首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
[目的]将解脂耶氏酵母胞外脂肪酶Lip2展示在酿酒酵母表面,构建全细胞催化剂.[方法]采用PCR方法扩增得到解脂耶氏酵母胞外脂肪酶Lip2成熟肽编码基因LIP2,将其连接到AGA2基因的下游构建表面展示载体pCTLIP2.分别以橄榄油、三丁酸甘油酯和对硝基苯酚棕榈酸酯(pNPP)为底物检测展示的脂肪酶酶活.在此基础上,对野生菌及工程菌的酶学性质进行比较.[结果]展示Lip2的酿酒酵母重组菌株在半乳糖的诱导下,表现出水解橄榄油、三丁酸甘油脂以及pNPP的活性,20℃诱导72h时酶活达到最高,为182 U/g干细胞.对展示的Lip2的酶学性质研究表明,其最适温度为40℃,最适pH为8.0,温度稳定性比自由酶有所提高,50℃温浴4 h后残余酶活为其最大酶活的23.2%.以不同碳链长度的对硝基苯酚酯为底物检测其底物特异性,结果显示其水解C8,C12,C16对硝基苯酚酯活性相近,均远高于对硝基苯酚丁酸酯(C4)的水解酶活.[结论]对于Lip2,a凝集素系统是一个有效的展示系统,利用该系统成功将Lip2展示在酿酒酵母表面,从而构建了酿酒酵母全细胞催化剂,该全细胞催化剂具有良好的潜在应用前景.  相似文献   

2.
【目的】构建疏棉状嗜热丝孢菌脂肪酶(Thermomyces lanuginosus lipase,TLL)在毕赤酵母GS115中的细胞表面展示体系,筛选展示成功且酶活力及展示率较高的重组子作为全细胞催化剂,并研究其酶学性质。【方法】克隆TLL基因tll,以酿酒酵母细胞壁蛋白Sed1p为锚定蛋白,构建表面展示载体pPICZαA-TLS。重组载体经SacⅠ线性化后转入毕赤酵母GS115中,经三丁酸甘油酯平板检测及摇甁发酵筛选获得高酶活力的毕赤酵母重组子,采用抗FLAG标签一抗和R-PE荧光素标记的二抗处理细胞后,进行荧光显微镜检测和流式细胞仪分析,并考察全细胞催化剂的最适反应温度和pH、金属离子耐受性等酶学性质。【结果】成功构建TLL毕赤酵母细胞表面展示体系,筛选到1株具有三丁酸甘油酯和橄榄油水解活力的克隆子,经1%的甲醇诱导发酵120 h后,水解橄榄油酶活力达257.8 U/g干细胞。经抗体处理后的重组菌发酵细胞在荧光显微镜下呈现强烈的红色荧光,流式细胞仪分析结果也证实脂肪酶被成功展示在酵母细胞表面,展示率达98.36%。展示的TLL作为全细胞催化剂水解对硝基苯酚丁酸酯(pNPB)的最适温度为30℃,最适pH为8.0,且具备良好的热稳定性和有机溶剂耐受性;K+、Ca2+、Mg2+对其有微弱的激活作用,Mn2+、Ni2+则有微弱的抑制作用,Cu2+的抑制作用较强,而EDTA、SDS、Tween 20对酶活力影响不明显。【结论】首次将TLL脂肪酶成功展示在毕赤酵母细胞表面,获得具有较高水解活力和良好酶学特性的全细胞催化剂,为表面展示TLL脂肪酶的规模化应用奠定了技术基础。  相似文献   

3.
脂肪酶是一种广泛应用的水解酶类。脂肪酶的表面展示技术不仅是脂肪酶蛋白质工程中一种有效的高通量筛选方法,而且展示的脂肪酶与自由酶相比具备更高的温度稳定性、有机溶剂稳定性等优点,其作为全细胞催化剂与传统的固定化脂肪酶相比也具备诸多优点。脂肪酶表面展示的宿主包括噬菌体、细菌以及酵母等,本文将分别介绍这三种宿主中脂肪酶表面展示的概况以及其作为高通量筛选和全细胞等方面的应用。  相似文献   

