首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between relative cell volume and time-dependent changes in intracellular Ca2+ concentration ([Ca2+] i ) during exposure to hypotonicity was characterized in SV-40 transformed rabbit corneal epithelial cells (tRCE) (i). Light scattering measurements revealed rapid initial swelling with subsequent 97% recovery of relative cell volume (characteristic time (τ vr ) was 5.9 min); (ii). Fura2-fluorescence single-cell imaging showed that [Ca2+] i initially rose by 216% in 30 sec with subsequent return to near baseline level after another 100 sec. Both relative cell volume recovery and [Ca2+] i transients were inhibited by either: (a) Ca2+-free medium; (b) 5 mm Ni2+ (inhibitor of plasmalemma Ca2+ influx); (c) 10 μm cyclopiazonic acid, CPA (which causes depletion of intracellular Ca2+ content); or (d) 100 μm ryanodine (inhibitor of Ca2+ release from intracellular stores). To determine the temporal relationship between an increased plasmalemma Ca2+ influx and the emptying of intracellular Ca2+ stores during the [Ca2+] i transients, Mn2+ quenching of fura2-fluorescence was quantified. In the presence of CPA, hypotonic challenge increased plasmalemma Mn2+ permeability 6-fold. However, Mn2+ permeability remained unchanged during exposure to either: 1.100 μm ryanodine; 2.10 μm CPA and 100 μm ryanodine. This report for the first time documents the time dependence of the components of the [Ca2+] i transient required for a regulatory volume decrease (RVD). The results show that ryanodine sensitive Ca2+ release from an intracellular store leads to a subsequent increase in plasmalemma Ca2+ influx, and that both are required for cells to undergo RVD. Received: 7 November 1996/Revised: 6 January 1997  相似文献   

2.
A Ca2+-activated (I Cl,Ca) and a swelling-activated anion current (I Cl,vol) were investigated in Ehrlich ascites tumor cells using the whole cell patch clamp technique. Large, outwardly rectifying currents were activated by an increase in the free intracellular calcium concentration ([Ca2+] i ), or by hypotonic exposure of the cells, respectively. The reversal potential of both currents was dependent on the extracellular Cl concentration. I Cl,Ca current density increased with increasing [Ca2+] i , and this current was abolished by lowering [Ca2+] i to <1 nm using 1,2-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid (BAPTA). In contrast, activation of I Cl,vol did not require an increase in [Ca2+] i . The kinetics of I Cl,Ca and I Cl,vol were different: at depolarized potentials, I Cl,Ca as activated in a [Ca2+] i - and voltage-dependent manner, while at hyperpolarized potentials, the current was deactivated. In contrast, I Cl,vol exhibited time- and voltage-dependent deactivation at depolarized potentials and reactivation at hyperpolarized potentials. The deactivation of I Cl,vol was dependent on the extracellular Mg2+ concentration. The anion permeability sequence for both currents was I > Cl > gluconate. I Cl,Ca was inhibited by niflumic acid (100 μm), 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 μm) and 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS, 100 μm), niflumic acid being the most potent inhibitor. In contrast, I Cl,vol was unaffected by niflumic acid (100 μm), but abolished by tamoxifen (10 μm). Thus, in Ehrlich cells, separate chloride currents, I Cl,Ca and I Cl,vol, are activated by an increase in [Ca2+] i and by cell swelling, respectively. Received: 12 November 1997/Revised: 5 February 1998  相似文献   

