首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1993,123(6):1517-1533
Neurofilaments, assembled from NF-L, NF-M, and NF-H subunits, are the most abundant structural elements in myelinated axons. Although all three subunits contain a central, alpha-helical rod domain thought to mediate filament assembly, only NF-L self-assembles into 10-nm filaments in vitro. To explore the roles of the central rod, the NH2- terminal head and the COOH-terminal tail domain in filament assembly, full-length, headless, tailless, and rod only fragments of mouse NF-L were expressed in bacteria, purified, and their structure and assembly properties examined by conventional and scanning transmission electron microscopy (TEM and STEM). These experiments revealed that in vitro assembly of NF-L into bona fide 10-nm filaments requires both end domains: whereas the NH2-terminal head domain promotes lateral association of protofilaments into protofibrils and ultimately 10-nm filaments, the COOH-terminal tail domain controls lateral assembly of protofilaments so that it terminates at the 10-nm filament level. Hence, the two end domains of NF-L have antagonistic effects on the lateral association of protofilaments into higher-order structures, with the effect of the COOH-terminal tail domain being dominant over that of the NH2-terminal head domain. Consideration of the 21-nm axial beading commonly observed with 10-nm filaments, the approximate 21-nm axial periodicity measured on paracrystals, and recent cross-linking data combine to support a molecular model for intermediate filament architecture in which the 44-46-nm long dimer rods overlap by 1-3-nm head-to-tail, whereas laterally they align antiparallel both unstaggered and approximately half-staggered.  相似文献   

2.
Unidirectional and rotary shadowing techniques have been applied in studying the surface structure of two types of intermediate filaments. Keratin filaments and neurofilaments demonstrate a approximately 21-nm axial periodicity which probably indicates the helical pitch of the outer shell of the filament. Analysis of unidirectionally shadowed keratin showed that the helix is left-handed. The observation of a left-handed helix of 21-nm pitch supports the three-stranded protofilament model of Fraser, Macrae, and Suzuki (1976, J. Mol. Biol. 108:435-452), and indicates that keratin filaments probably consist of 10 three-stranded protofilaments surrounding a core of three such protofilaments, as predicted by models based on x-ray diffraction of hard keratin filaments. Neurofilaments do not demonstrate an easily identifiable hand, so their consistency with the model is, as yet, uncertain.  相似文献   

3.
After dialysis against 10 mM-Tris-acetate (pH 8.5), vimentin that has been purified in the presence of urea is present in the form of tetrameric 2 to 3 nm X 48 nm rods known as protofilaments. These building blocks in turn polymerize into intermediate filaments (10 to 12 nm diameter) when they are dialyzed against a solution of physiological ionic strength and pH. By varying the ionic conditions under which polymerization takes place, we have identified two classes of assembly intermediates whose structures provide clues as to how an intermediate filament may be constructed. The structure of the first class, seen when assembly takes place at 10 to 20 mM-salt at pH 8.5, strongly suggests that one of the initial steps of filament assembly is the association of protofilaments into pairs with a half-unit axial stagger. Increasing the ionic strength of the assembly buffer leads to the emergence of short, full-width intermediate filaments at approximately 50 mM-salt at pH 8.5. In the presence of additional protofilaments, these short filaments elongate to many micrometers when the ionic strength and pH are further adjusted to physiological levels. The electron microscope images of the assembly intermediates suggest that vimentin-containing intermediate filaments are made up of eight protofilaments, assembled such that there is an approximately 22 nm axial stagger between neighboring protofilaments. We propose that this half-unit staggering of protofilaments is a fundamental feature of intermediate filament structure and assembly, and that it could account for the 20 to 22 nm axial repeat seen in all intermediate filaments examined so far.  相似文献   

