首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coexistence of sexual and asexual reproduction within the same individual is an intriguing problem, especially when it concerns homothallic haplonts, like the fungus Aspergillus nidulans. In this fungus asexual and sexual offspring have largely identical genotypes. This genetic model organism is an ideal tool to measure possible fitness effects of sex (compared to asex) resulting from causes other than recombination. In this article we show that slightly deleterious mutations accumulate at a lower rate in the sexual pathway than in the asexual pathway. This secondary sex advantage may contribute to the persistence of sexual spores in this fungus. We propose that this advantage results from intra-organismal selection of the fittest gametes or zygotes, which is more stringent in the costly sexual pathway.  相似文献   

2.
The adaptive value of sexual reproduction is still debated in evolutionary theory. It has been proposed that the advantage of sexual reproduction over asexual reproduction is to promote genetic diversity, to prevent the accumulation of harmful mutations or to preserve heterozygosity. Since these hypothetical advantages depend on the type of asexual reproduction, understanding how selection affects the taxonomic distribution of each type could help us discriminate between existing hypotheses. Here, I argue that soft selection, competition among embryos or offspring in selection arenas prior to the hard selection of the adult phase, reduces loss of heterozygosity in certain types of asexual reproduction. Since loss of heterozygosity leads to the unmasking of recessive deleterious mutations in the progeny of asexual individuals, soft selection facilitates the evolution of these types of asexual reproduction. Using a population genetics model, I calculate how loss of heterozygosity affects fitness for different types of apomixis and automixis, and I show that soft selection significantly reduces loss of heterozygosity, hence increases fitness, in apomixis with suppression of the first meiotic division and in automixis with central fusion, the most common types of asexual reproduction. Therefore, if sexual reproduction evolved to preserve heterozygosity, soft selection should be associated with these types of asexual reproduction. I discuss the evidence for this prediction and how this and other observations on the distribution of different types of asexual reproduction in nature is consistent with the heterozygosity hypothesis.  相似文献   

3.
Why sexual reproduction is so prevalent in nature remains a major question in evolutionary biology. Most of the proposed advantages of sex rely on the benefits obtained from recombination. However, it is still unclear whether the conditions under which these recombinatorial benefits would be sufficient to maintain sex in the short term are met in nature. Our study addresses a largely overlooked hypothesis, proposing that sex could be maintained in the short term by advantages due to functions linked with sex, but not related to recombination. These advantages would be so essential that sex could not be lost in the short term. Here, we used the fungus Aspergillus nidulans to experimentally test predictions of this hypothesis. Specifically, we were interested in (i) the short‐term deleterious effects of recombination, (ii) possible nonrecombinatorial advantages of sex particularly through the elimination of mutations and (iii) the outcrossing rate under choice conditions in a haploid fungus able to reproduce by both outcrossing and haploid selfing. Our results were consistent with our hypotheses: we found that (i) recombination can be strongly deleterious in the short term, (ii) sexual reproduction between individuals derived from the same clonal lineage provided nonrecombinatorial advantages, likely through a selection arena mechanism, and (iii) under choice conditions, outcrossing occurs in a homothallic species, although at low rates.  相似文献   

4.
We measured the mean fitness of populations of Chlamydomonas reinhardtii maintained in the laboratory as obligately sexual or asexual populations for about 100 sexual cycles and about 1000 asexual generations. Sexuality (random gamete fusion followed by meiosis) is expected to reduce mutational load and increase mean fitness by combining deleterious mutations from different lines of descent. We found no evidence for this process of mutation clearance: the mean fitness of sexual populations did not exceed that of asexual populations, whether measured through competition or in pure culture. We found instead that sexual progeny suffer an immediate loss in fitness, and that sexual lines maintain genetic variance for fitness. We suggest that sexual populations at equilibrium with selection in a benign environment may be mixtures of several or many epistatic genotypes with nearly equal fitness. Recombination between these genotypes reduces mean fitness and creates genetic variance for fitness. This may provide fuel for continued selection should the environment change.  相似文献   