3.
Effects of the extracellular Ca2+ concentration ([Ca2+] o ) on whole cell membrane currents were examined in mouse osteoclastic cells generated from bone marrow/stromal cell coculture. The major resting conductance in the presence of 1 mm Ca2+ was mediated by a Ba2+-sensitive, inwardly rectifying K+ (IRK) current. A rise in [Ca2+] o (5–40 mm) inhibited the IRK current and activated an 4,4′-diisothiocyano-2,2′-stilbenedisulfonate (DIDS)-sensitive, outwardly rectifying Cl (ORCl) current. The activation of the ORCl current developed slowly and needed higher [Ca2+] o than that required to inhibit the IRK current. The inhibition of the IRK current consisted of two components, initial and subsequent late phases. The initial inhibition was not affected by intracellular application of guanosine 5′-O-(3-thiotriphosphate) (GTPγS) or guanosine 5′-O-(2-thiodiphosphate) (GDPβS). The late inhibition, however, was enhanced by GTPγS and attenuated by GDPβS, suggesting that GTP-binding proteins mediate this inhibition. The activation of the ORCl current was suppressed by pretreatment with pertussis toxin, but not potentiated by GTPγS. An increase in intracellular Ca2+ level neither reduced the IRK current nor activated the ORCl current. Staurosporine, an inhibitor for protein kinase C, did not modulate the [Ca2+] o -induced changes in the IRK and ORCl conductances. These results suggest that high [Ca2+] o had a dual action on the membrane conductance of osteoclasts, an inhibition of an IRK conductance and an activation of an ORCl conductance. The two conductances modulated by [Ca2+] o may be involved in different phases of bone resorption because they differed in Ca2+ sensitivity, temporal patterns of changes and regulatory mechanisms. Received: 28 May 1996/Revised: 28 January 1997  相似文献   

4.
The properties of Mg2+ conductances in Paramecium tetraurelia were investigated under two-electrode voltage clamp. When bathed in physiological Mg2+ concentrations (0.5 mm), depolarizing steps from rest elicited a prominent Mg2+-specific current (I Mg) that has been noted previously. The dependence of this current on extracellular Mg2+ approximated that of Mg2+-induced backward swimming, demonstrating that I Mg contributes to normal membrane excitation and behavior in this ciliate. Closer analysis revealed that the Mg2+ current deactivated biphasically. While this might suggest the involvement of two Mg2+-specific pathways, both tail-current components were affected similarly by current-specific mutations and they had similar ion selectivities, suggesting a common pathway. In contrast, a Mg2+ current activated upon hyperpolarization could be separated into three components. The first, I Mg, had similar properties to the current activated upon depolarization. The second was a nonspecific divalent cation current (I NS) that was revealed following suppression of I Mg by eccentric mutation. The final current was relatively minor and was revealed following suppression of I Mg and I NS by obstinate A gene mutation. Reversal-potential analyses suggested that I Mg and I NS define two intracellular compartments that contain, respectively, low (0.4 mm) and high (8 mm) concentrations of Mg2+. Measurement of intracellular free Mg2+ using the fluorescent dye, Mag-fura-2, suggested that bulk [Mg2+] i rests at around 0.4 mm in Paramecium. Received: 12 January 1998/Revised: 16 March 1998  相似文献   

5.
The effects of Ni2+ were evaluated on slowly-decaying, high-voltage-activated (HVA) Ca2+ currents expressed by pyramidal neurons acutely dissociated from guinea-pig piriform cortex. Whole-cell, patch-clamp recordings were performed with Ba2+ as the charge carrier. Ni2+ blocked HVA Ba2+ currents (I Bas) with an EC50 of approximately 60 μm. Additionally, after application of nonsaturating Ni2+ concentrations, residual currents activated with substantially slower kinetics than both total and Ni2+-sensitive I Bas. None of the pharmacological components of slowly decaying, HVA currents activated with kinetics significantly different from that of total currents, indicating that the effect of Ni2+ on I Bas kinetics cannot be attributed to the preferential inhibition of a fast-activating component. The effect of Ni2+ on I Ba amplitude was voltage-independent over the potential range normally explored in our experiments (−60 to +20 mV), hence the Ni2+-dependent decrease of I Ba activation rate is not due to a voltage- and time-dependent relief from block. Moreover, Ni2+ significantly reduced I Ba deactivation speed upon repolarization, which also is not compatible with a depolarization-dependent unblocking mechanism. The dependence on Ni2+ concentration of the I Ba activation-rate reduction was remarkably different from that found for I Ba block, with an EC50 of ∼20 μm and a Hill coefficient of ∼1.73 vs.∼1.10. These results demonstrate that Ni2+, besides inhibiting the I Bas under study probably by exerting a blocking action on the pore of the underlying Ca2+ channels, also interferes with Ca2+-channel gating kinetics, and strongly suggest that the two effects depend on Ni2+ occupancy of binding sites at least partly distinct. Received: 13 July 2000/Revised: 9 November 2000  相似文献   