4.
We have undertaken some computer modeling studies of the cross-bridge observed by Reedy in insect flight muscle so that we investigate the geometric parameters that influence the attachment patterns of cross-bridges to actin filaments. We find that the appearance of double chevrons along an actin filament indicates that the cross-bridges are able to reach 10--14 nm axially, and about 90 degrees around the actin filament. Between three and five actin monomers are therefore available along each turn of one strand of actin helix for labeling by cross-bridges from an adjacent myosin filament. Reedy's flared X of four bridges, which appears rotated 60 degrees at successive levels on the thick filament, depends on the orientation of the actin filaments in the whole lattice as well as on the range of movement in each cross-bridge. Fairly accurate chevrons and flared X groupings can be modeled with a six-stranded myosin surface lattice. The 116-nm long repeat appears in our models as "beating" of the 14.5-nm myosin repeat and the 38.5-nm actin period. Fourier transforms of the labeled actin filaments indicate that the cross-bridges attach to each actin filament on average of 14.5 nm apart. The transform is sensitive to changes in the ease with which the cross-bridge can be distorted in different directions.  相似文献   

5.
Synthetic filaments prepared from column-purified rabbit skeletal myosin by slow dialysis exhibit characteristic bipolar organization and 14-nm axial subunit spacing. Backbone substructure can be discerned in high resolution micrographs in the form of striations of 3--4-nm width and slight angular tilt from the direction of the filament axis. Filament backbone diameters vary over the population, although remaining relatively constant for a single filament. Approximately 25% of the filaments appear poorly stained and frayed, which may be due to collapse on the electron microscope grid. Optical diffraction studies reveal a 43-nm axial repeat as well as the 14.3-nm subunit repeat, indicating a structural homology with natural filaments. A model for synthetic filament aggregation is presented that is consistent with observations of backbone diameter variation, absence of bare zones, and the presence of fraying filaments.  相似文献   

6.
We have determined the mass-per-length (MPL) and the width of unstained freeze-dried reconstituted human epidermal keratin filaments by scanning transmission electron microscopy (STEM). Filaments were reassembled from keratins extracted from four different sources: cultured human epidermal cells (CHEC), human callus (CAL), and the living layers (LL) and stratum corneum (SC) of normal human epidermis. MPL histograms of all four keratin filament types could be fitted by a superposition of two or three Gaussians, with their respective major peaks located between 17 and 20 kDa/nm. We interpreted the multiple MPL peaks to represent different polymorphic forms of the reconstituted filaments. The number of subunits per filament cross section calculated from MPL peak positions, average subunit molecular weight, and an axial repeat of the subunits within the filament of 46.5 nm revealed an average difference between polymorphic variants of 7.5 +/- 0.9 subunits. These data suggest that reconstituted human epidermal keratin filaments are made of two to four 8-stranded "protofibrils" (i.e., made of two laterally aggregated 4-stranded protofilaments), in agreement with earlier observations. The average widths of unstained freeze-dried keratin filaments were larger than those of negatively stained filaments: 12.6 nm (9.6 nm) for CHEC, 12.3 nm (9.7 nm) for CAL, 11.6 nm (8.3 nm) for LL, and 11.3 nm (7.9 nm) for SC keratin filaments, with the values in brackets corresponding to negatively stained samples. Assuming the MPL to be proportional to the square of the filament width, there is a good correlation between the MPL and width measurements both for filaments within a given type as well as among those reconstituted from different types of keratin extracts.  相似文献   

7.
The F18 fimbriae expressed by porcine toxigenic Escherichia coli strains are 1- to 2-mm-long filaments that mediate the adhesion of the bacteria to enterocytes. The backbone of these fimbriae is built from a major structural 15.1-kDa protein, FedA. The structure of isolated negatively stained F18 fimbriae imaged by dark-field scanning transmission electron microscopy (STEM) was resolved to approximately 2 nm. Analyzing their helical symmetry showed the axially repeating units to alternate in a "zigzag" manner around the helical axis with an axial rise of 2.2 nm. Two repeating units give rise to the observed 4.3-nm helical repeat, which is practically identical to the pitch of the one-start helix formed. Additionally, an axially repeating pattern with a 27-nm spacing was found on rotary-shadowed fimbriae. Mass-per-length determination of unstained F18 fimbriae by STEM revealed the axially repeating unit to have a molecular mass of 25.4 kDa, indicating that it is a FedA monomer, with the difference in mass arising from the minor subunits, FedE and FedF. The presence of the latter two proteins might cause the observed 27-nm axial pattern.  相似文献   