5.
The prevalence of sexual reproduction in most animal species despite its considerable costs such as useless males, energy spent on mating, the cost of meiosis and genome dilution remains a puzzle in evolutionary theory. One prominent single factor attempt to solve this persistent puzzle is the claim that sexual reproduction is instrumental in eliminating deleterious alleles from the species genome by the mechanism of recombination. There are three major versions of the deleterious allele hypothesis: First, the mutational deterministic hypothesis (MDH), which rests on the assumption of negative epistasis, predicts that recombination will help to purge the species genome of deleterious alleles by breaking apart linkages between these alleles. The assumption is that the joint negative effects of linked deleterious alleles is sometimes greater than the effects of the alleles considered separately. Second, there is the hypothesis that sexual reproduction speeds up purifying (negative) selection, which purges the genome of deleterious alleles. Alleles that are less deleterious than the wild type are naturally selected. These alleles, attained via recombination, are sometimes ‘leaky’ mutations giving rise to reduced functionality of attendant proteins. This hypothesis does not necessarily rest on the assumption of negative epistasis, which some argue is relatively rare in nature (Kouyos, Silander and Bonhoeffer (2012)) and which arguably could be seen as a virtue of the purifying selection hypothesis vs. the MDH. Third, Muller's ratchet hypothesis predicts that recombination will help to prevent the buildup of deleterious mutations by the mechanism of recombination. In this study, we focus primarily on testing the purifying selection hypothesis. We performed an individual-based model computer simulation using the program EcoSim to test this hypothesis. The experimental runs for sexual reproduction, asexual reproduction and facultative reproduction involved introducing a deleterious allele into the genome, which exacts an intermediate-level energy penalty on individuals. It was found that whereas on average, deleteriousness consistently declined over 18,000 time-steps due to recombination in sexual reproduction, deleteriousness did not decline for asexual and facultative runs. These results corroborate the hypothesis that recombination due to sexual reproduction helps to eliminate deleterious alleles from the genome through the selection of reduced function mutations.  相似文献   

6.
This study tests the hypothesis that one evolutionary advantage of sexual reproduction is that it produces genetically variable progeny with a density-dependent advantage mediated by resource partitioning or pest pressure. Our experimental approach involved planting separate plots of sexually-derived and asexually-derived tillers of the grass Anthoxanthum odoratum in density gradients at the two natural sites from which the source material was taken. The sexual progeny displayed a significant fitness advantage compared to the asexual progeny. But, in contrast to the expectations of the density-dependent selection hypothesis, the advantage of the sexually produced progeny is most marked at lower densities. Thus, the results of this experiment and our previous report (Antonovics and Ellstrand, 1984) seem to best support the frequency-dependent selection hypothesis for the advantage of sexual reproduction.  相似文献   

7.
Prevalence of sexual reproduction is still enigma. The main character of sex is alleles mixing that could be advantageous either in unstable environment (in this case sex provides high temp of evolution) or in unstable genotype (in this case sex provides purge of genome from deleterious mutations). As long as not all species inhabit highly changeable environments, variation of genotypes is more important factor. As the majority of new mutations is deleterious, effective mechanism of genome purging is needed. Maintenance of "purging mechanism" may be a single role of sex. Two promising mutational hypotheses--clade selection (Muller's ratchet and Nunney's hypothesis) and mutational deterministic hypothesis of Kondrashov claim that more effective elimination of slightly-deleterious mutations provides main advantage to sexual population in comparison with asexual. Despite prima facie similarity, these hypotheses differ in mechanisms, work at different temporal scales and have different consequences. Kondrashov's hypothesis reveals short-term advantage of sexual reproduction, and thus, based on the individual selection. Clade selection displays long-term advantage of sexual reproduction that could be realized only by group selection. The role of mobile elements in evolution of sexual reproduction is also discussed. Firstly, mobile elements ("sexual molecular parasites") can complicate the problem: having been domesticated in asexual genomes and remaining active in sexual genomes they lead to higher mutational rate in sexual organisms and so violate assumption critical for both mutational hypotheses of "other things being equal". Secondly, mobile elements could be leader factor of origin of sex (hypothesis proposed by Hickey). Because theory of group selection could explain maintenance of sex, but not its origin, mobile elements could induce the origin of sex but were not able to maintain it, so the next scenario of evolution of sex is proposed: mobile elements induced origin of sex, which was established later by group selection because provided long term benefit (Muller's ratchet and Nunney's hypothesis). So, on all stages of evolution, sex was not advantageous for the organism per se.  相似文献   

