首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of the protected ribose or xylose 5-aldehyde with sulfonyl-stabilized fluorophosphonate gave (fluoro)vinyl sulfones. Stannyldesulfonylation followed by iododestannylation afforded 5,6-dideoxy-6-fluoro-6-iodo-d-ribo or xylo-hex-5-enofuranoses. Coupling of the hexenofuranoses with alkylzinc bromides gave 10-carbon ribosyl- and xylosylhomocysteine analogues incorporating a fluoroalkene. The fluoroalkenyl and alkenyl analogues were evaluated for inhibition of Bacillus subtilis S-ribosylhomocysteinase (LuxS). One of the compounds, 3,5,6-trideoxy-6-fluoro-d-erythro-hex-5-enofuranose, acted as a competitive inhibitor of moderate potency (KI = 96 μM).  相似文献   

2.
Some 3'- and/or 5'-substituted pyrimidine nucleosides, as well as anhydropyrimidine nucleosides, which have no flexibility about the N-glycosidic bond were studied as inhibitors of thymidine phosphorylase and uridine phosphorylase. The conformation of some analogs was also investigated in order to obtain information on substrate binding to the enzyme. The above compounds, including the potential anti-(human immunodeficiency virus) agent, 3'-azido-2',3'-dideoxy-5-methyluridine were not substrates for either thymidine phosphorylase or uridine phosphorylase. (The only exception was arabinofuranosyl-5-ethyluracil, which proved to be a poor substrate for uridine phosphorylase). The phosphorolysis of thymidine by thymidine phosphorylase was slightly or not at all altered by these pyrimidine nucloside analogs. The lowest Ki was obtained in the case of 3'-azido-2',3'-dideoxy-5-methyluridine and the highest in the case of 2'-deoxylyxofuranosyl-5-ethyluracil, when studying the analogs with flexible structure as inhibitors of uridine phosphorylase. The Ki for 2,3'- and 2,5'-anhydro-2'-deoxy-5-ethyluridine was 5-6 orders of magnitude higher than that for 2,2'-anhydro-5-ethyluridine. Competitive inhibition was observed in all cases. For these three molecules computer-aided molecular modelling predicts the following glycosidic torsion angles chi (O4,-C1,-N1-C2): 109 degrees for 2,2'-anhydro-5-ethyluridine, and 78 degrees and 71 degrees for 2,3'- and 2,5'-anhydro-2'-deoxy-5-ethyluridine respectively. These values are corroborated by high-resolution 13C- and 1H-NMR studies. 2'-Deoxy-5-ethyluridine is predicted to have a syn conformation with chi = 46 degrees and delta E about 2.5 kJ/mol over the minimum energy (in anti position, chi = -147 degrees). 1H and 13C data including homonuclear Overhauser enhancements complete the information about the solution conformation. Considering the Ki values obtained, it is likely that substrates of uridine phosphorylase will bind to the enzyme in the same conformation as 2,2'-anhydro-5-ethyluridine. The greater than 30 degrees deviation from the N-glycosidic torsion angle of 2,2'-anhydro-5-ethyluridine results in much higher Ki values.  相似文献   

3.
The synthesis of some branched-chain-sugar nucleoside analogues.   总被引:1,自引:1,他引:0       下载免费PDF全文
1-(2,3-Epoxy-5-O-trityl-beta-D-lyxofuranosyl)uracil was treated with a number of carbon nucleophiles. Ethynyl lithium gave 3'-deoxy-3'-ethynyl-5'-O-trityl-ara-uridine, which was reduced to the corresponding 3'-ethenyl compound. Sodium cyanide gave 3'-cyano-3'-deoxy-5'-O-trityl-ara-uridine which upon alkaline hydrolysis gave the corresponding 3'-carboxamido compound. 1,3-Dithian-2-yl lithium gave 3'-deoxy-3'-(1,3-dithian-2-yl)-5'-O-trityl-ara-uridine. The trityl group was removed from each of these compounds by mild acidic hydrolysis. Treatment of 2 with 0.1M H2sO4 and mercury (II) acetate afforded 3'-acetyl-3'-deoxy-ara-uridine which upon reduction with NaBH4 gave 3'-deoxy-3'-(1-hydroxyethan-1-yl)-ara-uridine. Acetylation of 6 yielded 5'-O-acetyl-3'-acetyl-2',3'-didehydro-2',3'-dideoxyuridine which upon reduction with NaBH4 produced a mixture of 5'-O-acetyl-2',3'-didehydro-2',3'-dideoxy-3'-(1-hydroxyethan -1-yl)uridine and 1-(R)[5-(S)-acetoxymethyl-4-(1-hydroxyethan-1-yl)-tetrahydrofuran- 2-yl]- uracil. Reduction of 14 with Raney nickel followed by removal of the trityl group gave 3'-deoxy-3'-methyl-ara-uridine.  相似文献   