8.
Three-dimensional (3-D) helical reconstructions computed from electron micrographs of negatively stained dispersed F-actin filaments invariably revealed two uninterrupted columns of mass forming the "backbone" of the double-helical filament. The contact between neighboring subunits along the thus defined two long-pitch helical strands was spatially conserved and of high mass density, while the intersubunit contact between them was of lower mass density and varied among reconstructions. In contrast, phalloidinstabilized F-actin filaments displayed higher and spatially more conserved mass density between the two long-pitch helical strands, suggesting that this bicyclic hepta-peptide toxin strengthens the intersubunit contact between the two strands. Consistent with this distinct intersubunit bonding pattern, the two long-pitch helical strands of unstabilized filaments were sometimes observed separated from each other over a distance of two to six subunits, suggesting that the intrastrand intersubunit contact is also physically stronger than the interstrand contact. The resolution of the filament reconstructions, extending to 2.5 nm axially and radially, enabled us to reproducibly "cut out" the F-actin subunit which measured 5.5 nm axially by 6.0 nm tangentially by 3.2 nm radially. The subunit is distinctly polar with a massive "base" pointing towards the "barbed" end of the filament, and a slender "tip" defining its "pointed" end (i.e., relative to the "arrowhead" pattern revealed after stoichiometric decoration of the filaments with myosin subfragment 1). Concavities running approximately parallel to the filament axis both on the inner and outer face of the subunit define a distinct cleft separating the subunit into two domains of similar size: an inner domain confined to radii less than or equal to 2.5-nm forms the uninterrupted backbone of the two long-pitch helical strands, and an outer domain placed at radii of 2-5-nm protrudes radially and thus predominantly contributes to the outer part of the massive base. Quantitative evaluation of successive crossover spacings along individual F-actin filaments revealed the deviations from the mean repeat to be compensatory, i.e., short crossovers frequently followed long ones and vice versa. The variable crossover spacings and diameter of the F-actin filament together with the local unraveling of the two long-pitch helical strands are explained in terms of varying amounts of compensatory "lateral slipping" of the two strands past each other roughly perpendicular to the filament axis. This intrinsic disorder of the actin filament may enable the actin moiety to play a more active role in actin-myosin-based force generation than merely act as a rigid passive cable as has hitherto been assumed.  相似文献   

9.
Summary In vitro assembly and morphological characteristics of purified 58 kDa, 52 kDa, 50 kDa, and 45 kDa polypeptides in the leaves and the cotyledons of the cabbage (Brassica pekinensis Rupt.) were investigated by electron microscopy and scanning tunneling microscopy. The three or four purified intermediate filament (IF) polypeptides can spontaneously assemble into intermediate filaments in vitro with a 23–24 nm axial repeat, which indicates that keratin IFs in higher plant cells have the same molecular arrangement as in animal cells. STM images suggest that the plant keratin filaments display a pronounced structural polymorphism, which can be composed of 3 nm, 4.5 nm, or 6 nm wide keratin protofilaments.Abbreviation IF intermediate filament - STM scanning tunneling microscopy - SDS sodium dodecyl sulfate - BCIP 5-bromo-4-chloro-3-indolyl phosphate-toluidine - NBC p-nitroblue tetrazolium chloride - PMSF phenylmethyl sulfonylfluoride - HOPG high oriented pyrolytic graphite  相似文献   

10.
Long, thick filaments (greater than 4.0 micrometer) rapidly and gently isolated from fresh, unstimulated Limulus muscle by an improved procedure have been examined by electron microscopy and optical diffraction. Images of negatively stained filaments appear highly periodic with a well-preserved myosin cross-bridge array. Optical diffraction patterns of the electron micrographs show a wealth of detail and are consistent with a myosin helical repeat of 43.8 nm, similar to that observed by x-ray diffraction. Analysis of the optical diffraction patterns, in conjunction with the appearance in electron micrographs of the filaments, supports a model for the filament in which the myosin cross-bridges are arranged on a four-stranded helix, with 12 cross-bridges per turn or each helix, thus giving an axial repeat every third level of cross-bridges (43.8 nm).  相似文献   

