首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of stacking in terminal base-pair formation was studied by comparison of the stability increments for dangling ends to those for fully formed base pairs. Thermodynamic parameters were measured spectrophotometrically for helix formation of the hexanucleotides AGGCCUp, UGGCCAp, CGGCCGp, GCCGGCp, and UCCGGAp and for the corresponding pentanucleotides containing a 5'-dangling end on the GGCCp or CCGGp core helix. In 1 M NaCl at 1 X 10(-4) M strands, a 5'-dangling nucleotide in this series increases the duplex melting temperature (Tm) only 0-4 degrees C, about the same as adding a 5'-phosphate. In contrast, a 3'-dangling nucleotide increases the Tm at 1 X 10(-4) M strands 7-23 degrees C, depending on the sequence [Freier, S. M., Burger, B. J., Alkema, D., Neilson, T., & Turner, D. H. (1983) Biochemistry 22, 6198-6206]. These results are consistent with stacking patterns observed in A-form RNA. The stability increments from terminal A.U, C.G, or U.A base pairs on GGCC or a terminal U.A pair on CCGG are nearly equal to the sums of the stability increments from the corresponding dangling ends. This suggests stacking plays a large role in nucleic acid stability. The stability increment from the terminal base pairs in GCCGGCp, however, is about 5 times the sum of the corresponding dangling ends, suggesting hydrogen bonding can also make important contributions.  相似文献   

2.
Thermodynamic parameters are reported for duplex formation in 1 M NaCl for 16 RNA sequences, each containing a core tetramer duplex, GGCC, and a 3' overhang consisting of two bases. The results indicate additional double-helical stability is conferred by the double 3' terminal overhang relative to the single 3' terminal overhang. A nearest-neighbor analysis of the data indicates that the free energy contribution at 37 degrees C of the second base in the double 3' terminal overhang varies from 0 to 0.7 kcal/mol. The second base in the 3' double overhang can contribute nearly the same stability to a duplex as a base pair or a 3' dangling overhang. Stability contribution of a dangling base, two nucleotides removed from the 3' end of a duplex, is dependent upon both the identity of the base as well as that of the dangling base that it neighbors. A second dangling base only increases the stability of the duplex when it is neighboring a 3' purine dangling nucleotide. Furthermore, a second dangling pyrimidine provides a greater contribution to duplex stability than a purine. A nearest-neighbor model was developed to predict the influence of 3' double overhang on the stability of duplex formation. The model improves the prediction of free energy and melting temperature when tested against six sequences with different core duplexes.  相似文献   

3.
N Sugimoto  R Kierzek  D H Turner 《Biochemistry》1987,26(14):4554-4558
Stability increments of terminal unpaired nucleotides (dangling ends) and terminal base pairs on the core helixes AUGCAU and UGCGCA are reported. Enthalpy, entropy, and free energy changes of helix formation were measured spectrophotometrically for 18 oligoribonucleotides containing the core sequences. The results indicate 3' dangling purines add more stability than 3' dangling pyrimidines. In most cases, the additional stability from a 3' dangling end on an AU base pair is less than that on a GC base pair [Freier, S.M., Burger, B.J., Alkema, D., Neilson, T., & Turner, D.H. (1985) Biochemistry 22, 6198-6206]. The sequence dependence provides a test for the importance of dangling ends for various RNA interactions. Correlations are suggested with codon context effects and with the three-dimensional structure of yeast phenylalanine transfer RNA. In the latter case, all terminal unpaired nucleotides having stability increments more favorable than -1 kcal/mol are stacked on the adjacent base pair. All terminal unpaired nucleotides having stability increments less favorable than -0.3 kcal/mol are not stacked on the adjacent base pair. In several cases, this lack of stacking is associated with a turn in the sugar-phosphate backbone. This suggests stability increments measured on oligoribonucleotides may be useful for predicting tertiary structure in large RNA molecules. Comparison of the stability increments for terminal dangling ends and base pairs, and of terminal GC and AU base pairs, indicates the free energy increment associated with forming a hydrogen bond can be about -1 kcal/mol of hydrogen bond.  相似文献   

