首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of cbiK, a gene found encoded within the Salmonella typhimurium cob operon, has been investigated by studying its in vivo function in Escherichia coli. First, it was found that cbiK is not required for cobalamin biosynthesis in the presence of a genomic cysG gene (encoding siroheme synthase) background. Second, in the absence of a genomic cysG gene, cobalamin biosynthesis in E. coli was found to be dependent upon the presence of cobA(P. denitrificans) (encoding the uroporphyrinogen III methyltransferase from Pseudomonas denitrificans) and cbiK. Third, complementation of the cysteine auxotrophy of the E. coli cysG deletion strain 302delta a could be attained by the combined presence of cobA(P. denitrificans) and the S. typhimurium cbiK gene. Collectively these results suggest that CbiK can function in fashion analogous to that of the N-terminal domain of CysG (CysG(B)), which catalyzes the final two steps in siroheme synthesis, i.e., NAD-dependent dehydrogenation of precorrin-2 to sirohydrochlorin and ferrochelation. Thus, phenotypically CysG(B) and CbiK have very similar properties in vivo, although the two proteins do not have any sequence similarity. In comparison to CysG, CbiK appears to have a greater affinity for Co2+ than for Fe2+, and it is likely that cbiK encodes an enzyme whose primary role is that of a cobalt chelatase in corrin biosynthesis.  相似文献   

2.
The sulfate‐reducing bacteria of the Desulfovibrio genus make three distinct modified tetrapyrroles, haem, sirohaem and adenosylcobamide, where sirohydrochlorin acts as the last common biosynthetic intermediate along the branched tetrapyrrole pathway. Intriguingly, D. vulgaris encodes two sirohydrochlorin chelatases, CbiKP and CbiKC, that insert cobalt/iron into the tetrapyrrole macrocycle but are thought to be distinctly located in the periplasm and cytoplasm respectively. Fusing GFP onto the C‐terminus of CbiKP confirmed that the protein is transported to the periplasm. The structure‐function relationship of CbiKP was studied by constructing eleven site‐directed mutants and determining their chelatase activities, oligomeric status and haem binding abilities. Residues His154 and His216 were identified as essential for metal‐chelation of sirohydrochlorin. The tetrameric form of the protein is stabilized by Arg54 and Glu76, which form hydrogen bonds between two subunits. His96 is responsible for the binding of two haem groups within the main central cavity of the tetramer. Unexpectedly, CbiKP is shown to bind two additional haem groups through interaction with His103. Thus, although still retaining cobaltochelatase activity, the presence of His96 and His103 in CbiKP, which are absent from all other known bacterial cobaltochelatases, has evolved CbiKP a new function as a haem binding protein permitting it to act as a potential haem chaperone or transporter.  相似文献   

3.
One of the four operons required for cobalamin biosynthesis in Bacillus megaterium is also associated with sirohaem synthesis, and contains three genes, sirA, sirB and sirC. By undertaking functional complementation experiments and in vitro assays using recombinantly produced enzymes, we have been able to demonstrate that (1) SirA acts as a uroporphyrinogen III methyltransferase, transforming uroporphyrinogen III into precorrin-2, (2) SirC acts as an NAD(+) dehydrogenase, responsible for the oxidation of precorrin-2 into sirohydrochlorin, and (3) SirB acts as a ferrochelatase, responsible for the insertion of a ferrous ion into sirohydrochlorin to give sirohaem. Comparative sequence analysis reveals that the primary structure of SirB is highly similar to that of the cobalt chelatase involved in cobalamin biosynthesis in Bacillus megaterium, CbiX, with the exception that CbiX contains a C-terminal histidine-rich motif. Surprisingly, CbiX has been shown (using EPR) to contain a 4Fe-4S centre, a redox centre that is absent from SirB.  相似文献   

4.
The Archaeoglobus fulgidus gene af0721 encodes CbiXS, a small cobaltochelatase associated with the anaerobic biosynthesis of vitamin B12 (cobalamin). The protein was shown to have activity both in vivo and in vitro, catalyzing the insertion of Co2+ into sirohydrochlorin. The structure of CbiXS was determined in two different crystal forms and was shown to consist of a central mixed β-sheet flanked by four α-helices, one of which originates in the C-terminus of a neighboring molecule. CbiXS is about half the size of other Class II tetrapyrrole chelatases. The overall topography of CbiXS exhibits substantial resemblance to both the N- and C-terminal regions of several members of the Class II metal chelatases involved in tetrapyrrole biosynthesis. Two histidines (His10 and His74), are in similar positions as the catalytic histidine residues in the anaerobic cobaltochelatase CbiK (His145 and His207). In light of the hypothesis that suggests the larger chelatases evolved via gene duplication and fusion from a CbiXS-like enzyme, the structure of AF0721 may represent that of an “ancestral” precursor of class II metal chelatases.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