11.
Effects of C-protein on synthetic myosin filament structure.   总被引:7,自引:0,他引:7       下载免费PDF全文
In the absence of C-protein, synthetic filaments prepared from column-purified myosin exhibit the following features: individual filament diameters are uniform over a long length, but a wide distribution of diameters is apparent over the population; approximately 25% of the filaments have a frayed appearance and take up stain poorly, whereas the remaining 75% are well-stained; optical diffraction of well-stained filaments reveals a 14.3-nm subunit period and a 43-nm axial period (Koretz, 1978; Koretz, 1979). Addition of C-protein to myosin before filament formation affects all of these features in a manner related to C-protein concentration. At the physiological ratio of C-protein to myosin in the banded region of the natural thick filament, synthetic aggregates are uniform in diameter over the population and show less than 10% frays. Whereas the subunit period remains unchanged, the axial period has increased to 114.4 nm, or eight times the subunit repeat. Above and below the physiological ratio, disorder of a specific nature is apparent. Addition of C-protein after filament formation appears to coat the aggregates so that elements of backbone ultrastructure are obscured, and some evidence of axial period change is visible in diffraction patterns. A model is presented for the binding of C-protein to myosin, and its observed effects on filament structure are explained in terms of this model.  相似文献   

12.
The four major keratins of normal human epidermis (molecular mass 50, 56.5, 58, and 65-67 kD) can be subdivided on the basis of charge into two subfamilies (acidic 50-kD and 56.5-kD keratins vs. relatively basic 58-kD and 65-67-kD keratins) or subdivided on the basis of co-expression into two "pairs" (50-kD/58-kD keratin pair synthesized by basal cells vs. 56.5-kD/65-67-kD keratin pair expressed in suprabasal cells). Acidic and basic subfamilies were separated by ion exchange chromatography in 8.5 M urea and tested for their ability to reassemble into 10-nm filaments in vitro. The two keratins in either subfamily did not reassemble into 10-nm filaments unless combined with members of the other subfamily. While electron microscopy of acidic and basic keratins equilibrated in 4.5 M urea showed that keratins within each subfamily formed distinct oligomeric structures, possibly representing precursors in filament assembly, chemical cross-linking followed by gel analysis revealed dimers and larger oligomers only when subfamilies were combined. In addition, among the four major keratins, the acidic 50-kD and basic 58-kD keratins showed preferential association even in 8.5 M urea, enabling us to isolate a 50-kD/58-kD keratin complex by gel filtration. This isolated 50-kD/58-kD keratin pair readily formed 10-nm filaments in vitro. These results demonstrate that in tissues containing multiple keratins, two keratins are sufficient for filament assembly, but one keratin from each subfamily is required. More importantly, these data provide the first evidence for the structural significance of specific co-expressed acidic/basic keratin pairs in the formation of epithelial 10-nm filaments.  相似文献   

13.
We present a high-resolution electron microscopic study of the sidearms on microtubules and vesicles that are suggested to form the crossbridges which produce the microtubule-based vesicle transport in squid axoplasm. The sidearms were found attached to the surfaces of the anterogradely transported vesicles in the presence of ATP. These sidearms were made of one to three filaments of uniform diameter. Each filament measured 5-6 nm in width and 30-35 nm in length. The filaments in some of the sidearms had splayed apart by pivoting at their base, thereby assuming a "V" shape. The spread configuration illustrated the independence of the individual filaments. The filaments in other sidearms were closely spaced and oriented parallel to each other, a pattern called the compact configuration. In axoplasmic buffer containing AMP-PNP, structures indistinguishable from the filaments of the sidearms on the vesicles were observed attached to microtubules. Pairs of filaments, thought to represent the basic functional unit, were observed attached to adjacent protofilaments of the microtubules by their distal tips. These data support a model of vesicle movement in which a pair of filaments within a sidearm forms two crossbridges and moves a vesicle by "walking" along the protofilaments of the microtubule.  相似文献   