4.
Mouse antibodies to (2'-5')oligoadenylates were obtained by the immunization of animals with the (2'-5')oligoadenylic acid trimer conjugated with bovine serum albumin through a 2',3'-levulinic acid residue. Using radioimmunoassay, the reactivity of mouse polyclonal antibodies to the (2'-5')oligoadenylic acid trimer was studied for the trimer analogues containing 9-(3-deoxy-3-fluro-beta-D- xylofuranosyl)adenine and 3'-deoxy-3'-fluoro-adenosine in various positions of the chain. It was found that (a) the three-dimensional structure of short oligonucleotides is an important factor in the antibody recognition; (b) antibodies are more sensitive to modifications of the 5'-terminal and central ribose fragments of the (2'-5')oligoadenylic acid trimer; (c) the 3'-hydroxyl group plays a secondary role in the formation of the antigen determinant.  相似文献   

5.
Pyrimidine nucleosides (or their 5'-aldehydes) when treated with DAST give O2,5'-(fluoro)-anhydronucleosides. If this is prevented by blocking N-3 or O4, the desired 5'-deoxy-5'-(di)-fluoronucleoside is accompanied by the production of a compound resulting from migration of the base following scission of the N-1-->C-1' bond and formation of O2-->C-5'. This is a particular example of a much more general phenomenon, seen when suitably substituted ribofuranoses are treated with DAST.  相似文献   

6.
RNA exhibits a higher structural diversity than DNA and is an important molecule in the biology of life. It shows a number of secondary structures such as duplexes, hairpin loops, bulges, internal loops, etc. However, in natural RNA, bases are limited to the four predominant structures U, C, A, and G and so the number of compounds that can be used for investigation of parameters of base stacking, base pairing, and hydrogen bond is limited. We synthesized different fluoromodifications of RNA building blocks: 1'-deoxy-1'-phenyl-beta-D-ribofuranose (B), 1'-deoxy-1'-(4-fluorophenyl)-beta-D-ribofuranose (4 FB), 1'-deoxy-1'-(2,4-difluorophenyl)-beta-D-ribofuranose (2,4 DFB), 1'-deoxy- 1'-(2,4,5-trifluorophenyl)-beta-D-ribofuranose (2,4,5 TFB), 1'-deoxy- 1'-(2,4, 6-trifluorophenyl)-beta-D-ribofuranose, 1'-deoxy- 1'-(pentafluorophenyl)-beta-D-ribofuranose (PFB), 1'-deoxy-1'-(benzimidazol-1-yl)-beta-D-ribofuranose (BI), 1'-deoxy-1'-(4-fluoro-1H-benzimidazol-1-yl)-1-beta-ribofuranose (4 FBI), 1'-deoxy- 1'-(6-fluoro- 1H-benzimidazol-1-yl)-beta-D-ribofuranose (6FBI), 1'-deoxy- 1'-(4, 6-difluoro- 1H-benzimidazol- 1-yl)-beta-D-ribofuranose (4,6 DFBI), 1'-deoxy- 1'-(4-trifluoromnethyl- H-benzimidazol-1-yl)-beta-D-ribofuranose (4 TFM), 1'-deoxy-1'-(5-trifluoromnethyl-1H-benzimidazol-1-yl)-beta-D-ribofuranose (5 TFM), and 1'-deoxy-1'-(6-trifluoromethyl-1H-benzimidazol-1-yl)-beta-D-ribofuranose (6 TFM). These amidites were incorporated and tested in a defined A, U-rich RNA sequence (12-mer, 5-CUU UUCXUU CUU-3' paired with 3'-GAA AAG YAA GAA-5'). Only one position was modified, marked as X and Y, respectively. UV melting profiles of those oligonucleotides were measured.  相似文献   

7.
Hydrogenation of 2'-deoxy-2'-difluoromethylene-5'-O-dimethoxytrityluridine (1) and 3'-deoxy-3'-difluoromethylene-5'-O-dimethoxytrityluridine (7), gave the corresponding 2'- and 3'-difluoromethyluridine derivatives 2a and 8a. Detritylation of compounds 2a, 2b and 8a, 8b resulted in the formation of 1-(2-deoxy-2-C-difluoromethyl-beta-D-arabino-pentofuranosyl)uracil (3a) and 1-(3-deoxy-3-C-difluoromethyl-beta-D-xylo-pento furanosyl)- uracil (9a) as well as corresponding minor isomers 3b and 9b. Compounds 3a and 3b were also obtained from 2'-deoxy-2'-difluoromethylene-3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)uridine (4). Finally, phosphitylation of 2a and 8a provided the title 2'- and 3'-O-phosphoramidites 6 and 10.  相似文献   