4.
The stabilizing effects of dangling ends and terminal base pairs on the core helix GCGC are reported. Enthalpy and entropy changes of helix formation were measured spectrophotometrically for AGCGCU, UGCGCA, GGCGCCp, CGCGCGp, and the corresponding pentamers XGCGCp and GCGCYp containing the GCGC core plus a dangling end. Each 5' dangling end increases helix stability at 37 degrees C roughly 0.2 kcal/mol and each 3' end from 0.8 to 1.7 kcal/mol. The free energy increments for dangling ends on GCGC are similar to the corresponding increments reported for the GGCC core [Freier, S. M., Alkema, D., Sinclair, A., Neilson, T., & Turner, D. H. (1985) Biochemistry 24, 4533-4539], indicating a nearest-neighbor model is adequate for prediction of stabilization due to dangling ends. Nearest-neighbor parameters for prediction of the free energy effects of adding dangling ends and terminal base pairs next to G.C pairs are presented. Comparison of these free energy changes is used to partition the free energy of base pair formation into contributions of "stacking" and "pairing". If pairing contributions are due to hydrogen bonding, the results suggest stacking and hydrogen bonding make roughly comparable favorable contributions to the stability of a terminal base pair. The free energy increment associated with forming a hydrogen bond is estimated to be -1 kcal/mol of hydrogen bond.  相似文献   

5.
Adjacent GxU wobble base pairs are frequently found in rRNA. Atomic structures of small RNA motifs help to provide a better understanding of the effects of various tandem mismatches on duplex structure and stability, thereby providing better rules for RNA structure prediction and validation. The crystal structure of an RNA duplex containing the sequence r(GGUAUUGC-GGUACC)2 has been solved at 2.1 A resolution using experimental phases. Novel refinement strategies were needed for building the correct solvent model. At present, this is the only short RNA duplex structure containing 5'-U-U-3'/3'-G-G-5' non-symmetric tandem GxU wobble base pairs. In the 14mer duplex, the six central base pairs are all displaced away from the helix axis, yielding significant changes in local backbone conformation, helix parameters and charge distribution that may provide specific recognition sites for biologically relevant ligand binding. The greatest deviations from A-form helix occur where the guanine of a wobble base pair stacks over a purine from the opposite strand. In this vicinity, the intra-strand phosphate distances increase significantly, and the major groove width increases up to 3 A. Structural comparisons with other short duplexes containing symmetrical tandem GxU or GxT wobble base pairs show that nearest-neighbor sequence dependencies govern helical twist and the occurrence of cross-strand purine stacks.  相似文献   

6.
The conformational pathways and the free energy variations for base opening into the major and minor grooves of a B-DNA duplex are studied using umbrella sampling molecular dynamics simulations. We compare both GC and AT base pair opening within a double-stranded d(GAGAGAGAGAGAG)· d(CTCTCTCTCTCTC) oligomer, and we are also able to study the impact of opening on the conformational and dynamic properties of DNA and on the surrounding solvent. The results indicate a two-stage opening process with an initial coupling of the movements of the bases within the perturbed base pair. Major and minor groove pathways are energetically comparable in the case of the pyrimidine bases, but the major groove pathway is favored for the larger purine bases. Base opening is coupled to changes in specific backbone dihedrals and certain helical distortions, including untwisting and bending, although all these effects are dependent on the particular base involved. Partial opening also leads to well defined water bridging sites, which may play a role in stabilizing the perturbed base pairs.  相似文献   