14.
As visualized by electron microscopy, RecA protein binds in a highly cooperative manner to single-stranded fd DNA in solutions of 0.01 M Tris (pH 7.5). The resulting nucleoprotein filament loops are 1.25 μm in length, have a fiber diameter of 12 nm and show an indication of a 4.5 nm repeat along the axis of the compact fibers. RecA binds to linear duplex fd DNA in solutions of 0.01 M Tris (pH 7.5) to yield chains of beads which, in the presence of Mg2+ and ATP, coalesce into smooth filaments with a length of 1.9 μm (the length of protein-free fd duplex DNA) and have a fiber diameter of 12 nm. In solutions containing Mg2+ and ATP-γ-S, however, RecA binds to duplex DNA in a highly cooperative manner to yield rigid filaments 3.0 μm in length. These filaments are 12 nm in diameter and show a very clear 7.5 nm axial repeat. This extension of DNA to 150% of its usual length in the apparent absence of any single-stranded components suggests that the DNA helix must also be highly unwound and provides new insights into the mode of RecA action.  相似文献   

15.
The F18 fimbriae expressed by porcine toxigenic Escherichia coli strains are 1- to 2-mm-long filaments that mediate the adhesion of the bacteria to enterocytes. The backbone of these fimbriae is built from a major structural 15.1-kDa protein, FedA. The structure of isolated negatively stained F18 fimbriae imaged by dark-field scanning transmission electron microscopy (STEM) was resolved to approximately 2 nm. Analyzing their helical symmetry showed the axially repeating units to alternate in a “zigzag” manner around the helical axis with an axial rise of 2.2 nm. Two repeating units give rise to the observed 4.3-nm helical repeat, which is practically identical to the pitch of the one-start helix formed. Additionally, an axially repeating pattern with a 27-nm spacing was found on rotary-shadowed fimbriae. Mass-per-length determination of unstained F18 fimbriae by STEM revealed the axially repeating unit to have a molecular mass of 25.4 kDa, indicating that it is a FedA monomer, with the difference in mass arising from the minor subunits, FedE and FedF. The presence of the latter two proteins might cause the observed 27-nm axial pattern.  相似文献   

16.
In this work we examined the arrangement of cross-bridges on the surface of myosin filaments in the A-band of Lethocerus flight muscle. Muscle fibers were fixed using the tannic-acid-uranyl-acetate, ("TAURAC") procedure. This new procedure provides remarkably good preservation of native features in relaxed insect flight muscle. We computed 3-D reconstructions from single images of oblique transverse sections. The reconstructions reveal a square profile of the averaged myosin filaments in cross section view, resulting from the symmetrical arrangement of four pairs of myosin heads in each 14.5-nm repeat along the filament. The square profiles form a very regular right-handed helical arrangement along the surface of the myosin filament. Furthermore, TAURAC fixation traps a near complete 38.7 nm labeling of the thin filaments in relaxed muscle marking the left-handed helix of actin targets surrounding the thick filaments. These features observed in an averaged reconstruction encompassing nearly an entire myofibril indicate that the myosin heads, even in relaxed muscle, are in excellent helical register in the A-band.  相似文献   

17.
We have used electron microscopy and proteolytic susceptibility to study the structural basis of myosin-linked regulation in synthetic filaments of scallop striated muscle myosin. Using papain as a probe of the structure of the head-rod junction, we find that this region of myosin is approximately five times more susceptible to proteolytic attack under activating (ATP/high Ca2+) or rigor (no ATP) conditions than under relaxing conditions (ATP/low Ca2+). A similar result was obtained with native myosin filaments in a crude homogenate of scallop muscle. Proteolytic susceptibility under conditions in which ADP or adenosine 5'-(beta, gamma-imidotriphosphate) (AMPPNP) replaced ATP was similar to that in the absence of nucleotide. Synthetic myosin filaments negatively stained under relaxing conditions showed a compact structure, in which the myosin cross-bridges were close to the filament backbone and well ordered, with a clear 14.5-nm axial repeat. Under activating or rigor conditions, the cross-bridges became clumped and disordered and frequently projected further from the filament backbone, as has been found with native filaments; when ADP or AMPPNP replaced ATP, the cross-bridges were also disordered. We conclude (a) that Ca2+ and ATP affect the affinity of the myosin cross-bridges for the filament backbone or for each other; (b) that the changes observed in the myosin filaments reflect a property of the myosin molecules alone, and are unlikely to be an artifact of negative staining; and (c) that the ordered structure occurs only in the relaxed state, requiring both the presence of hydrolyzed ATP on the myosin heads and the absence of Ca2+.  相似文献   