6.
Stimulation with leukotriene D4 (LTD4) (3–100 nm) induces a transient increase in the free intracellular Ca2+ concentration ([Ca2+] i ) in Ehrlich ascites tumor cells. The LTD4-induced increase in [Ca2+] i is, however, significantly reduced in Ca2+-free medium (2 mm EGTA), and under these conditions stimulation with a low LTD4 concentration (3 nm) does not result in any detectable increase in [Ca2+] i . Addition of LTD4 (3–100 nm) moreover accelerates the KCl loss seen during Regulatory Volume Decrease (RVD) in cells suspended in a hypotonic medium. The LTD4-induced (100 nm) acceleration of the RVD response is also seen in Ca2+-free medium and also at 3 nm LTD4, indicating that LTD4 can open K+- and Cl-channels without any detectable increase in [Ca2+] i . Buffering cellular Ca2+ with BAPTA almost completely blocks the LTD4-induced (100 nm) acceleration of the RVD response. Thus, the reduced [Ca2+] i level after BAPTA-loading or buffering of [Ca2+] i seems to inhibit the LTD4-induced stimulation of the RVD response even though the LTD4-induced cell shrinkage is not necessarily preceded by any detectable increase in [Ca2+] i . The LTD4 receptor antagonist L649,923 (1 μm) completely blocks the LTD4-induced increase in [Ca2+] i and inhibits the RVD response as well as the LTD4-induced acceleration of the RVD response. When the LTD4 receptor is desensitized by preincubation with 100 nm LTD4, a subsequent RVD response is strongly inhibited. In conclusion, the present study supports the notion that LTD4 plays a role in the activation of the RVD response. LTD4 seems to activate K+ and Cl channels via stimulation of a LTD4 receptor with no need for a detectable increase in [Ca2+] i . Received: 25 September 1995/Revised: 25 January 1996  相似文献   

7.
Chronic KCl-induced depolarization of Paramecium tetraurelia enhances Ca2+-dependent backward swimming behavior over a period of 8–24 hr. Here, we investigated the electrophysiological mechanisms underlying this adaptive phenomenon using voltage-clamp techniques. Cells that had been adapted to 20 mm KCl showed several significant changes in the properties of the Ca2+ current that mediates ciliary reversal in Paramecium (I Ca ), including a positive shift in voltage sensitivity and a significant slowing of inactivation. In seeking an explanation for these changes, we examined the effects of chronic depolarization on mutants that do not normally express a Ca2+ current or swim backward. Surprisingly, pawn B mutant cells slowly regained the ability to reverse their cilia during KCl exposure with a time course that mirrored behavioral adaptation of the wild type. This behavior was accompanied by expression of a novel Ca2+ current (I QUEEN ) whose voltage sensitivity was shifted positive with respect to the wild-type Ca2+ current and that was slow to inactivate. Coincidental expression of I QUEEN in the wild type during adaptation would readily explain the observed changes in I Ca kinetics. We also examined the effects of chronic depolarization on Dancer, a mutant suggested previously to have an I Ca inactivation defect. The mutant phenotype could be suppressed or exaggerated greatly by manipulating extracellular KCl concentration, suggesting that Dancer lesion instead causes inappropriate regulation of I QUEEN . Received: 23 April 1999/Revised: 29 June 1999  相似文献   

8.
Using spectrofluorescence imaging of fura-2 loaded renal A6 cells, we have investigated the generation of the cytosolic Ca2+ signal in response to osmotic shock and localized membrane stretch. Upon hypotonic exposure, the cells began to swell prior to a transient increase in [Ca2+] i and the cells remained swollen after [Ca2+] i had returned towards basal levels. Exposure to 2/3rd strength Ringer produced a cell volume increase within 3 min, followed by a slow regulatory volume decrease (RVD). The hypotonic challenge also produced a transient increase in [Ca2+] after a delay of 22 sec. Both the RVD and [Ca2+] i response to hypotonicity were inhibited in a Ca2+-free bathing solution and by gadolinium (10 μm), an inhibitor of stretch-activated channels. Stretching the membrane by application of subatmospheric pressure (-2 kPa) inside a cell-attached patch-pipette induced a similar global increase in [Ca2+] i as occurred after hypotonic shock. A stretch-sensitive [Ca2+] i increase was also observed in a Ca2+-free bathing solution, provided the patch-pipette contained Ca2+. The mechanosensitive [Ca2+] i response was by gadolinium (10 μm) or Ca2+-free pipette solutions, even when Ca2+ (2 mm) was present in the bath. Long-term (>10 min) pretreatment of the cells with thapsigargin inhibited the [Ca2+] i response to hypotonicity. These results provide evidence that cell swelling or mechanical stimulation can activate a powerful amplification system linked to intracellular Ca2+ release mechanisms. Received: 3 August 1998/Revised: 19 November 1998  相似文献   