7.
Thermodynamic parameters for DNA sequences with dangling ends   总被引:23,自引:14,他引:9       下载免费PDF全文
The thermodynamic contributions to duplex formation of all 32 possible single-nucleotide dangling ends on a Watson-Crick pair are reported. In most instances, dangling ends are stabilizing with free energy contributions ranging from +0.48 (GT(A)) to-0.96 kcal/mol (). In comparison, Watson-Crick nearest-neighbor increments range from -0. 58 (TA/AT) to -2.24 (GC/CG) kcal/mol. Hence, in some cases, a dangling end contributes as much to duplex stability as a Watson-Crick A-T base pair. The implications of these results for DNA probe design are discussed. Analysis of the sequence dependence of dangling-end stabilities show that the nature of the closing base pair largely determines the stabilization. For a given closing base pair, however, adenine dangling ends are always more or equally as stable as the other dangling nucleotides. Moreover, 5' dangling ends are more or equally as stabilizing as their 3' counterparts. Comparison of DNA with RNA dangling-end motifs shows that DNA motifs with 5' dangling ends contribute to stability equally or more than their RNA counterparts. Conversely, RNA 3' dangling ends contribute to stability equally or more than their DNA counterparts. This data set has been incorporated into a DNA secondary structure prediction algorithm (DNA MFOLD) (http://mfold2.wustl.edu/mfold/dna/for m1.cgi) as well as a DNA hybridization prediction algorithm (HYTHERtrade mark) (http://jsl1.chem.wayne.edu/Hyther/hythermenu .html).  相似文献   

8.
Single unpaired nucleotides at the end of double‐stranded nucleic acids, termed dangling ends, can contribute to duplex stability. Umbrella sampling free energy simulations of dangling cytosine and guanine nucleotides at the end of duplex and single stranded RNA and DNA molecules have been used to investigate the molecular origin of dangling end effects. In unrestraint simulations, the dangling end nucleotides stayed close to placements observed in experimental structures. Calculated free energy contributions associated with the presence of dangling nucleotides were in reasonable agreement with experiment predicting the general trend of a more stabilizing effect of purine vs. pyrimidine dangling ends. In addition, the calculations indicate a more significant stabilizing effect of dangling ends at the 5′‐end vs. 3′‐end in case of DNA and the opposite trend in case of RNA. Both electrostatic and van der Waals interactions contribute to the duplex stabilizing effect of dangling end nucleotides. The free energy simulation scheme could also be used to design dangling end nucleotides that result in enhanced duplex stabilization. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 418–427, 2014.  相似文献   

9.
W C Ho  C Steinbeck  C Richert 《Biochemistry》1999,38(39):12597-12606
Reported here is the solution structure of the aminoacyl-DNA duplex (W-TGCGCAC)(2). This duplex forms a continuously pi-stacked helix consisting of both nucleobases and amino acid side chains. According to NMR and UV analyses, the duplex melts in a cooperative transition and with 1.3-1.8% greater hyperchromicity than the control duplex (TGCGCAC)(2). A van't Hoff analysis of UV melting points at different concentrations shows that the two tryptophan residues contribute 4.8 kcal/mol to the DeltaH degrees of complex formation at 10 mM salt concentration and less than 1 kcal/mol at 150 mM salt. The entropic cost for duplex association in the presence of the amino acid residues is 13 cal/molK greater than that for the control at 10 mM salt concentration, and 3 cal/molK lower than that of the control at 0.15 ionic strength. The conformation of W-TGCGCAC in duplex form, determined via restrained torsion angle molecular dynamics, shows an undisturbed B-form DNA duplex with dangling 3'-termini. The tryptophanyl residue at the 5'-terminus packs tightly against T2 and the proximal part of adenine, without engaging in hydrogen bonding. While not providing strong enthalpic net stabilization of the duplex, the tryptophan "cap" on the duplex does seem to reduce the fraying at the termini, indicating a subtle balance of entropic and enthalpic factors contributing to the molecular dynamics. The structure also shows that, at least in the present sequence context, stacking on the terminal base pair is more favorable than intercalation, probably because the enthalpic cost associated with breaking up the stacking between DNA base pairs cannot be paid for by favorable pi-stacking interactions with the indole ring of tryptophan. These results are of importance for understanding stacking interactions in protein-DNA complexes, particularly those in enzyme-substrate complexes involving exposed nucleobases.  相似文献   