8.
Monokaryotic mycelia of the homobasidiomycete Coprinus cinereus form asexual spores (oidia) constitutively in abundant numbers. Mycelia with mutations in both mating type loci (Amut Bmut homokaryons) also produce copious oidia but only when exposed to blue light. We used such an Amut Bmut homokaryon to define environmental and inherent factors that influence the light-induced oidiation process. We show that the Amut function causes repression of oidiation in the dark and that light overrides this effect. Similarly, compatible genes from different haplotypes of the A mating type locus repress sporulation in the dark and not in the light. Compatible products of the B mating type locus reduce the outcome of light on A-mediated repression but the mutated B function present in the Amut Bmut homokaryons is not effective. In dikaryons, the coordinated regulation of asexual sporulation by compatible A and B mating type genes results in moderate oidia production in light. Copyright 1998 Academic Press.  相似文献   

9.
Understanding the occurrence and spread of azole resistance in Aspergillus fumigatus is crucial for public health. It has been hypothesized that asexual sporulation, which is abundant in nature, is essential for phenotypic expression of azole resistance mutations in A. fumigatus facilitating subsequent spread through natural selection. Furthermore, the disease aspergilloma is associated with asexual sporulation within the lungs of patients and the emergence of azole resistance. This study assessed the evolutionary advantage of asexual sporulation by growing the fungus under pressure of one of five different azole fungicides over seven weeks and by comparing the rate of adaptation between scenarios of culturing with and without asexual sporulation. Results unequivocally show that asexual sporulation facilitates adaptation. This can be explained by the combination of more effective selection because of the transition from a multicellular to a unicellular stage, and by increased mutation supply due to the production of spores, which involves numerous mitotic divisions. Insights from this study are essential to unravel the resistance mechanisms of sporulating pathogens to chemical compounds and disease agents in general, and for designing strategies that prevent or overcome the emerging threat of azole resistance in particular.  相似文献   

10.
The nature of variation in morphological characters in spores of arbuscular endomycorrhizal fungi (Order Glomales, Class Zygomycetes) has received little attention, despite the importance of these characters in modern taxonomy of the order. We tested the hypothesis that genetic variation exists in spore size and color (presumably important taxonomic characters) within a single isolate of the glomalean fungus Glomus clarum. Phenotypic variation in size and color of spores was determined from a pot culture population (designated P). A 10% selection pressure was imposed on replicate pot cultures of the first progeny culture generation (G1) by selecting the smallest, largest, yellowest, and whitest spores from the P generation and inoculating Sorghum bicolor plants. The experiment was repeated for another generation (G2), but with a 5% selection pressure. In both the G1 and G2 generations, significant differences in spore size and color were observed among the various treatments, indicating substantial genetic variation in these characters. Despite efforts to keep the physical environment constant across generations, we observed variation in the overall means of spore size and color among the generations (regardless of treatment), indicating a strong nongenetic influence on character expression. This study provides empirical evidence that will help delimit species boundaries among isolates of Glomus clarum and similar morphospecies. It also demonstrates a promising method to help elucidate the nature of character diversity in obligately asexual fungi.  相似文献   

11.
The adaptive significance of sexual reproduction remains as an unsolved problem in evolutionary biology. One promising hypothesis is that frequency‐dependent selection by parasites selects for sexual reproduction in hosts, but it is unclear whether such selection on hosts would feed back to select for sexual reproduction in parasites. Here we used individual‐based computer simulations to explore this possibility. Specifically, we tracked the dynamics of asexual parasites following their introduction into sexual parasite populations for different combinations of parasite virulence and transmission. Our results suggest that coevolutionary interactions with hosts would generally lead to a stable coexistence between sexual parasites and a single parasite clone. However, if multiple mutations to asexual reproduction were allowed, we found that the interaction led to the accumulation of clonal diversity in the asexual parasite population, which led to the eventual extinction of the sexual parasites. Thus, coevolution with sexual hosts may not be generally sufficient to select for sex in parasites. We then allowed for the stochastic accumulation of mutations in the finite parasite populations (Muller's Ratchet). We found that, for higher levels of parasite virulence and transmission, the population bottlenecks resulting from host–parasite coevolution led to the rapid accumulation of mutations in the clonal parasites and their elimination from the population. This result may explain the observation that sexual reproduction is more common in parasitic animals than in their free‐living relatives.  相似文献   