9.
Smooth muscle cells isolated from the secondary and tertiary branches of the rabbit mesenteric artery contain large Ca2+-dependent channels. In excised patches with symmetrical (140 mm) K+ solutions, these channels had an average slope conductance of 235 ± 3 pS, and reversed in direction at −6.1 ± 0.4 mV. The channel showed K+ selectivity and its open probability (P o ) was voltage-dependent. Iberiotoxin (50 nm) reversibly decreased P o , whereas tetraethylammonium (TEA, at 1 mm) reduced the unitary current amplitude. Apamin (200 nm) had no effect. The channel displayed sublevels around 1/3 and 1/2 of the mainstate level. The effect of [Ca2+] on P o was studied and data fitted to Boltzmann relationships. In 0.1, 0.3, 1.0 and 10 μm Ca2+, V 1/2 was 77.1 ± 5.3 (n= 18), 71.2 ± 4.8 (n= 16), 47.3 ± 10.1 (n= 11) and −14.9 ± 10.1 mV (n= 6), respectively. Values of k obtained in 1 and 10 μm [Ca2+] were significantly larger than that observed in 0.1 μm [Ca2+]. With 30 μm NS 1619 (a BKCa channel activator), V 1/2 values were shifted by 39 mV to the left (hyperpolarizing direction) and k values were not affected. TEA applied intracellularly, reduced the unitary current amplitude with a K d of 59 mm. In summary, BKCa channels show a particularly weak sensitivity to intracellular TEA and they also display large variation in V 1/2 and k. These findings suggest the possibility that different types (isoforms) of BKCa channels may exist in this vascular tissue. Received: 22 December 1997/Revised: 27 March 1998  相似文献   

10.
Removal of extracellular Ca2+ activates ion channels in the plasma membrane of defolliculated oocytes of the South Africa clawed toad Xenopus laevis. At present, there is controversy about the nature of the Ca2+-inactivated ion channels. Recently, we identified one of these channels as a Ca2+-inactivated Cl channel (CaIC) using single channel analysis. In this work we confirm and extend previous observations on the CaIC by presenting a decisive extension of the regulation and inhibition profile. CaIC current is reversibly blocked by the divalent and trivalent cations Zn2+ (half-maximal blocker concentration, K1/2= 8 μm), Cu2+ (K1/2= 120 μm) and Gd3+ (K1/2= 20 μm). Furthermore, CaIC is inhibited by the specific Cl channel blocker NPPB (K1/2≈ 3 μm). Interestingly, CaIC-mediated currents are further sensitive to the cation channel inhibitor amiloride (500 μm) but insensitive to its high affinity analogue benzamil (100 μm). An investigation of the pH-dependence of the CaIC revealed a reduction of currents in the acidic range. Using simultaneous measurements of membrane current (I m ), conductance (G m ) and capacitance (C m ) we demonstrate that Ca2+ removal leads to instant activation of CaIC already present in the plasma membrane. Since C m remains constant upon Ca2+ depletion while I m and G m increase drastically, no exocytotic transport of CaIC from intracellular pools and functional insertion into the plasma membrane is involved in the large CaIC currents. A detailed overview of applicable blockers is given. These blockers are useful when oocytes are utilized as an expression system for foreign proteins whose investigations require Ca2+-free solutions and disturbances by CaIC currents are unwanted. We further compare and discuss our results with data of Ca2+-inactivated cation channels reported by other groups. Received: 18 June 1999/Revised: 13 August 1999  相似文献   