10.
Proton NMR studies of d(CGT), d(TCG) and d(CGTCG) were carried out at 300 and 500 MHz. The temperature and concentration dependence of the chemical shifts of various resonances indicates duplex formation only in the cases of d(TCG) and d(CGTCG). It is concluded that d(TCG) forms a mini-duplex stabilized by a 5'-dangling thymine base. Thermodynamic parameters of the duplex-to-coil equilibrium of the d(TCG) duplex are: delta H0 = -22.3 kcal/mol and delta S0 = -70 cal/mol. K, which correspond to approximately 40% duplex formation at 0 degrees C in a 2 mM nucleotide solution. Comparison of these data with thermodynamic parameters given earlier [Borer, P.N., Dengler, B., Tinoco, I. and Uhlenbeck, O.C. (1974) J. Mol. Biol. 86, 843-853] leads to the conclusion that the dangling base stabilization observed here is approximately equivalent to the stabilization caused by one or two additional A . T base pairs. The chemical shift behaviour of various resonances in d(CGTCG) indicates duplex formation without looping out of the thymine bases. The T X T mismatch does not seem to disturb the helical structure to a large extent. Analysis of the vicinal proton-proton coupling constants of the three compounds yielded geometrical data for the sugar rings. The data are interpreted in terms of N and S pseudorotational ranges. It is shown that a distinct conformation-transmission effect is exerted by the guanosine residues in a 5'----3' direction.  相似文献   

11.
The geometry of the dangling base in 105 published structures (from X-ray/NMR) containing single-stranded overhangs has been analyzed and correlated to the thermodynamic stabilization found (UV) for the corresponding dangling base/closing basepair combination in short oligonucleotides. The study considers most combinations of closing basepairs, sequence and dangling base residue type, attached in both the 3'- and 5'-ends of both DNA and RNA. Linear regression analysis showed a straightforward correlation (R = 0.873) between the degree of screening for the hydrogen bonds of the closing basepair provided by the dangling base and the resulting thermodynamic stabilization in both DNA and RNA series with dangling ends either at the 3'- or at the 5'-terminus. Regression analysis of only the datasets from RNA gives an improved correlation, R = 0.934, showing that dangling ends on RNA are more ordered than the dangling ends on DNA, R = 0.376. This study highlights the gain in the free energy of stabilization owing to the favorable stacking between the dangling nucleobase and the neighboring basepair and the resulting strengthening of the hydrogen bond of the closing basepair. By acting as a hydrophobic cap on the terminal of the DNA or RNA duplex, the dangling-end residue restricts the bulk water access to the terminal basepair, thereby providing it with a microenvironment devoid of water, which consequently enhances its thermodynamic stability, making it energetically comparable to the corresponding internal basepair. Thus, one single structural model consisting of the interplay of the above electrostatic interactions can be used to explain the molecular basis of the observed thermodynamic effects for dangling-end attachment to the 3'- and 5'-ends of both DNA and RNA duplexes, which is a key step toward accurate dangling-end effect prediction.  相似文献   