12.
Xu J 《Genetics》2005,171(4):1597-1604
The widespread occurrence of sexual organisms despite the high costs of sex has long intrigued biologists. The best-known costs are the twofold cost of producing males and the cost associated with producing traits to attract mates and to interact with mating partners, such as exaggerated sexual behaviors and morphological modifications. These costs have been inferred from studies of plants and animals but are thought to be absent in facultative sexual microbes. Here, using the facultative sexual fungus Cryptococcus neoformans, I provide experimental evidence showing that: (i) interactions with active sexual partners can be costly for vegetative fitness in a facultative sexual microbe; (ii) this cost is positively correlated to mating ability; (iii) this cost is composed of at least two distinct components, the cost of producing mating signals that exert effects on mating partners and that associated with responding to active mating partners; and (iv) extended asexual reproduction can reduce both components of the cost. This cost must have been compensated for by the production of zygotes and sexual spores to allow the initial evolution and spread of sexual reproduction in eukaryotes.  相似文献   

13.
Partial asexual reproduction was introduced into a model of inbreeding depression due to nearly recessive lethal mutations in a partially selfing population. The frequencies of asexuality, selfing, and outcrossing were either constant or occurred in cycles of a single sexual generation followed by one or more asexual generations. We found that increasing the degree of asexuality generally increases the inbreeding depression maintained in an equilibrium population with a given selfing rate. This is due to the increase in the number of mutations relative to sexual generations during which selfing-induced purging of mutations may take place. For very high genomic mutation rates, sufficient to produce a threshold rate of self-fertilization for purging recessive lethal mutations, asexuality can have the opposite effect, decreasing equilibrium inbreeding depression, because of an increase in the efficiency of selection against mutations in heterozygotes with asexuality.  相似文献   

14.
Genes of the major histocompatibility complex (MHC) encode molecules that control immune recognition and are highly polymorphic in most vertebrates. The remarkable polymorphisms at MHC loci may be maintained by selection from parasites, sexual selection, or both. If asexual species show equal (or higher) levels of polymorphisms at MHC loci as sexual ones, this would mean that sexual selection is not necessary to explain the high levels of diversity at MHC loci. In this study, we surveyed the MHC diversity of the asexual amazon molly (Poecilia formosa) and one of its sexual ancestors, the sailfin molly (P. latipinna), which lives in the same habitat. We found that the asexual molly has polymorphic MHC loci despite its clonal reproduction, yet not as polymorphic as the sexual species. Although the nucleotide diversity was similar between the asexual and sexual species, the sexual species exhibited a greater genotypic diversity compared to the asexual one from the same habitats. Within‐genome diversity was similar for MHC class I loci, but for class IIB, the sexual species had higher diversity compared to the asexual — despite the hybrid origins and higher levels of heterozygosity at microsatellite loci in the asexual species. The level of positive selection appears to be similar between the two species, which suggests that these polymorphisms are maintained by selection. Thus, our findings do not allow us to rule out the sexual selection hypothesis for the evolution of MHC diversity, and although the sexual fish has higher levels of MHC‐diversity compared to the asexual species, this may be due to differences in demography, parasites, or other factors, rather than sexual selection.  相似文献   

15.
Harmful mutations are ubiquitous and inevitable, and the rate at which these mutations are removed from populations is a critical determinant of evolutionary fate. Closely related sexual and asexual taxa provide a particularly powerful setting to study deleterious mutation elimination because sexual reproduction should facilitate mutational clearance by reducing selective interference between sites and by allowing the production of offspring with different mutational complements than their parents. Here, we compared the rate of removal of conservative (i.e., similar biochemical properties) and radical (i.e., distinct biochemical properties) nonsynonymous mutations from mitochondrial genomes of sexual versus asexual Potamopyrgus antipodarum, a New Zealand freshwater snail characterized by coexisting and ecologically similar sexual and asexual lineages. Our analyses revealed that radical nonsynonymous mutations are cleared at higher rates than conservative changes and that sexual lineages eliminate radical changes more rapidly than asexual counterparts. These results are consistent with reduced efficacy of purifying selection in asexual lineages allowing harmful mutations to remain polymorphic longer than in sexual lineages. Together, these data illuminate some of the population‐level processes contributing to mitochondrial mutation accumulation and suggest that mutation accumulation could influence the outcome of competition between sexual and asexual lineages.  相似文献   