11.
Paramecium tetraurelia responds to extracellular GTP (≥ 10 nm) with repeated episodes of prolonged backward swimming. These backward swimming events cause repulsion from the stimulus and are the behavioral consequence of an oscillating membrane depolarization. Ion substitution experiments showed that either Mg2+ or Na+ could support these responses in wild-type cells, with increasing concentrations of either cation increasing the extent of backward swimming. Applying GTP to cells under voltage clamp elicited oscillating inward currents with a periodicity similar to that of the membrane-potential and behavioral responses. These currents were also Mg2+- and Na+-dependent, suggesting that GTP acts through Mg2+-specific (I Mg) and Na+-specific (I Na) conductances that have been described previously in Paramecium. This suggestion is strengthened by the finding that Mg2+ failed to support normal behavioral or electrophysiological responses to GTP in a mutant that specifically lacks I Mg (``eccentric'), while Na+ failed to support GTP responses in ``fast-2,' a mutant that specifically lacks I Na. Both mutants responded normally to GTP if the alternative cation was provided. As I Mg and I Na are both Ca2+-dependent currents, the characteristic GTP behavior could result from oscillations in intracellular Ca2+ concentration. Indeed, applying GTP to cells in the absence of either Mg2+ or Na+ revealed a minor inward current with a periodicity similar to that of the depolarizations. This current persisted when known voltage-dependent Ca2+ currents were blocked pharmacologically or genetically, which implies that it may represent the activation of a novel purinergic-receptor–coupled Ca2+ conductance. Received: 28 October 1996/Revised: 24 December 1996  相似文献   

12.
Ion channel expression was studied in THP-1 human monocytic leukemia cells induced to differentiate into macrophage-like cells by exposure to the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Inactivating delayed rectifier K+ currents, I DR, present in almost all undifferentiated THP-1 monocytes, were absent from PMA-differentiated macrophages. Two K+ channels were observed in THP-1 cells only after differentiation into macrophages, an inwardly rectifying K+ channel (I IR) and a Ca2+-activated maxi-K channel (I BK). I IR was a classical inward rectifier, conducting large inward currents negative to E K and very small outward currents. I IR was blocked in a voltage-dependent manner by Cs+, Na+, and Ba2+, block increasing with hyperpolarization. Block by Na+ and Ba2+ was time-dependent, whereas Cs+ block was too fast to resolve. Rb+ was sparingly permeant. In cell-attached patches with high [K+] in the pipette, the single I IR channel conductance was ∼30 pS and no outward current could be detected. I BK channels were observed in cell-attached or inside-out patches and in whole-cell configuration. In cell-attached patches the conductance was ∼200–250 pS and at potentials positive to ∼100 mV a negative slope conductance of the unitary current was observed, suggesting block by intracellular Na+. I BK was activated at large positive potentials in cell-attached patches; in inside-out patches the voltage-activation relationship was shifted to more negative potentials by increased [Ca2+]. Macroscopic I BK was blocked by external TEA+ with half block at 0.35 mm. THP-1 cells were found to contain mRNA for Kv1.3 and IRK1. Levels of mRNA coding for these K+ channels were studied by competitive PCR (polymerase chain reaction), and were found to change upon differentiation in the same direction as did channel expression: IRK1 mRNA increased at least 5-fold, and Kv1.3 mRNA decreased on average 7-fold. Possible functional correlates of the changes in ion channel expression during differentiation of THP-1 cells are discussed. Received: 19 September 1995/Revised: 14 March 1996  相似文献   