12.
The solution structure of a rather unusual B-form duplex [d(ATGAGCGAATA)]2 has been determined using two-dimensional nuclear magnetic resonance (2D-NMR) and distance geometry methods. This sequence forms a stable ten base-pair B-form duplex with 3' overhangs and two pairs of adjacent G:A mismatches paired via a sheared hydrogen-bonding scheme. All non-exchangeable protons, including the stereo-specific H-5'S/H-5'R of the 3G and 7G residues, were assigned by 2D-NMR. The phosphorus spectrum was assigned using heteronuclear correlation with H-3' and H-4' reasonances. The complete assignments reveal several unusual nuclear Overhauser enhancements (NOEs) and unusual chemical shifts for the neighboring G:A mismatch pairs and their adjacent nucleotides. Inter-proton distances were derived from time-dependent NOEs and used to generate initial structures, which were further refined by iterative back-calculation of the two-dimensional nuclear Overhauser enhancement spectra; 22 final structures were calculated from the refined distance bounds. All these final structures exhibit fully wound helical structures with small penalty values against the refined distance bounds and small pair-wise root-mean-square deviation values (typically 0.5 A to 0.9 A). The two helical strands exchange base stacking at both of the two G:A mismatch sites, resulting in base stacking down each side rather than down each strand of the twisted duplex. Very large twist angles (77 degrees) were found at the G:A mismatch steps. All the final structures were found to have BII phosphate conformations at the adjacent G:A mismatch sites, consistent with observed downfield 31P chemical shifts and Monte-Carlo conformational search results. Our results support the hypothesis that 31P chemical shifts are related to backbone torsion angles. These BII phosphate conformations in the adjacent G:A mismatch step suggest that hydrogen bonding of the G:A pair G-NH2 to a nearby phosphate oxygen atom is unlikely. The unusual structure of the duplex may be stabilized by strong interstrand base stacking as well as intrastrand stacking, as indicated by excellent base overlap within the mismatch stacks.  相似文献   

13.
Ultraviolet hyperchromicity experiments indicate that in DNA duplex formation, a C-T mismatch is destabilizing in the center of a duplex, but behaves as a stable base pair at the terminus of a duplex. The C-T base pair is thought to contain two hydrogen bonds, but has thermodynamic parameters (delta Ho and delta Go of dissociation) that are similar to a G-C base pair. AMBER molecular mechanics calculations were performed to study the possible structural properties of DNA duplexes with central and terminal C-T combinations. These calculations also indicate that a central C-T pair destabilizes a duplex, while terminal C-T forms a stable base pair. Hydrogen bonding between cytosine and thymine occurs only in the energy-minimized structures when the helix diameter decreases and the propeller twist angle between the bases increases. These changes are found to occur only at the end of a duplex in the calculations, which may explain the experimental results.  相似文献   

14.
The ribonucleic acids (RNA) form highly folded structures, which behind the helical fragments contain several secondary and tertiary structural motives. All of them have an influence on thermodynamic stability of the RNA. The 5'- and 3'-dangling ends are one of those structural motives, which effect stability of the adjacent helixes. In this paper, we described the influence of 14 different modified nucleotides, placed as 3'-dangling ends, on thermal stability of the RNA duplexes. Collected data demonstrate that: (i) 5-substituents of the uridine have an impact on the 3'-dangling end effect and the largest changes were observed for 5-chloro, bromo and methyl substituents; (ii) position of the methyl group within the uracil residue affect the thermal stability of the duplex; (iii) increasing a size of the heterocycle base placed as the 3'-terminal unpaired nucleotide enhances stabilization of duplexes.  相似文献   

15.
Solution structures and base pair stacking of a self- complementary DNA hexamer d(CGTACG)(2) have been studied at 5, 10 and 15 degrees C, respectively. The stacking interactions among the center base pair steps of the DNA duplex are found to improve when the terminal base pairs became less stable due to end fraying. A new structural quantity, the stacking sum (Sigma(s)), is introduced to indicate small changes in the stacking overlaps between base pairs. The improvements in the stacking overlaps to maintain the double helical conformation are probably the cause for the observed temperature dependent structural changes in double helical DNA molecule. A detailed analysis of the helical parameters, backbone torsion angles, base orientations and sugar conformations of these structures has been performed.  相似文献   

