首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-(1,1-Dioxo-1,4-dihydro-1lambda(6)-benzo[1,4]thiazin-3-yl)-5-hydroxy-2H-pyridazin-3-one analogs were discovered as a novel class of inhibitors of HCV NS5B polymerase. Structure-based design led to the identification of compound 3a that displayed potent inhibitory activities in biochemical and replicon assays (1b IC(50)<10 nM; 1b EC(50)=1.1 nM) as well as good stability toward human liver microsomes (HLM t(1/2)>60 min).  相似文献   

2.
Syntheses and structure-activity relationships of a novel class of 2-[3-oxospiro[isobenzofuran-1(3H),1'-cyclohexan]-4'-yl]benzimidazole NPY Y5 receptor antagonists are described. Optimization of the lead compound 2a by incorporating substituents into the 5-position or into both the 5- and 6-positions of the benzimidazole core part led to the identification of 5-(5-methyl-1,2,4-oxadiazol-2-yl)benzimidazole (2r: IC(50)=3.3 nM) and 5-(2-methyltetrazol-5-yl)benzimidazole (2u: IC(50)=5.9 nM), both of which are potent, selective, and orally bioavailable Y5 receptor antagonists.  相似文献   

3.
A series of 5-, 6-, 7- and 8-aza analogues of 3-aryl-4-hydroxyquinolin-2(1H)-one was synthesized and assayed as NMDA/glycine receptor antagonists. The in vitro potency of these antagonists was determined by displacement of the glycine site radioligand [(3)H]5,7-dicholorokynurenic acid ([(3)H]DCKA) in rat brain cortical membranes. Selected compounds were also tested for functional antagonism using electrophysiological assays in Xenopus oocytes expressing cloned NMDA receptor (NR) 1A/2C subunits. Among the 5-, 6-, 7-, and 8-aza-3-aryl-4-hydroxyquinoline-2(1H)-ones investigated, 5-aza-7-chloro-4-hydroxy-3-(3-phenoxyphenyl)quinolin-2-(1H)-one (13i) is the most potent antagonist, having an IC(50) value of 110 nM in [(3)H]DCKA binding and a K(b) of 11 nM in the electrophysiology assay. Compound 13i is also an active anticonvulsant when administered systemically in the mouse maximum electroshock-induced seizure test (ED(50)=2.3mg/kg, IP).  相似文献   

4.
Replacement of the triazolopiperazine ring of sitagliptin (DPP-4 IC(50)=18nM) with 3-(2,2,2-trifluoroethyl)-1,4-diazepan-2-one gave dipeptidyl peptidase IV (DPP-4) inhibitor 1 which is potent (DPP-4 IC(50)=2.6nM), selective, and efficacious in an oral glucose tolerance test in mice. It was selected for extensive preclinical development as a potential back-up candidate to sitagliptin.  相似文献   

5.
A novel series of cyclobutenedione centered C(4)-alkyl substituted furanyl analogs was developed as potent CXCR2 and CXCR1 antagonists. Compound 16 exhibits potent inhibitory activities against IL-8 binding to the receptors (CXCR2 Ki=1 nM, IC(50)=1.3 nM; CXCR1 Ki=3 nM, IC(50)=7.3 nM), and demonstrates potent inhibition against both Gro-alpha and IL-8 induced hPMN migration (chemotaxis: CXCR2 IC(50)=0.5 nM, CXCR1 IC(50)=37 nM). In addition, 16 has shown good oral pharmacokinetic profiles in rat, mouse, monkey, and dog.  相似文献   

6.
A series of 2-alkyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles were synthesized and evaluated for their 5-HT6 activity. The most potent agonist in this series was 5-chloro-2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole with an IC50=7.4 nM in 3H-LSD binding and an EC50=1.0 nM in a functional assay measuring production of cyclic AMP.  相似文献   

7.
The synthesis and the aromatase (CYP19) inhibitory activity of 5-[(aryl)(imidazol-1-yl)methyl]-1H-indoles were reported. Among the tested racemate compounds, 5-[(4-chlorophenyl)(1H-imidazol-1-yl)methyl]-1H-indole 8b emerged as a potent CYP19 inhibitor (IC(50)=15.3 nM). Chiral chromatography allowed isolation of the (+) enantiomer 8b2, which was about twice as active as the racemate (IC(50)=9 nM).  相似文献   