5.
H L Schubert  E Raux  K S Wilson  M J Warren 《Biochemistry》1999,38(33):10660-10669
Prosthetic groups such as heme, chlorophyll, and cobalamin (vitamin B(12)) are characterized by their branched biosynthetic pathway and unique metal insertion steps. The metal ion chelatases can be broadly classed either as single-subunit ATP-independent enzymes, such as the anaerobic cobalt chelatase and the protoporphyrin IX (PPIX) ferrochelatase, or as heterotrimeric, ATP-dependent enzymes, such as the Mg chelatase involved in chlorophyll biosynthesis. The X-ray structure of the anaerobic cobalt chelatase from Salmonella typhimurium, CbiK, has been solved to 2.4 A resolution. Despite a lack of significant amino acid sequence similarity, the protein structure is homologous to that of Bacillus subtilis PPIX ferrochelatase. Both enzymes contain a histidine residue previously identified as the metal ion ligand, but CbiK contains a second histidine in place of the glutamic acid residue identified as a general base in PPIX ferrochelatase. Site-directed mutagenesis has confirmed a role for this histidine and a nearby glutamic acid in cobalt binding, modulating metal ion specificity as well as catalytic efficiency. Contrary to the predicted protoporphyrin binding site in PPIX ferrochelatase, the precorrin-2 binding site in CbiK is clearly defined within a large horizontal cleft between the N- and C-terminal domains. The structural similarity has implications for the understanding of the evolution of this branched biosynthetic pathway.  相似文献   

6.
Porphyromonas gingivalis is a gram-negative, anaerobic coccobacillus that has been implicated as a major etiological agent in the development of chronic periodontitis. In this paper, we report the characterization of a protein, IhtB (iron heme transport; formerly designated Pga30), that is an outer membrane hemin-binding protein potentially involved in iron assimilation by P. gingivalis. IhtB was localized to the cell surface of P. gingivalis by Western blot analysis of a Sarkosyl-insoluble outer membrane preparation and by immunocytochemical staining of whole cells using IhtB peptide-specific antisera. The protein, released from the cell surface, was shown to bind to hemin using hemin-agarose. The growth of heme-limited, but not heme-replete, P. gingivalis cells was inhibited by preincubation with IhtB peptide-specific antisera. The ihtB gene was located between an open reading frame encoding a putative TonB-linked outer membrane receptor and three open reading frames that have sequence similarity to ATP binding cassette transport system operons in other bacteria. Analysis of the deduced amino acid sequence of IhtB showed significant similarity to the Salmonella typhimurium protein CbiK, a cobalt chelatase that is structurally related to the ATP-independent family of ferrochelatases. Molecular modeling indicated that the IhtB amino acid sequence could be threaded onto the CbiK fold with the IhtB structural model containing the active-site residues critical for chelatase activity. These results suggest that IhtB is a peripheral outer membrane chelatase that may remove iron from heme prior to uptake by P. gingivalis.  相似文献   

7.
8.
The genome of the sulphate reducing bacterium Desulfovibrio vulgaris Hildenborough, still considered a strict anaerobe, encodes two oxygen reductases of the bd and haem-copper types. The haem-copper oxygen reductase deduced amino acid sequence reveals that it is a Type A2 enzyme, which in its subunit II contains two c-type haem binding motifs. We have characterized the cytochrome c domain of subunit II and confirmed the binding of two haem groups, both with Met-His iron coordination. Hence, this enzyme constitutes the first example of a ccaa3 haem-copper oxygen reductase. The expression of D. vulgaris haem-copper oxygen reductase was found to be independent of the electron donor and acceptor source and is not altered by stress factors such as oxygen exposure, nitrite, nitrate, and iron; therefore the haem-copper oxygen reductase seems to be constitutive. The KCN sensitive oxygen reduction by D. vulgaris membranes demonstrated in this work indicates the presence of an active haem-copper oxygen reductase. D. vulgaris membranes perform oxygen reduction when accepting electrons from the monohaem cytochrome c553, thus revealing the first possible electron donor to the terminal oxygen reductase of D. vulgaris. The physiological implication of the presence of the oxygen reductase in this organism is discussed.  相似文献   