13.
Elevation in intracellular Ca2+ acting via protein kinase C (PKC) is shown to regulate tight junction resistance in T84 cells, a human colon cancer line and a model Cl secretory epithelial cell. The Ca2+ ionophore A23187, which was used to increase the intracellular Ca2+ concentration, caused a decrease in tight junction resistance in a concentration- and time-dependent manner. Dual Na+/mannitol serosal-to-mucosal flux analysis performed across the T84 monolayers treated with 2 μm A23187 revealed that A23187 increased both fluxes and that in the presence of ionophore there was a linear relationship between the Na+ and mannitol fluxes with a slope of 56.4, indicating that the decrease in transepithelial resistance was due to a decrease in tight junction resistance. Whereas there was no effect of 0.1 μm A23187, 1 or 2 μm produced a 55% decrease in baseline resistance in 1 hr and 10 μm decreased resistance more than 80%. The A23187-induced decrease in tight junction resistance was partially reversible by washing 3 times with a Ringer's-HCO3 solution containing 1% BSA. The A23187 effect on resistance was dependent on intracellular Ca2+; loading the T84 cells with the intracellular Ca2+ chelator BAPTA significantly reduced the decrease in tight junction resistance caused by A23187. This intracellular Ca2+ effect was mediated by protein kinase C and not calmodulin. While the protein kinase C antagonist H-7 totally prevented the action of A23187 on tight junction resistance, the Ca2+/calmodulin inhibitor W13 did not have any effect. Sphingosine, another inhibitor of PKC, partially reduced the A23187-induced decline in tight junction resistance. The PKC agonist PMA mimicked the A23187 effect on resistance, although the effect was delayed up to 1 hr after exposure. In addition, however, PMA also caused an earlier increase in resistance, indicating it had an additional effect in addition to mimicking the effect of elevating Ca2+. The effects of a phospholipase inhibitor (mepacrine) and of inhibitors of arachidonic acid metabolism (indomethacin for the cyclooxygenase pathway, NDGA for the lipoxygenase pathway, and SKF 525A for the epoxygenase pathway) on the A23187 action were also examined. None of these agents altered the A23187-induced decrease in resistance. Monolayers exposed to 2 μm A23187 for 1 hr were stained with fluorescein conjugated phalloidin, revealing that neighboring cells did not part one from another and that A23187 did not have a detectable effect on distribution of F-actin in the perijunctional actomyosin ring. The results indicate that elevation in intracellular Ca2+ decreases tight junction resistance in the T84 monolayer, acting through protein kinase C by a mechanism which does not involve visible changes in the perijunctional actomyosin ring. Received: 14 July 1995/Revised: 25 September 1995  相似文献   

14.
The β-adrenergic (cAMP-dependent) regulation of Cl conductance is defective in cystic fibrosis (CF). The present study explored alternative regulation of anion secretion in CF pancreatic ductal cells (CFPAC-1) by angiotensin II (AII) using the short-circuit current (I SC ) technique. An increase in I SC could be induced in CFPAC-1 cells by basolateral or apical application of AII in a concentration-dependent manner (EC50 at 3 μm and 100 nm, respectively). Angiotensin receptor subtypes were identified using specific antagonists, losartan and PD123177, for AT1 and AT2 receptors, respectively. It was found that losartan (1 μm) could completely inhibit the AII-induced I SC , whereas, PD123177 exerted insignificant effect on the I SC , indicating predominant involvement of AT1 receptors. The presence of AT1 receptors in CFPAC-1 cells was also demonstrated by immunohistochemical studies using specific antibodies against AT1 receptors. Confocal microscopic study demonstrated a rise in intracellular Ca2+ upon stimulation by AII indicating a role of intracellular Ca2+ in mediating the AII response. Depletion of intracellular but not extracellular pool of Ca2+ diminished the AII-induced I SC . Treatment of the monolayers with a Cl channel blocker, DIDS, markedly reduced the I SC , indicating that a large portion of the AII-activated I SC was Cl-dependent. AII-induced I SC was also observed in monolayers whose basolateral membranes had been permeabilized by nystatin, suggesting that the I SC was mediated by apical Cl channels. Our study indicates an AT1-mediated Ca2+-dependent regulatory mechanism for anion secretion in CF pancreatic duct cells which may be important for the physiology and pathophysiology of the pancreas. Received: 17 June 1996/Revised: 14 November 1996  相似文献   

15.
The pharmacological profile of a voltage-independent Ca2+-activated potassium channel of intermediate conductance (IK(Ca2+)) present in bovine aortic endothelial cells (BAEC) was investigated in a series of inside-out and outside-out patch-clamp experiments. Channel inhibition was observed in response to external application of ChTX with a half inhibition concentration of 3.3 ± 0.3 nm (n= 4). This channel was insensitive to IbTX, but channel block was detected following external application of MgTX and StK leading to the rank order toxin potency ChTX > StK > MgTX >>IbTX. A reduction of the channel unitary current amplitude was also measured in the presence of external TEA, with half reduction occurring at 23 ± 3 mm TEA (n= 3). The effect of TEA was voltage insensitive, an indication that TEA may bind to a site located on external side of the pore region of this channel. Similarly, the addition of d-TC to the external medium caused a reduction of the channel unitary current amplitude with half reduction at 4.4 ± 0.3 mm (n= 4). In contrast, application of d-TC to the bathing medium in inside-out experiments led to the appearance of long silent periods, typical of a slow blocking process. Finally, the IK(Ca2+) in BAEC was found to be inhibited by NS1619, an activator of the Ca2+-activated potassium channel of large conductance (Maxi K(Ca2+)), with a half inhibition value of 11 ± 0.8 μm (n= 4). These results provide evidence for a pharmacological profile distinct from that reported for the Maxi K(Ca2+) channel, with some features attributed to the voltage-gated KV1.2 potassium channel. Received: 6 November 1997/Revised: 19 February 1998  相似文献   