8.
RNA exhibits a higher structural diversity than DNA and is an important molecule in biology of life. It shows a number of secondary structures such as duplexes, hairpin loops, bulges, internal loops etc. However, in natural RNA, bases are limited to the four predominant structures U, C, A, and G and so the number of compounds that can be used for investigation of parameters of base stacking, base pairing and hydrogen bond, is limited. We synthesized different fluoromodifications of RNA building blocks: 1'-deoxy-1'-(2,4,6-trifluorophenyl)-beta-D-ribofuranose (F), 1'-deoxy-1'-(2,4,5-trifluorophenyl)-beta-D-ribofuranose (M) and 1'-deoxy-1'-(5-trifluoromethyl-1H-benzimidazol-1-yl)-beta-D-ribofuranose (D). Those amidites were incorporated and tested in a defined A, U-rich RNA sequence (12-mer, 5'-CUU UUC XUU CUU-3' paired with 3'-GAA AAG YAA GAA-5') (Schweitzer, B.A.; Kool, E.T. Aromatic nonpolar nucleosides as hydrophobic isosters of pyrimidine and purine nucleosides. J. Org. Chem. 1994, 59, 7238 pp.). Only one position was modified, marked as X and Y respectively. UV melting profiles of those oligonucleotides were measured.  相似文献   

9.
Hypochromicity and circular dichroism data are reported for the 2' and 3'-0-aminiacyldinucleoside phosphates cytidylyl-(3'-5')-2'(3')-0-L-phenylalanyl-adenosine, cytidylyl-(3'-5')-2'-deoxy-3'-0-L-phenylalanyladenosine, cytidylyl-(3'-5')-2'-deoxy-3'-0-glycyladenosine, and cytidylyl-(3'-5')-3'-deoxy-2'-0-L-phenylalanyladenosine, all of which can act as analogs of the 3' terminus of AA-tRNA in various partial reactions of protein biosynthesis. Although all these systems have a 2'-OH group in the furanose of the 3'-residue, differences exist in the extent and/or mode of base-base overlap for most of them, except for cytidylyl-(3'-5')-2'(3')-0-L-phenylalanyladenosine and cytidylyl-(3'-5')-3'-deoxy-2'-0-L-phenylalanyladenosine. It is concluded that the biological activity of the above analogs is affected both by the position of the aminoacyl group and the stacking properties of the bases.  相似文献   

10.
The recently identified human and rodent plasma membrane proteins CNT1, CNT2 and CNT3 belong to a gene family (CNT) that also includes the bacterial nucleoside transport protein NupC. Heterologous expression in Xenopus oocytes has established that CNT1-3 correspond functionally to the three major concentrative nucleoside transport processes found in human and other mammalian cells (systems cit, cif and cib, respectively) and mediate Na(+) - linked uptake of both physiological nucleosides and anti-viral and anti-neoplastic nucleoside drugs. Here, one describes a complementary Xenopus oocyte transport study of Escherichia coli NupC using the plasmid vector pGEM-HE in which the coding region of NupC was flanked by 5'- and 3'-untranslated sequences from a Xenopus beta-globin gene. Recombinant NupC resembled human (h) and rat (r) CNT1 in nucleoside selectivity, including an ability to transport adenosine and the chemotherapeutic drugs 3'-azido-3'-deoxythymidine (AZT), 2',3'- dideoxycytidine (ddC) and 2'-deoxy-2',2'-difluorocytidine (gemcitabine), but also interacted with inosine and 2',3'- dideoxyinosine (ddl). Apparent affinities were higher than for hCNT1, with apparent K(m) values of 1.5-6.3 microM for adenosine, uridine and gemcitabine, and 112 and 130 microM, respectively, for AZT and ddC. Unlike the relatively low translocation capacity of hCNT1 and rCNT1 for adenosine, NupC exhibited broadly similar apparent V(max) values for adenosine, uridine and nucleoside drugs. NupC did not require Na(+) for activity and was H(+) - dependent. The kinetics of uridine transport measured as a function of external pH were consistent with an ordered transport model in which H(+) binds to the transporter first followed by the nucleoside. These experiments establish the NupC-pGEM-HE/oocyte system as a useful tool for characterization of NupC-mediated transport of physiological nucleosides and clinically relevant nucleoside therapeutic drugs.  相似文献   