4.
脂肪酶表面展示技术   总被引:1,自引:0,他引:1  
脂肪酶是一种广泛应用的水解酶类.脂肪酶的表面展示技术不仅是脂肪酶蛋白质工程中一种有效的高通量筛选方法,而且展示的脂肪酶与自由酶相比具备更高的温度稳定性、有机溶剂稳定性等优点,其作为全细胞催化剂与传统的固定化脂肪酶相比也具备诸多优点.脂肪酶表面展示的宿主包括噬菌体、细菌以及酵母等,将分别介绍这三种宿主中脂肪酶表面展示的概况及其作为高通量筛选和全细胞等方面的应用.  相似文献   

5.
采用a凝集素作为载体蛋白,首次将南极假丝酵母脂肪酶A展示在酿酒酵母细胞表面,通过MD平板筛选获得表面展示型的CALA酵母工程菌株。免疫荧光检测显示CALA被成功展示在酵母细胞壁表面,重组子经诱导后能在三丁酸甘油酯板上形成透明圈,说明展示的CALA具有活性。重组酵母在液体培养基培养72 h,活性达到最高,为80.4 U/g干细胞。酿酒酵母展示的CALA最适温度及pH值为70°C和pH 8.0。经50°C保温2 h,仍含有60%水解酶活力。展示的CALA在pH 7.0和pH 8.0溶液中比较稳定。经DMSO处理2 h,展示的CALA仍保持70%的活性。以上结果表明酵母展示的CALA可作为一种有潜质商业用途的全细胞催化剂。  相似文献   

6.
为了获得高效的脂肪酶毕赤酵母表面展示系统,利用来自酿酒酵母絮凝素蛋白Flo1的N端874个氨基酸残基(FS)和C端的1101个氨基酸残基(FL)作为锚定蛋白分别构建了2套载体系统.带有前肽的米黑根毛霉脂肪酶(ProRML)克隆到构建的2套展示载体中,使米黑根毛霉脂肪酶(RML)分别以N端锚定或C端锚定的方式实现在毕赤酵母细胞表面的展示.利用RMLC端的Flag标签,通过流式细胞术和激光扫描共聚焦显微镜检测2套系统中RML在酵母表面的展示情况.研究发现,N端锚定于酵母表面的展示酶FSR以pNPC为底物时,水解活力达到了105.3U/g,大约为C端锚定的展示酶FLR活力的2倍.同时FSR比FLR具有更宽的温度、pH作用范围和更好的热稳定性.与游离酶和固定化酶相比,展示酶FSR也表现出更为优良的热稳定性.结果提示,基于Flo1N端锚定的展示系统更适合展示活性中心近C端的脂肪酶,推动了展示酶的进一步研究和开发.  相似文献   

7.
熊艳军  宿玲恰  王蕾  吴敬  陈晟 《微生物学报》2015,55(10):1305-1313
摘要:【目的】将环状芽孢杆菌251(Bacillus circulans 251)来源的环糊精葡萄糖基转移酶(Cyclodextrin Glycosyltransferase,CGTase)展示在酿酒酵母( Saccharomyces cerevisiae)细胞表面,构建全细胞催化剂生产2-O-α-D-吡喃葡萄糖基抗坏血酸(2-O-α-D-glucopyranosyl-L-ascorbic acid,AA-2G),以提高AA-2G 的产量。【方法】将CGTase编码基因cgt连接到载体质粒pYD1中的a凝集素(a-agglutinin)Aga2p亚基基因的下游构建表面展示重组质粒pYD1-cgt,转化酿酒酵母EBY100获得重组菌EBY100-pYD1-cgt,对发酵条件(培养基、诱导温度和诱导剂半乳糖浓度)进行优化;同时先后对重组菌的发酵产酶以及表面展示CGTase的酶促合成AA-2G的条件进行了优化;进一步又比较了表面展示的CGTase与E.coli BL21发酵所得的游离CGTase在酶促制备AA-2G过程中副产物的积累情况。【结果】展示CGTase的酿酒酵母重组菌株以YPG培养基作为发酵培养基,诱导剂半乳糖初始添加浓度为20 g/L,经25 ℃诱导48 h后,表面展示CGTase最大酶产量为0.5 U/mL;表面展示CGTase 40 ℃条件下的温度稳定性比游离酶有所提高,pH稳定范围变宽。对表面展示的CGTase制备AA-2G转化条件的优化发现,其最适温度最适pH分别为30 ℃和4.5,转化48 h达到平衡,表面展示的CGTase制备AA-2G的产量较游离酶提高了37%。【结论】对于CGTase,a凝集素系统是一个有效的展示系统,构建的酿酒酵母全细胞催化剂用于酶促制备AA-2G时,产生的副产物葡萄糖可能被酵母细胞利用,从而降低了葡萄糖与VC的竞争作用使AA-2G的产量增加,该全细胞催化剂具有良好的应用前景。  相似文献   