9.
The gene encoding the prismane protein from Desulfovibrio vulgaris (Hildenborough) was inserted into broad-host-range vector pSUP104. The recombinant plasmid, pJSP104, was transferred to D. vulgaris by conjugal plasmid transfer. In the transconjugant D. vulgaris cells the prismane protein was 25-fold overproduced. The overproduced prismane protein was characterized by molecular mass, isoelectric point, iron content and spectroscopical properties. Both the iron content and the ultraviolet/visible spectrum are identical to the wild-type protein indicating that iron incorporation in the overproduced protein is complete. EPR spectra of the dithionite-reduced form of the overproduced protein indicated that the Fe-S cluster might occur in a similar structure as found in inorganic model compounds containing a [6Fe-6S] prismane core. The as-isolated overproduced protein showed the presence of a second S = 1/2 spin system that was also detected in the corresponding prismane protein from D. desulfuricans (ATCC 27774), but not in the protein from wild-type D. vulgaris. This additional signal was irreversibly transformed to the 'wild-type' high-spin and low-spin systems upon two reduction/re-oxidation cycles. It is shown that the EPR spectroscopy of the overproduced prismane protein is very similar to that of the D. desulfuricans enzyme and, with the exception of the second S = 1/2 spin system, to that of the prismane protein from wild-type D. vulgaris. Contrary to claims for the D. desulfuricans protein, it is shown here that all data can be fully explained assuming a single [6Fe-6S] cluster, that might be titrated into four different redox states and occurs in up to three different spin systems in the one-electron reduced state.  相似文献   

10.
In this work the exchange of calcium, cobalt, iron, magnesium, zinc and manganese ions between alginate gel beads and casein medium was investigated. The high release of calcium ions from alginate to the medium and the biosorption of some metal ions were observed. The pure alginate gel adsorbed all the metal ions examined, from a fermentative medium. Gel with immobilized cells of two strains of Propionibacterium freudenreichii subsp. shermanii showed an active ability to adsorb only cobalt, iron and zinc ions. In this way, a special microelemental environment was created in the alginate gel. This resulted in an increase of propionic acid production and a decrease of vitamin B12 biosynthesis. Received: 30 April 1997 / Received revision: 2 July 1997 / Accepted: 4 July 1997  相似文献   

11.
All tetrapyrroles are synthesized through a branched pathway, and although each tetrapyrrole receives unique modifications around the ring periphery, they all share the unifying feature of a central metal ion. Each pathway maintains a unique metal ion chelatase, and several tertiary structures have been determined, including those of the protoporphyrin ferrochelatase from both human and Bacillus subtilus, and the cobalt chelatase CbiK. These enzymes exhibit strong structural similarity and appear to function by a similar mechanism. Met8p, from Saccharomyces cerevisiae, catalyses ferrochelation during the synthesis of sirohaem, and the structure reveals a novel chelatase architecture whereby both ferrochelation and NAD(+)-dependent dehydrogenation take place in a single bifunctional active site. Asp-141 appears to participate in both catalytic reactions. The final common biosynthetic step in tetrapyrrole biosynthesis is the generation of uroporphyrinogen by uroporphyrinogen III synthase, whereby the D ring of hydroxymethylbilane is flipped during ring closure to generate the asymmetrical structure of uroporphyrinogen III. The recently derived structure of uroporphyrinogen III synthase reveals a bi-lobed structure in which the active site lies between the domains.  相似文献   

12.
The cobaltochelatase required for the synthesis of vitamin B12 (cobalamin) in the archaeal kingdom has been identified as CbiX through similarity searching with the CbiX from Bacillus megaterium. However, the CbiX proteins in the archaea are much shorter than the CbiX proteins found in eubacteria, typically containing less than half the number of amino acids in their primary structure. For this reason the shorter CbiX proteins have been termed CbiXS and the longer versions CbiXL. The CbiXS proteins from Methanosarcina barkeri and Methanobacter thermoautotrophicum were overproduced in Escherichia coli as recombinant proteins and characterized. Through complementation studies of a defined chelatase-deficient strain of E. coli and by direct in vitro assays the function of CbiXS as a sirohydrochlorin cobaltochelatase has been demonstrated. On the basis of sequence alignments and conserved active site residues we suggest that CbiXS may represent a primordial chelatase, giving rise to larger chelatases such as CbiXL, SirB, CbiK, and HemH through gene duplication and subsequent variation and selection. A classification scheme for chelatases is proposed.  相似文献   