11.
The fundamental conformational states of right-handed double helical DNA, the A- and B-forms, are associated with distinct puckers of the sugar moieties. The furanose conformation itself is affected by the steric and electronic nature of the ring substituents. For example, a strongly electronegative substituent at the C2' position, such as in the 2'-deoxy-2'-fluoro ribo furanosyl analogue, will drive the conformational equilibrium towards the C3'- endo type (north). Conversely, the 2'-deoxy-2'-fluoro arabino furanosyl modification with opposite stereochemistry at C2' appears to have a preference for a C2'- endo type pucker (south). Incorporation of 2'-fluoroarabinofuranosyl thymines was previously shown to enhance the thermodynamic stability of B-DNA duplexes. We have determined the crystal structures of the B-DNA dodecamer duplexes [d(CGCGAASSCGCG)]2and [d(CGCGAASTCGCG)]2with incorporated 2'-deoxy-2'-fluoroarabinofuranosyl thymines S (south) at 1.55 A resolution. In the crystal structures, all S residues adopt an O4'- endo conformation (east), well compatible with an overall B-form duplex geometry. In addition to the increased rigidity of S nucleosides, a clathrate-like ordered water structure around the 2'-fluorines may account for the observed larger thermodynamic stability of DNA duplexes containing 2'-deoxy-2'-fluoroarabino thymidines.  相似文献   

12.
The effect of 2' and 3'-O-aminoacyl-dinucleoside phosphates cytidylyl(3'-5')-2'(3')-O-L-phenyl-alanyladenosine (I), cytidylyl(3'-5')-3'-deoxy-2'-O-L-phenylalanyladenosine (IIa), cytidylyl(3'-5')-2'-deoxy-3'-O-L-phenylalanyladenosine (IIIa), cytidylyl(3'-5')-3'-deoxy-2'-O-glycyladenosine (IIb), cytidylyl(3'-5')-2'-deoxy-3'-O-glycyladenosine (IIIb), cytidylyl(3'-5')-3'-deoxy-2'-O-L-leucyladenosine (IIc), cytidylyl(3'-5')-2'-deoxy-3'-O-L-leucyladenosine (IIIc), cytidylyl(3'-5')-3'-O-L-phenylalanyladenosine (IIId) as analogs of the 2'(3')-aminoacyl-tRNA termini, on chloramphenicol binding to 70S Excherichia coli ribosomes was investigated. The association constants (Kb) of the investigated compounds were determined by the equilibrium dialysis method. Based on the constancy of Kb over the range of inhibitor concentration, it was determined that the binding site of the 2' isomers IIa-IIc overlaps with the chloramphenicol site, whereas the variability of Kb for the 3' isomers IIIb, IIIc and especially IIIa seems to indicate that they do not achieve a complete fit. The consistently higher values of the Kb values for the 3' isomers IIIa-IIIc relative to that of the 2' isomers IIa-IIc also indicate a stabilization of the binding of the former due to a specific interaction between its amino acid portion and a ribosomal site.  相似文献   

13.
The substrate specificity of the interferon-induced mouse L-cell enzyme, 2',5'-oligoadenylate synthetase, was determined with a number of nucleoside 5'-triphosphate analogues. Selected nucleoside 5'-triphosphates were converted to 2',5'-oligonucleotides with the following order of efficiency for the nucleoside: 8-azaadenosine greater than adenosine = 2-chloroadenosine greater than sangivamycin greater than toyocamycin greater than formycin greater than 3-ribosyladenine greater than ribavirin greater than tubercidin greater than adenosine 1-oxide greater than 2-beta-D-ribofuranosylthiazole-4-carboxamide greater than inosine = 1,N6-ethenoadenosine greater than guanosine greater than 8-bromoadenosine = uridine greater than cytidine. Adenosine 5'-((beta, gamma-imidotriphosphate) did not seem to be a recognizable substrate since no detectable product resulted. Either the 2',5'-oligoadenylate synthetase is not as specific as had been previously thought, or there may be more than one 2',5'-oligonucleotide synthetase. The 2',5'-oligonucleotide analogue products in which the adenosine of ppp(A2'P5')nA was replaced by the various nucleoside analogues were separated by DEAE-cellulose column chromatography and the chain length and number of 5'-phosphate residues analyzed by a rapid, efficient high-performance liquid chromatographic (HPLC) system involving ion-pairing C18 reversed-phase column chromatography. Separation of the 5'-mono-, 5'-di-, and 5'-triphosphorylated forms of the 2',5'-oligonucleotide analogue dimers, trimers, tetramers, and pentamers was readily achieved by this useful HPLC system. No 5'-nonphosphorylated forms were detected for any of the 2',5'-oligonucleotide analogue products.  相似文献   