16.
Voltage-activated Ca2+ currents, in zona fasciculata cells isolated from calf adrenal gland, were characterized using perforated patch-clamp recording. In control solution (Ca2+: 2.5 mm) a transient inward current was followed, in 40% of the cells, by a sustained one. In 20 mm Ba2+, 61% of the cells displayed an inward current, which consisted of transient and sustained components. The other cells produced either a sustained or a transient inward current. These different patterns were dependent upon time in culture. Current-voltage relationships show that both the transient and sustained components activated, peaked and reversed at similar potentials: −40, 0 and +60 mV, respectively. The two components, fully inactivated at −10 mV, were separated by double-pulse protocols from different holding potentials where the transient component could be inactivated or reactivated. The decaying phase of the sustained component was fitted by a double exponential (time constants: 1.9 and 20 sec at +10 mV); that of the transient component was fitted by a single exponential (time constant: 19 msec at +10 mV). Steady-state activation and inactivation curves of the two components were superimposed. Their half activation and inactivation potentials were similar, about −15 and −34 mV, respectively. The sustained component was larger in Ba2+ than in Sr2+ and Ca2+. Ni2+ (20 μm) selectively blocked the transient component while Cd2+ (10 μm) selectively blocked the sustained one. (±)Bay K 8644 (0.5 μm) increased the sustained component and nitrendipine (0.5–1 μm) blocked it selectively. The sustained component was inhibited by calciseptine (1 μm). Both components were unaffected by ω-conotoxin GVIA and MVIIC (0.5 μm). These results show that two distinct populations of Ca2+ channels coexist in this cell type. Although the voltage dependence of their activation and inactivation are comparable, these two components of the inward current are similar to T- and L-type currents described in other cells. Received: 12 July 1999/Revised: 5 October 1999  相似文献   

17.
Isoproterenol (IPR) and 8-(4-chlorophenylthio)-cyclic AMP (cpt-cAMP) enhanced carbachol (CCh)-induced fluid secretion from rat parotid glands, but had no effect by themselves. The enhancement by IPR was blocked by propranolol. In dispersed parotid acinar cells, IPR and cpt-cAMP potentiated CCh-induced K+ and Cl currents (I K and I Cl). IPR at the concentration of 0.1 μm significantly potentiated the CCh-induced increase in intracellular Ca2+ concentration ([Ca2+] i ), but 1 mm cpt-cAMP did not. The incidence of the potentiation by IPR in CCh-induced Mn2+ entry was 31% and that by cpt-cAMP was 21%. The potentiation by IPR in the ionic currents and the [Ca2+] i was suppressed by propranolol. These results suggest that the CCh-induced fluid secretion from rat parotid glands is enhanced by IPR through the potentiation of I K and I Cl mainly by the increased cyclic AMP level and partially by the potentiated Ca2+ influx and [Ca2+] i increase, and that IPR is more effective than cpt-cAMP in the enhancement of the CCh-induced [Ca2+] i increase. Received: 6 October 1997/Revised: 16 April 1998  相似文献   