8.
1,1-bis(4-Hydroxyphenyl)-2-phenylpent-1-ene (5) and 1,1,2-tris(4-hydroxyphenyl)pent-1-ene (6) derivatives with terminal CN (5a, 6a), NH(2) (5b, 6b), NHCOCH(3) (5c, 6c), NHCOC(2)H(5) (5d, 6d) groups at the C2-propyl chain were synthesized and assayed in vitro for estrogen receptor (ER) binding affinity (RBA) in a competition experiment with [3H]estradiol and for estrogenic and anti-estrogenic properties in a luciferase assay with ER-positive MCF-7-2a cells, stably transfected with the plasmid ERE(wtc)luc. The CN as well as the NH(2) group reduced the RBA-values (5: 2.09%; 5a: 1.50%; 5b: 0.07%; 6: 4.03%; 6a: 0.67%; 6b: 0.20%) and the antagonistic potency (5: IC(50)=0.05 microM; 5a: IC(50)=0.43 microM; 5b: IC(50)=1.50 microM; 6: IC(50)=0.07 microM; 6a: IC(50)=0.60 microM; 6b: IC(50)=2.00 microM). Derivatization of the amino function with acetic anhydride and propionic anhydride did not change the RBA-value but altered the antagonistic profile (5c: IC(50)=2.50 microM; 5d: IC(50)=not detectable; 6c: IC(50)=0.65 microM; 6d: IC(50)=1.00 microM). Agonistic effects were only detected for the amine 6b (34.2% activation of the luciferase expression). These data document that estrogen receptor binding and the antagonistic effects can be modified by terminal groups at the C2-propyl chain of the pure antagonists 5 and 6. The mode of action is unclear. However, it can be assumed that the elongation of the side chain causes a reorientation in the LBD in order to locate the side chain in a side pocket near the ligand binding domain.  相似文献   

9.
Hexahydro-pyrrolo- and hexahydro-1H-pyrido[1,2-b]pyridazin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Among these, compound 4c displayed potent inhibitory activities in biochemical and replicon assays (IC(50) (1b) <10 nM; EC(50) (1b)=34 nM) as well as good stability towards human liver microsomes (HLM t(1/2) =59 min).  相似文献   

10.
Pyrrolo[1,2-b]pyridazin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Structure-based design led to the discovery of compound 3 k, which displayed potent inhibitory activities in biochemical and replicon assays (IC(50) (1b)<10nM; EC(50) (1b)=12 nM) as well as good stability towards human liver microsomes (HLM t(1/2)>60 min).  相似文献   

11.
A series of 4-(2-pyridyl)piperazine-1-benzimidazole analogues based on compound 1 was synthesized and evaluated for TRPV1 antagonist activity in capsaicin-induced (CAP) and pH5.5-induced (pH) FLIPR assays in a human TRPV1-expressing HEK293 cell line. Potent TRPV1 antagonists were identified through SAR studies. From these studies, several antagonists were found, with IC(50) values ranging from 32 nM to approximately 5000 nM. Among these, 11 [IC(50)=90 nM (CAP) and 104 nM (pH)] was further evaluated and found to be orally available in rats (F%=19.7).  相似文献   

12.
A novel series of N-alkylidenearylcarboxamides 4, a CB(2) receptor agonist, were synthesized and evaluated for activity against the human CB(2) receptor. In a previous paper, we reported that sulfonamide derivative 1 acted as a potent CB(2) receptor agonist (IC(50)=65 nM, EC(50)=19 nM, E(max)=90%). However, compound 1 also exhibited poor metabolic stability in human liver microsomes. During the structural modification of 1, we found that a novel series of N-alkylidenearylcarboxamide, 4-1, had a moderate affinity for the CB(2) receptor (IC(50)=260 nM, EC(50)=86 nM, E(max)=100%) and good metabolic stability in human liver microsomes. We explored its analogues to discover compounds with a high affinity for the CB(2) receptor and with good oral bioavailability. Among them, compounds 4-9 and 4-27 had high affinities for the human CB(2) receptor (CB(2) IC(50)=13 nM and 1.2 nM) and a high selectivity for CB(2) (CB(1) IC(50)/CB(2) IC(50)=270 and 1600); furthermore, significant plasma levels were observed following oral administration in rats (C(max)=233 ng/mL and 148 ng/mL, respectively, after a dose of 10 mg/kg). Furthermore, compound 4-9 had good oral bioavailability (F=52%, 3mg/kg).  相似文献   

13.
(2S)-2-(3-Chlorophenyl)-1-[N-(methyl)-N-(phenylsulfonyl)amino]-4-[spiro(2,3-dihydrobenzthiophene-3,4'-piperidin-1'-yl)]butane S-oxide (1b) has been identified as a potent CCR5 antagonist having an IC50=10 nM. Herein, structure-activity relationship studies of non-spiro piperidines are described, which led to the discovery of 4-(N-(alkyl)-N-(benzyloxycarbonyl)amino)piperidine derivatives (3-5) as potent CCR5 antagonists.  相似文献   