8.
陶站华  张搏 《微生物学通报》2012,39(3):0318-0325
【目的】利用细胞表面工程技术将活性脂肪酶展示于大肠杆菌细胞表面并对展示脂肪酶的酶学性质进行研究。【方法】将丁香假单胞菌冰核蛋白N末端结构域序列与粘质沙雷氏菌脂肪酶编码基因融合,构建成脂肪酶表面展示载体,并转化大肠杆菌BL21(DE3)。【结果】重组菌以终浓度0.05 mmol/L异丙基硫代-D-半乳糖苷(IPTG)、25°C条件下诱导培养,16 h后表面展示脂肪酶活力达到最大值1 852 U/g细胞干重。表面展示酶的最适pH为9.0,最适反应温度为40°C,表面展示酶热稳定性较游离酶有较大提高,在40°C孵育1 h后仍能保持90%以上的酶活力。【结论】以上结果表明细菌表面展示技术为脂肪酶固定提供了一个很有前景的替代方法。  相似文献   

9.
一株对多种有机溶剂具有良好耐受能力的产脂肪酶菌株ZYB002经分子鉴定为洋葱伯克霍尔德菌。其产生的细胞结合脂肪酶最适温度为65°C,最适pH为8.0,在低于70°C和pH3-8.5的范围内,全细胞脂肪酶保持稳定。Ca2+、K+、Na+和NO3-等离子对脂肪酶活性有激活作用,而Zn2+有抑制效应。全细胞脂肪酶对正丁醇有较强的耐受能力,但曲拉通X-100对脂肪酶活性有强烈的抑制效应。洋葱伯克霍尔德菌ZYB002全细胞脂肪酶良好的碱稳定性、热稳定性和有机溶剂耐受性,表明该全细胞脂肪酶具有重要的工业应用潜力。  相似文献   

10.
PCR扩增假单胞菌WBC-3的甲基对硫磷水解酶基因,插入表面展示质粒pYD1的多克隆位点,构建pYD1-MPH重组质粒。重组质粒转化酿酒酵母EBY100,2%半乳糖诱导甲基对硫磷水解酶表达,并利用免疫荧光检测甲基对硫磷水解酶在酿酒酵母细胞表面的表达展示。研究了表面展示甲基对硫磷水解酶的酶学性质和酵母工程菌对水体中甲基对硫磷的降解效果。结果表明成功构建具有全细胞甲基对硫磷水解酶催化活性的酵母工程菌,经2%半乳糖诱导48 h,表面展示甲基对硫磷水解酶比酶活力为18.2 U/mg细胞干重。表面展示甲基对硫磷水解酶的最适作用pH为9.5,最适作用温度为30℃,在p H4.0-10.5之间和45℃以下稳定性较好,Mn2+、Co2+、Zn2+、Ca2+、Hg2+、K+、Ni2+对表面展示甲基对硫磷水解酶活性有激活作用,Na+、Fe3+、Ag+对展示酶活力有抑制作用。工程菌在1 h内对淡水中20 mg/L的甲基对硫磷的降解率在80%以上。  相似文献   