16.
Selection acting on males can reduce mutation load of sexual relative to asexual populations, thus mitigating the twofold cost of sex, provided that it seeks and destroys the same mutations as selection acting on females, but with higher efficiency. This could happen due to sexual selection—a potent evolutionary force that in most systems predominantly affects males. We used replicate populations of red flour beetles (Tribolium castaneum) to study sex‐specific selection against deleterious mutations introduced with ionizing radiation. We found no evidence for selection being stronger in males than in females; in fact, we observed a nonsignificant trend in the opposite direction. This suggests that selection on males does not reduce mutation load below the level expected under the (hypothetical) scenario of asexual reproduction. Additionally, we employed a novel approach, based on a simple model, to quantify the relative contributions of sexual and offspring viability selection to the overall selection observed in males. We found them to be similar in magnitude; however, only the offspring viability component was statistically significant. In summary, we found no support for the hypothesis that selection on males in general, and sexual selection in particular, contributes to the evolutionary maintenance of sex.  相似文献   

17.
Synergism among mutations can lead to an advantage to sexual reproduction, provided mutation rates are high enough (the mutational deterministic hypothesis). Here we tested the idea that competition for food can increase the advantage to sexual reproduction, perhaps by increasing the synergism among mutations in asexual individuals. We compared the survivorship of sexual and asexual snails (Potamopyrgus antipodarum) under two treatments: starved and fed. We predicted higher mortality for asexual snails when starved, but found that sexual and asexual individuals survived at the same rate, independent of treatment. These results suggest that the distribution of sex in this snail may not be explained by variation in competition among populations.  相似文献   

18.
Hill JA  Otto SP 《Genetics》2007,175(3):1419-1427
In facultatively sexual species, lineages that reproduce asexually for a period of time can accumulate mutations that reduce their ability to undergo sexual reproduction when sex is favorable. We propagated Saccharomyces cerevisiae asexually for approximately 800 generations, after which we measured the change in sexual fitness, measured as the proportion of asci observed in sporulation medium. The sporulation rate in cultures propagated asexually at small population size declined by 8%, on average, over this time period, indicating that the majority of mutations that affect sporulation rate are deleterious. Interestingly, the sporulation rate in cultures propagated asexually at large population size improved by 11%, on average, indicating that selection on asexual function effectively eliminated most of the mutations deleterious to sporulation ability. These results suggest that pleiotropy between mutations' effects on asexual fitness and sexual fitness was predominantly positive, at least for the mutations accumulated in this experimental evolution study. A positive correlation between growth rate and sporulation rate among lines also provided evidence for positive pleiotropy. These results demonstrate that, at least under certain circumstances, selection acting on asexual fitness can help to maintain sexual function.  相似文献   

19.
Selfing in the chestnut blight fungus, Cryphonectria parasitica, occurs by two different genetic mechanisms. Most self-fertile isolates of C. parasitica are heterokaryotic for mating type, and the progeny from selfing segregate for mating type. Further, we resolved mating-type (MAT) heterokaryons into homokaryons of both mating types by isolating uninucleate asexual spores (conidia). However, because ascospore progeny, with rare exceptions, are not MAT heterokaryons, C. parasitica must lack a regular mechanism to maintain heterokaryosis by selfing. We hypothesize that heterokaryon formation may occur either because of recurrent biparental inbreeding, or by mating-type switching, possibly one involving some kind of parasexual process. The second mechanism found for selfing in C. parasitica occurred less frequently. Three single-conidial isolates (MAT-1 and MAT-2) selfed and produced progeny that did not segregate for mating type. It is currently not known if meiosis occurs during ascospore formation by this mechanism.  相似文献   

20.
Sexual selection is a powerful and ubiquitous force in sexual populations. It has recently been argued that sexual selection can eliminate the twofold cost of sex even with low genomic mutation rates. By means of differential male mating success, deleterious mutations in males become more deleterious than in females, and it has been shown that sexual selection can drastically reduce the mutational load in a sexual population, with or without any form of epistasis. However, any mechanism that claims to maintain sexual reproduction must be able to prevent the fixation of an asexual mutant clone with a twofold fitness advantage. Here, I show that despite very strong sexual selection, the fixation of an asexual mutant cannot be prevented under reasonable genomic mutation rates. Sexual selection can have a strong effect on the average mutational load in a sexual population, but as it cannot prevent the fixation of an asexual mutant, it is unlikely to play a key role on the maintenance of sexual reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号