14.
We report on the identification of 2-({6-[(3R)-3-amino-3-methylpiperidine-1-yl]-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydro-5H-pyrrolo[3,2-d]pyrimidine-5-yl}methyl)-4-fluorobenzonitrile (DSR-12727) (7a) as a potent and orally active DPP-4 inhibitor without mechanism-based inactivation of CYP3A. Compound 7a showed good DPP-4 inhibitory activity (IC(50)=1.1 nM), excellent selectivity against related peptidases and other off-targets, good pharmacokinetic and pharmacodynamic profile, great in vivo efficacy in Zucker-fatty rat, and no safety concerns both in vitro and in vivo.  相似文献   

15.
A series of 2beta-[3'-(substituted benzyl)isoxazol-5-yl]- and 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes were prepared and evaluated for affinities at dopamine, serotonin, and norepinephrine transporters using competitive radioligand binding assays. The 2beta-[3'-(substituted benzyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (3a-h) showed high binding affinities for the dopamine transporter (DAT). The IC(50) values ranged from 5.9 to 22nM. On the other hand, the 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (4a-h), with IC(50) values ranging from 65 to 173nM, were approximately 3- to 25-fold less potent than the corresponding 2beta-[3'-(substituted benzyl)isoxazol]tropanes. All tested compounds were selective for the DAT relative to the norepinephrine transporter (NET) and serotonin transporter (5-HTT). 3Beta-(4-Methylphenyl)-2beta-[3'-(4-fluorobenzyl)isoxazol-5-yl]tropane (3b) with IC(50) of 5.9nM at the DAT and K(i)s of 454 and 113nM at the NET and 5-HTT, respectively, was the most potent and DAT-selective analog. Molecular modeling studies suggested that the rigid conformation of the isoxazole side chain in 4a-h might play an important role on their low DAT binding affinities.  相似文献   

16.
We have replaced the pyridyl ring of trovirdine with an alicyclic cyclohexenyl, adamantyl or cis-myrtanyl ring. Only the cyclohexenyl-containing thiourea compound N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-bromopyridyl)]- thiourea (HI-346) (as well as its chlorine-substituted derivative N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-chloropyridyl)]- thiourea/HI-445) showed RT inhibitory activity. HI-346 and HI-445 effectively inhibited recombinant RT with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cell-free RT inhibition assays was: HI-346 (IC50 = 0.4 microM) > HI-445 (IC50 = 0.5 microM) > trovirdine (IC50 = 0.8 microM) > MKC-442 (IC5 = 0.8 microM) = delavirdine (IC50 = 1.5 microM) > nevirapine (IC50 = 23 microM). In accord with this data, both compounds inhibited the replication of the drug-sensitive HIV-1 strain HTLV(IIIB) with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cellular HIV-1 inhibition assays was: HI-445 = HI-346 (IC50 = 3 nM) > MKC-442 (IC50 = 4 nM) = AZT (IC50 = 4 nM) > trovirdine (IC50 = 7 nM) > delavirdine (IC50 = 9 nM) > nevirapine (IC50 = 34 nM). Surprisingly, the lead compounds HI-346 and HI-445 were 3-times more effective against the multidrug resistant HIV-1 strain RT-MDR with a V106A mutation (as well as additional mutations involving the RT residues 74V,41L, and 215Y) than they were against HTLV(IIIB) with wild-type RT. HI-346 and HI-445 were 20-times more potent than trovirdine, 200-times more potent than AZT, 300-times more potent than MKC-442, 400-times more potent than delavirdine, and 5000-times more potent than nevirapine against the multidrug resistant HIV-1 strain RT-MDR. HI-445 was also tested against the RT Y181C mutant A17 strain of HIV-1 and found to be >7-fold more effective than trovirdine and >1,400-fold more effective than nevirapine or delavirdine. Similarly, both HI-346 and HI-445 were more effective than trovirdine, nevirapine, and delavirdine against the problematic NNI-resistant HIV-1 strain A17-variant with both Y181C and K103N mutations in RT, although their activity was markedly reduced against this strain. Neither compound exhibited significant cytotoxicity at effective concentrations (CC50 >100 microM). These findings establish the lead compounds HI-346 and HI-445 as potent inhibitors of drug-sensitive as well as multidrug-resistant stains of HIV-1.  相似文献   