14.
Preparation of 1',2 '-, 3 ',4 '-, and 4 ',5 '-epoxy derivatives of nucleosides and their use for the stereoselective synthesis of 1'- and 4 '-branched analogues are described.  相似文献   

15.
The protected analogue of 2-amnio-6-chloropurine arabinoside (3b) was subjected to reaction with diethylaminosulfur trifluoride (DAST) and subsequently treated with NaOAc in Ac2O/AcOH to give N2, O3', O5'-triacetyl-2'-deoxy-2'-fluoroguanosine (5a). After deacetylation of the sugar moiety and protection of 5'-OH by a 4,4'-dimethoxytrityl group, this nucleoside component was converted to 2'-deoxy-2'-fluoroguanyl-(3',5')-guanosine (6c, GfpG).  相似文献   

16.
The affinity of a series of 2', 3'- and 5-modified thymidine analogues for Mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt) was evaluated. The affinities of several non-phosphorylated analogues are in the same order of magnitude as those of their phosphorylated congeners. In view of drug delivery problems associated with phosphorylated compounds, these 'free' nucleosides seem more promising leads in the search of TMPKmt inhibitors as novel anti-tuberculosis agents.  相似文献   

17.
The effect of core trimers, (2'-5')-analogues of oligoadenylic acid containing 9-(3-deoxy-3-fluoro-beta-D-xylofuranosyl)adenine (AF) and 3'-deoxy-3'-fluoroadenosine (AF) in various positions of the oligomer chain, on the lytic activity of human natural killer cells (NK cells) was studied in three different ways. The cellular cytotoxicity was determined using a highly sensitive nonradioactive approach employing a chelate europium-diethylenetriamino-pentaacetic acid complex (Eu-DTPA). It was shown that all fluorodeoxyanalogues enhance the lytic activity of intact NK lymphocytes, which follows from the lysis rate constant k2. At the same time, the substitution of either the central adenosine fragment or (to a greater extent) the 5'-terminal residue of (2'-5')A3 with AF causes a decrease in the number of active NK cells, which, unlike the case of the natural core trimer, leads to a loss of the capacity to increase the activity of NK. By contrast, isomeric ribo-analogues. (2'-5')(AF)A2 and (2'-5')A(AF)A, and trimers with the 2'(3')-terminal nucleotide substituted by AF or AF increased the activity of NK cells with an effectiveness close to or higher than the natural trimer (2'-5')A3. Inasmuch as isomeric xylo- and ribo-3'-deoxy-3'-fluoroanalogues of (2'-5')A3 are stereochemically modified oligomers, the data unambiguously suggest that the spatial structure of these trimers affects the increase in the lytic activity of NK cells.  相似文献   

18.
The interaction between RNase T1 and a non-hydrolysable substrate analog, 2'-deoxy-2'-fluoroguanylyl-(3'-5')uridine (GfpU), was investigated using 1H-NMR spectroscopy. In the complex, the Gfp portion takes the syn form around the glycosidic bond and the 3'-endo form for the ribose moiety, similar to those found in 3'-GMP and 2'-deoxy-2'-fluoroguanosine 3'-monophosphate (Gfp). However, in contrast to the cases of these two inhibitors, the complex formation with GfpU at pH 6.0 was found to shift the His-40 C2 proton resonance of RNase T1 to high field as much as 1 ppm. At pH 6.0, this histidine residue appears to be unprotonated in the complex, but is protonated in the free enzyme (pKa of His-40 being 7.9). His-40, rather than Glu-58, is probably involved in the catalytic mechanism as a Lewis base, supporting the recent results from site-directed mutagenesis.  相似文献   

19.
2'-O-Tetrahydrofuranyl-5'-O-dimethoxytrityl-N-protected nucleosides were phosphorylated to give the 3'-(o-chlorophenyl) phosphates which were then condensed with 3',5'-unprotected nucleosides to elongate the chain in the 3'-direction. The 5'-dimethoxytrityl group of these oligonucleotides was selectively deblocked by treatment with zinc bromide. The rate of removal of the dimethoxytrityl group differed in each nucleotide. A dodecamer containing a termination codon UAG, U(AGU)3AG, was synthesized by elongating the chain in the 5'-direction using the selective dedimethoxytritylation followed by condensation of protected oligonucleotide blocks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号