13.
14.
15.
16.
17.
Evidence is presented for an alternative to the superoxide dismutase (SOD)-catalase oxidative stress defense system in Desulfovibrio vulgaris (strain Hildenborough). This alternative system consists of the nonheme iron proteins, rubrerythrin (Rbr) and rubredoxin oxidoreductase (Rbo), the product of the rbo gene (also called desulfoferrodoxin). A Deltarbo strain of D. vulgaris was found to be more sensitive to internal superoxide exposure than was the wild type. Unlike Rbo, expression of plasmid-borne Rbr failed to restore the aerobic growth of a SOD-deficient strain of Escherichia coli. Conversely, plasmid-borne expression of two different Rbrs from D. vulgaris increased the viability of a catalase-deficient strain of E. coli that had been exposed to hydrogen peroxide whereas Rbo actually decreased the viability. A previously undescribed D. vulgaris gene was found to encode a protein having 50% sequence identity to that of E. coli Fe-SOD. This gene also encoded an extended N-terminal sequence with high homologies to export signal peptides of periplasmic redox proteins. The SOD activity of D. vulgaris is not affected by the absence of Rbo and is concentrated in the periplasmic fraction of cell extracts. These results are consistent with a superoxide reductase rather than SOD activity of Rbo and with a peroxidase activity of Rbr. A joint role for Rbo and Rbr as a novel cytoplasmic oxidative stress protection system in D. vulgaris and other anaerobic microorganisms is proposed.  相似文献   

18.
Three intrinsic membrane proteins exhibiting oxygen stable hydrogenase activity have been isolated from D. vulgaris. In contrast to the periplasmic exclusively non-heme iron hydrogenase, all three hydrogenases contain Ni in addition to non-heme iron, have low specific activities and are insensitive to inhibition by CO. None of the three hydrogenases cross react with IgA against the periplasmic hydrogenase of D. vulgaris but two of the new hydrogenases cross react with IgA against the periplasmic nickel containing hydrogenase of D. gigas and the other new hydrogenase cross reacts with IgA against the periplasmic nickel and selenium hydrogenase of D. desulfuricans (Norway -4).  相似文献   

19.
The genome of Desulfovibrio vulgaris strain DePue, a sulfate-reducing Deltaproteobacterium isolated from heavy metal-impacted lake sediment, was completely sequenced and compared with the type strain D. vulgaris Hildenborough. The two genomes share a high degree of relatedness and synteny, but harbour distinct prophage and signatures of past phage encounters. In addition to a highly variable phage contribution, the genome of strain DePue contains a cluster of open-reading frames not found in strain Hildenborough coding for the production and export of a capsule exopolysaccharide, possibly of relevance to heavy metal resistance. Comparative whole-genome microarray analysis on four additional D. vulgaris strains established greater interstrain variation within regions associated with phage insertion and exopolysaccharide biosynthesis.  相似文献   

20.
X-ray crystal structures of recombinant Desulfovibrio (D.) vulgaris rubrerythrin (Rbr) have shown a diiron site, whereas the crystal structure of Rbr "as-isolated" from D. vulgaris was reported to contain a mixed Zn,Fe binuclear site. To investigate the possibility that zinc had displaced iron during isolation or crystallization of the "as-isolated" D. vulgaris Rbr, the X-ray crystal structure of recombinant D. vulgaris all-iron Rbr that had been incubated with excess zinc sulfate prior to crystallization, yielding a protein labeled Zn,FeRbr, was solved. Analysis of the anomalous scattering data obtained at two different wavelengths showed that zinc had displaced a significant proportion of iron from both iron centers of the diiron site, and that no iron had been displaced from the [Fe(SCys)(4)] site. UV-visible absorption spectra of the redissolved Zn,FeRbr crystals showed 30-40% retention of oxo-bridged diferric sites, and the redissolved crystals had 37% of the peroxidase specific activity of the starting all-iron Rbr, which, together with the crystallographic results, indicate a predominant mixture of Fe1,Fe2 and Zn1,Zn2 sites. The structure of the Zn(Fe)1,Fe(Zn)2 binuclear site in the Zn,FeRbr crystals was very similar to that of the Zn,Fe binuclear site reported for the "as-isolated" D. vulgaris Rbr, including tetrahedral four-coordination at the Zn(Fe)1 site. The diiron sites in the recombinant Zn,FeRbr crystals were likely at least partially reduced during synchrotron irradiation. Our results suggest that the mixed-metal binuclear site reported for the "as-isolated" D. vulgaris Rbr could be due to displacement of iron from a native diiron site by adventitious zinc during isolation and/or crystallization, and that reduced diiron and dizinc sites can adopt very similar structures in Rbr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号