17.
A new class of hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrugs (NONO-coxibs 12a-b) wherein an O(2)-acetoxymethyl 1-(2-carboxypyrrolidin-1-yl)diazen-1-ium-1,2-diolate (11, O(2)-acetoxymethyl PROLI/NO) NO-donor moiety was covalently coupled to the bromomethyl group of 5-(4-bromomethylphenyl)-1-(4-aminosulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (9a), and its methanesulfonyl analog (9b), were synthesized. The diazen-1-ium-1,2-diolate compounds 12a-b released a low amount of NO upon incubation with phosphate buffer (PBS) at pH 7.4 (6.1-8.2% range). In comparison, the percentage NO released was significantly higher (76-77% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) when the diazen-1-ium-1,2-diolate ester prodrugs 12a-b were incubated in the presence of rat serum. These incubation studies suggest that both NO and the anti-inflammatory 5-(4-hydroxymethylphenyl)-1-(4-aminosulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (10a), and its methanesulfonyl analog (10b), would be released from the parent NONO-coxib 12a or 12b upon in vivo cleavage by non-specific serum esterases. The hydroxymethyl compounds 10a-b were weak inhibitors of the cyclooxygenase-1 (COX-1) and COX-2 isozymes (IC(50)=3.7-10.5 microM range). However, the hydroxymethyl compounds 10a-b and the parent NONO-coxibs 12a-b exhibited good AI activities (ED(50)=76.7-111.6 micromol/kg po range) that were greater than that exhibited by the reference drugs aspirin (ED(50)=710 micromol/kg po) and ibuprofen (ED(50)=327 micromol/kg po), but less than that of celecoxib (ED(50)=30.9mumol/kg po). These studies indicate hybrid ester AI/NO-donor prodrugs (NONO-coxibs) constitutes a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

18.
The present study evaluated the effect of 5-hydroxytryptamine (5-HT) on intestinal Na(+)/H(+) exchanger (NHE) activity and the cellular signaling pathways involved in T84 cells. T84 cells express endogenous NHE1 and NHE2 proteins, detected by immunoblotting, but not NHE3. The rank order for inhibition of NHE activity in acid-loaded T84 cells was 5-(N-ethyl-N-isopropyl)-amiloride (EIPA; IC(50)=519 [465, 579] nM)>cariporide (IC(50)=630 [484, 819] nM)>amiloride (IC(50)=19 [16, 24] microM); the NHE3 inhibitor S3226 was found to be devoid of effect. This different inhibitory sensitivity indicates that both NHE1 and NHE2 isoforms may play an active role in Na(+)-dependent intracellular pH (pH(i)) recovery in T84 cells. Short-term exposure (0.5 h) of T84 cells to 5-HT increased NHE activity in a concentration-dependent manner. The stimulation induced by 5-HT (30 microM) was partially inhibited by both WAY 100135 (300 nM) and ketanserin (300 nM), antagonists of 5-HT(1A) and 5-HT(2) receptors, respectively. NHE activity was significantly increased by 8-OH-DPAT and alpha-methyl-5-HT, agonists of, respectively, 5-HT(1A) and 5-HT(2) receptors. An incubation of T84 cells with anti-G(s) and anti-G(beta) antibodies complexed with lipofectin did not prevent the 5-HT-induced stimulation of NHE activity. Overnight treatment with anti-G(ialpha1,2) and anti-G(q/11) antibodies complexed with lipofectin blocked the stimulatory effect induced by 8-OH-DPAT and alpha-methyl-5-HT, respectively. It is concluded that in T84 cells 5-HT enhances intestinal NHE activity through stimulation of G(ialpha1,2)-coupled 5-HT(1A) and G(q/11)-coupled 5-HT(2) receptors.  相似文献   

19.
Twelve 2',6'-dimethyl-L-tyrosine (Dmt) analogues linked to a pyrazinone platform were synthesized as 3- or 6-[H-Dmt-NH(CH(2))(n)],3- or 6-R-2(1H)-pyrazinone (n=1-4). 3-[H-Dmt-NH-(CH(2))(4)]-6-beta-phenethyl-5-methyl-2(1H)-pyrazinone 11 bound to mu-opioid receptors with high affinity (K(i)mu=0.13 nM; K(i)delta/K(i)mu=447) with mu-agonism (GPI IC(50)=15.9 nM) and weak delta-antagonism (MVD pA(2)=6.35). Key factors affecting opioid affinity and functional bioactivity are the length of the aminoalkyl chain linked to Dmt and the nature of the R residue. These data present a simplified method for the formation of pyrazinone opioidmimetics and new lead compounds.  相似文献   

20.
Novel 1-(2-aminoethyl)-3-(arylsulfonyl)-1H-indoles were prepared. Binding assays indicated they are 5-HT(6) receptor ligands, among which N,N-dimethyl-N-(2-[3-(1-naphthylsulfonyl)-1H-indol-1-yl]ethyl)amine 8t and N-methyl-N-(2-[3-(1-naphthylsulfonyl)-1H-indol-1-yl]ethyl)amine 8u showed high affinity for 5-HT(6) receptors with K(i)=3.7 and 5.7 nM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号