18.
Contraction of skeletal muscle is regulated by structural changes in both actin-containing thin filaments and myosin-containing thick filaments, but myosin-based regulation is unlikely to be preserved after thick filament isolation, and its structural basis remains poorly characterized. Here, we describe the periodic features of the thick filament structure in situ by high-resolution small-angle x-ray diffraction and interference. We used both relaxed demembranated fibers and resting intact muscle preparations to assess whether thick filament regulation is preserved in demembranated fibers, which have been widely used for previous studies. We show that the thick filaments in both preparations exhibit two closely spaced axial periodicities, 43.1 nm and 45.5 nm, at near-physiological temperature. The shorter periodicity matches that of the myosin helix, and x-ray interference between the two arrays of myosin in the bipolar filament shows that all zones of the filament follow this periodicity. The 45.5-nm repeat has no helical component and originates from myosin layers closer to the filament midpoint associated with the titin super-repeat in that region. Cooling relaxed or resting muscle, which partially mimics the effects of calcium activation on thick filament structure, disrupts the helical order of the myosin motors, and they move out from the filament backbone. Compression of the filament lattice of demembranated fibers by 5% Dextran, which restores interfilament spacing to that in intact muscle, stabilizes the higher-temperature structure. The axial periodicity of the filament backbone increases on cooling, but in lattice-compressed fibers the periodicity of the myosin heads does not follow the extension of the backbone. Thick filament structure in lattice-compressed demembranated fibers at near-physiological temperature is similar to that in intact resting muscle, suggesting that the native structure of the thick filament is largely preserved after demembranation in these conditions, although not in the conditions used for most previous studies with this preparation.  相似文献   

19.
This study provides a comprehensive, high-resolution structural analysis of the central-pair microtubule apparatus of sperm flagella. It describes the arrangement of several microtubule-associated "sheath" components and suggests, contrary to previous thinking, that microtubules are structurally asymmetric. The two microtubules of the central pair are different in several respects: the C2 tubule bears a single row of 18-nm-long sheath projections with an axial periodicity of 16 nm, whereas the C1 tubule possesses rows of 9-nm globular sheath components with an axial repeat of 32 nm. The lumen of the C2 tubule always appears completely filled with electron-dense material; that of the C1 tubule is frequently hollow. The C2 tubule also possesses a series of beaded chains arranged around the microtubule; the beaded chains are composed of globular subunits 7.5-10 nm in diameter and appear to function in the pairing of the C1 and C2 tubules. These findings indicate: that the beaded chains are not helical, but assume the form of lock washers arranged with a 16-nm axial periodicity on the microtubule; and that the lattice of tubulin dimers in the C2 tubule is not helically symmetric, but that there are seams between certain pairs of protofilaments. Proposed lattice models predict that, because of these seams, central pair and perhaps all singlet microtubules may contain a ribbon of 2-5 protofilaments that are resistant to solubilization; these models are supported by the results of the accompanying paper (R. W. Linck, and G. L. Langevin. 1981. J. Cell Biol. 89: 323-337.  相似文献   

20.
Tetrameric rods, protofilaments and assembled filaments of desmin, the intermediate filament protein of muscle, have been chemically cross-linked with the lysine specific cross-linkers EGS [ethylene glycol bis(succinimidylsuccinate), 1.61 nm span] and bis(sulfosuccinimidyl) suberate (1.14 nm span). One bis(sulfosuccinimidyl)suberate and two EGS cross-links were isolated from the rod and characterized. They show that the two coiled coils in the rod tetramer are staggered by approximately 15-20 nm and strongly indicate an antiparallel arrangement in which the inner overlapping part of the rod is formed by the amino-terminal helices 1A, 1B and 2A. Both EGS cross-links identified in the rod were also isolated from cross-linked filaments. The isolated rod, therefore, represents a complex also present in identical, or very similar form in protofilaments and in assembled filaments. Cross-linked filaments yielded a third EGS cross-link that must have been formed between neighboring protofilaments. It connects the highly conserved carboxy-terminus of helix 2B of the first protofilament to the overlap region formed by helices 1A and 2A of the second protofilament. The restrictions posed by these cross-links on current filament models are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号