and some mangrove, which was dominated by Avicennia, covered the study area during the early Holocene period. The occurrence of an early Avicennia dominated mangrove phase has not been reported so far from other sites in northern Brazil. During the mid Holocene mangroves mostly replaced the former coastal Amazon rain forest, restinga and some salt marsh vegetation, reflecting the rise in the RSL. Rhizophora trees expanded markedly and Avicennia became rare. In the sediment core there is apparently a gap between the depths of 115 and 85 cm (possibly starting between 5900 and 5750 b.p.). The deposits above 85 cm are of modern age and were probably deposited during the last decades. This gap can be explained by the lowering of the RSL as is shown for other northern Brazilian coastal sites. The deposition of sediments during the last decades suggests that the modern RSL is high compared to other periods in the Holocene. Pollen data from these deposits show that Rhizophora trees dominate the mangrove forests, also indicating a high RSL.  相似文献   

19.
This study assessed the risk of larval displacement of the eastern treehole mosquito, Aedes triseriatus, and the northern house mosquito, Culex pipiens, by Aedes albopictus, the Asian tiger mosquito, during the establishment and successional stages of novel larval mosquito treehole and ground‐container habitats in the state of New Jersey, U.S.A. Culex pipiens and Culex restuans were the first mosquito species to colonize ground‐container habitats and were the dominant larval species throughout the study period, whereas Ae. albopictus was late to colonize ground habitats and accounted for less than 15% of weekly larval collections once established. Ae. albopictus had a much stronger community presence within treehole ovitraps; however, Ae. albopictus never reached the average larval densities of the expected primary colonizer, Ae. triseriatus. Throughout the study period, the weekly abundances of Ae. triseriatus and Ae. albopictus were positively correlated and there were no significant differences between the abundances of each species. The larval dominance of Ae. triseriatus appears to be enhanced by the presence of Toxorhynchites rutilus septentrionalis, a large predatory mosquito species. When Tx. rut. septentrionalis was present, mature larvae (3rd–4th instar) of Ae. albopictus were also present in only 16.7% of collections, whereas mature larvae of Ae. triseriatus were collected concurrently with Tx. rut. septentrionalis in 53.8% of collections. These data suggest that Ae. triseriatus is at a greater risk of displacement by Ae. albopictus than are Cx. pipiens and Cx. restuans.  相似文献   

20.
Ruber  E.  Gilbert  A.  Montagna  P A.  Gillis  G.  Cummings  E. 《Hydrobiologia》1994,292(1):497-503
Populations of microcrustaceans were studied for 24 months in two New Jersey high salt marsh impoundments, and in three separate 14 month studies of high salt marsh pools in northeastern Massachusetts.In Massachusetts high marsh pools, dominants were all harpacticoids: Amphiascus pallidus, Cletocamptus deitersi, Harpacticus chelifer, Mesochra lilljeborgii, Metis jousseaumei, and Nitokra lacustris. The cyclopoids Apocyclops spartinus, Halicyclops sp. and the calanoid Eurytemora affinis were also numerically important. While there was extensive overlap, dominants varied to some extent from year to year and among the three studies. The New Jersey saline impoundment fauna showed extreme dominance (low equitability) in the first summer, somewhat less in the second and much less in the third. Total microcrustacean densities also declined each year. Variation in Apocyclops spartinus densities was the major factor, as this species comprised in three consecutive summers, 95, 85 and 51% of the total zooplankton at one station. Diversity as species richness was highest in a New Jersey freshwater impoundment which compared well with South Carolina salt marsh values. Impoundment diversity which was very low, and comparable with that found in a New Jersey Spartina patens marsh, increased each year becoming progressively more like that found in the Massachusetts pools.Vegetation changed significantly in the New Jersey impoundments over the three years. Spartina patens died-off in the first summer, while S. alterniflora gradually declined each year. A visit to the site twenty years later showed all emergent vegetation to be gone. These successional zooplankton and vegetation changes, together with the possible consequences of interrupted marsh-bay exchanges should be considered before undertaking any coastal mosquito control involving permanent flooding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号