16.
17.
Thermodynamic parameters are reported for duplex formation of 48 self-complementary RNA duplexes containing Watson–Crick terminal base pairs (GC, AU and UA) with all 16 possible 3′ double-nucleotide overhangs; mimicking the structures of short interfering RNAs (siRNA) and microRNAs (miRNA). Based on nearest-neighbor analysis, the addition of a second dangling nucleotide to a single 3′ dangling nucleotide increases stability of duplex formation up to 0.8 kcal/mol in a sequence dependent manner. Results from this study in conjunction with data from a previous study [A. S. O'Toole, S. Miller and M. J. Serra (2005) RNA, 11, 512.] allows for the development of a refined nearest-neighbor model to predict the influence of 3′ double-nucleotide overhangs on the stability of duplex formation. The model improves the prediction of free energy and melting temperature when tested against five oligomers with various core duplex sequences. Phylogenetic analysis of naturally occurring miRNAs was performed to support our results. Selection of the effector miR strand of the mature miRNA duplex appears to be dependent upon the identity of the 3′ double-nucleotide overhang. Thermodynamic parameters for 3′ single terminal overhangs adjacent to a UA pair are also presented.  相似文献   

18.
Ab inito computations of the different contributions to chemical shift variations due to intra and interstrand stacking are reported for the GC, CG, AT and TA sequences of a B DNA helix. The results obtained for the non hydrogen atoms of the GC stacks show that the chemical shift variations are mainly due to the polarization contribution, the term which decreases slowly with the intermolecular distance. Because of the weaker polarity of adenine and thymine the geometric and polarization contributions are of closer absolute magnitude for the non hydrogen atoms of the intrastrand stacks but the polarization term is the determining contribution in the corresponding interstrand stacks. For the protons which undergo smaller shifts due to the polarization (or electric field effects) the role of the geometric contribution is more important and is even the leading one for the hydrogens of cytosine and thymine in the case of intrastrand stacking. The charge transfer plus exchange term has a non negligeable value for a limited number of cases corresponding to the shortest intermolecular interatomic distances. These results are discussed in relation with the qualitative differences observed between the proton and carbon spectra of dinucleotides and B-DNA duplexes.  相似文献   

19.
Hexitol nucleic acids (HNAs) with modified bases (5-methylcytosine, 2,6-diaminopurine or uracil) were synthesized. The introduction of the 5-methylcytosine base demonstrates that N -benzoylated 5-methylcytosyl-hexitol occurs as the imino tautomer. The base pairing systems (G:CMe, U:D, T:D and U:A) obey Watson-Crick rules. Substituting hT for hU, hCMefor hC and hD for hA generally leads to increased duplex stability. In a single case, replacement of hC by hCMedid not result in duplex stabilization. This sequence-specific effect could be explained by the geometry of the model duplex used for carrying out the thermal stability study. Generally, polypurine HNA sequences give more stable duplexes with their RNA complement than polypyrimidine HNA sequences. This observation supports the hypothesis that, besides changes in stacking pattern, the difference in conformational stress between purine and pyrimidine nucleosides may contribute to duplex stability. Introduction of hCMeand hD in HNA sequences further increases the potential of HNA to function as a steric blocking agent.  相似文献   

20.
The thermodynamic stability of self-complementary oligoribonucleotides containing N6-isopentenyladenosine (i(6)A) or N6-isopentanyladenosine (p(6)A) was determined. The base pairs i(6)A.U and p(6)A.U were placed in either an internal (separated and tandem) and a terminal position within the duplex, or unpaired i(6)A and p(6)A as a 3'-dangling ends. The thermal unfolding of the oligomers was determined by means of UV melting profiles and the thermodynamic parameters: enthalpy (DeltaH degrees ), entropy (DeltaS degrees) and free energy (DeltaG degrees (37)) as well as the melting temperature (T(m)) were calculated. Both modified nucleosides destabilized the duplexes, however, the effect depended on the position of the modified adenosine within the duplex. The similarity of the behavior of oligomers containing i(6)A and p(6)A suggests a negligible effect of the double bond on the thermal stability. The largest destabilization was observed when derivatives of adenosine were placed in an internal position. The effect of 3'-dangling ends suggests that the presence of the N6-isopentenyl- or N6-isopentanyl substitutent affects hydrogen bonding rather than stacking within duplex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号