18.
The present study demonstrates that B-type Ca2+ channels observed in rat ventricular myocytes markedly reacted to agents known to affect the ion-motive plasma membrane Ca2+-ATPase (PMCA) pump. Chlorpromazine (CPZ)-activated B-type Ca2+ channels were completely blocked by internal application of PMCA pump inhibitors, namely La3+ (100 μm), eosin (10 μm) and AIF3 (100 μm). Calmodulin (50 U/ml), the main endogenous positive regulator of PMCA, was unable to activate but significantly reduced CPZ-activated B-type channel activity. In the same manner, ATP (1 and 4 mm), the main energizing substrate of PMCA, was able to reversibly and significantly reduce this activity in a dose-dependent manner. Interestingly, anti-PMCA antibody 5F10, but not anti-Na/K ATPase antibody (used as a negative control) induced a marked Ba2+-conducting channel activity that shared the same characteristics with that of CPZ-activated B-type channels. 5F10-Activated channels were mostly selective towards Ba2+, mainly had three observed conductance levels (23, 47 and 85 pS), were observed with a frequency of about 1 out of 5 membrane patches and were completely blocked by 10 μm eosin. These results suggest that B-type Ca2+ channels are some form of the PMCA pump. Received: 24 July 2000/Revised: 5 October 2000  相似文献   

19.
The effects of angiotensin II (100 nm) on the electrical membrane properties of zona fasciculata cells isolated from calf adrenal gland were studied using the whole cell patch recording method. In current-clamp condition, angiotension II induced a biphasic membrane response which began by a transient hyperpolarization followed by a depolarization more positive than the control resting potential. These effects were abolished by Losartan (10−5 m), an antagonist of angiotensin receptors of type 1. The angiotensin II-induced transient hyperpolarization was characterized in voltage-clamp condition from a holding potential of −10 mV. Using either the perforated or the standard recording method, a transient outward current accompanied by an increase of the membrane conductance was observed in response to the hormonal stimulation. This outward current consisted of an initial fast peak followed by an oscillating or a slowly decaying plateau current. In Cl-free solution, the outward current reversed at −78.5 mV, a value close to E K. It was blocked by external TEA (20 mm) and by apamin (50 nm). In K+-free solution, the transient outward current, sensitive to Cl channel blocker DPC (400 μm), reversed at −52 mV, a more positive potential than E Cl. Its magnitude changed in the same direction as the driving force for Cl. The hormone-induced transient outward current was never observed when EGTA (5 mm) was added to the pipette solution. The plateau current was suppressed in nominally Ca2+-free solution (47% of cells) and was reversibly blocked by Cd2+ (300 μm) but not by nisoldipine (0.5–1 μm) which inhibited voltage-gated Ca2+ currents identified in this cell type. The present experiments show that the transient hyperpolarization induced by angiotensin II is due to Ca2+-dependent K+ and Cl currents. These two membrane currents are co-activated in response to an internal increase of [Ca2+] i originating from intra- and extracellular stores. Received: 29 May 1997/Revised: 4 November 1997  相似文献   

20.
The present study explored regulation of electrogenic ion transport across cultured mouse endometrial epithelium by extracellular ATP using the short-circuit current (I SC ) and the patch-clamp techniques. The cultured endometrial monolayers responded to apical application of ATP with an increase in I SC in a concentration-dependent manner (EC50 at 3 μm). Replacement of Cl in the bathing solution or treatment of the cells with Cl channel blockers, DIDS and DPC, markedly reduced the I SC , indicating that a substantial portion of the ATP-activated I SC was Cl-dependent. Amiloride at a concentration (10 μm) known to block Na+ channels was found to have no effect on the ATP-activated I SC excluding the involvement of Na+ absorption. Adenosine was found to have little effect on the I SC excluding the involvement of P1 receptors. The effect of UTP, a potent P2U receptor agonist on the I SC was similar to that of ATP while potent P2X agonist, α-β-Methylene adenosine 5′-triphosphate (α-β-M-ATP) and P2Y agonist, 2-methylthio-adenosine triphosphate (2-M-ATP), were found to be ineffective. The effect of ATP on I SC was mimicked by the Ca2+ ionophore, ionomycin, indicating a role of intracellular Ca2+ in mediating the ATP response. Confocal microscopic study also demonstrated a rise in intracellular Ca2+ upon stimulation by extracellular ATP. In voltage-clamped endometrial epithelial cells, ATP elicited a whole-cell Cl current which exhibited outward rectification and delayed activation and inactivation at depolarizing and hyperpolarizing voltages, respectively. The results of the present study demonstrate the presence of a regulatory mechanism involving extracellular ATP and P2U purinoceptors for endometrial Cl secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号