11.
Lipase Lip2 from Yarrowia lipolytica was displayed on the cell surface of Saccharomyces cerevisiae using Cwp2 as an anchor protein. Successful display of the lipase on the cell surface was confirmed by immunofluorescence microscopy and halo assay. The length of linker sequences was further examined to confirm that the correct conformation of Lip2 was maintained. The results showed that the displayed Lip2 exhibited the highest activity at 7.6 ± 0.4 U/g (dry cell) when using (G4S)3 sequence as the linker, with an optimal temperature and pH at 40°C and pH 8.0. The displayed lipase did not lose any activity after being treated with 0.1% Triton X-100 and 0.1% Tween 80 for 30 min, and it retained 92% of its original activity after incubation in 10% DMSO for 30 min. It also exhibited better thermostability than free Lip2 as reported previously.  相似文献   

12.
Spacer-mediated display of active lipase on the yeast cell surface   总被引:5,自引:0,他引:5  
We have constructed a Saccharomyces cerevisiae strain displaying an active lipase on the cell surface by cell surface engineering. The gene encoding Rhizopus oryzae lipase (ROL) was fused with the genes encoding the pre-alpha-factor leader sequence and the C-terminal half of alpha-agglutinin including the glycosylphosphatidylinositol-anchor attachment signal. The constructed gene was overexpressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. Linker peptides (spacers) consisting of the Gly/Ser repeat sequence were inserted at the C-terminal portion of ROL to enhance lipase activity by preserving the conformation of the active site near the C-terminal portion. Localization of the expressed ROL on the cell surface was confirmed by immunofluorescence microscopy. The ROL displayed on the yeast cell wall exhibited activity toward soluble 2,3-dimercaptopropan-1-ol tributyl ester (BALB) and insoluble triolein. The insertion of linker peptides effected the activity towards BALB, thereby demonstrating that the optimal length of linker peptides was present. The activity towards triolein was higher in lipases with longer linker peptides. ROL displayed on the cell wall exhibited a comparable and/or higher activity towards triolein than the secreted form of the enzyme. This is the first report of an active lipase displayed on the cell surface. Furthermore, insertion of a linker peptide of the appropriate length as a spacer may be an improved method to effectively display enzymes, especially those having the active region at the C-terminal portion, on the cell surface.  相似文献   

13.
Immobilization of enzymes on some solid supports has been used to stabilize enzymes in organic solvents. In this study, we evaluated applications of genetically immobilized Rhizopus oryzae lipase displayed on the cell surface of Saccharomyces cerevisiae in organic solvents and measured the catalytic activity of the displayed enzyme as a fusion protein with alpha-agglutinin. Compared to the activity of a commercial preparation of this lipase, the activity of the new preparation was 4.4 x 10(4)-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate and 3.8 x 10(4)-fold higher in an esterification reaction with palmitic acid and n-pentanol (0.2% H2O). Increased enzyme activity may occur because the lipase displayed on the yeast cell surface is stabilized by the cell wall. We used a combination of error-prone PCR and cell surface display to increase lipase activity. Of 7,000 colonies in a library of mutated lipases, 13 formed a clear halo on plates containing 0.2% methyl palmitate. In organic solvents, the catalytic activity of 5/13 mutants was three- to sixfold higher than that of the original construct. Thus, yeast cells displaying the lipase can be used in organic solvents, and the lipase activity may be increased by a combination of protein engineering and display techniques. Thus, this immobilized lipase, which is more easily prepared and has higher activity than commercially available free and immobilized lipases, may be a practical alternative for the production of esters derived from fatty acids.  相似文献   

14.
A lipase gene (lip3) was cloned from the Pseudomonas aeruginosa strain LST-03 (which tolerates organic solvents) and expressed in Escherichia coli. The cloned sequence includes an ORF consisting of 945 nucleotides, encoding a protein of 315 amino acids (Lip3 lipase, 34.8 kDa). The predicted Lip3 lipase belongs to the class of serine hydrolases; the catalytic triad consists of the residues Ser-137, Asp-258, and His-286. The gene cloned in the present study does not encode the LST-03 lipase, a previously isolated solvent-stable lipase secreted by P. aeruginosa LST-03, because the N-terminal amino acid sequence of the Lip3 lipase differs from that of the LST-03 lipase. Although the effects of pH on the activity and stability of the Lip3 lipase, and the temperature optimum of the enzyme, were similar to those of the LST-03 lipase, the relative activity of the Lip3 lipase at lower temperatures (0–35°C) was higher than that of the LST-03 lipase. In the absence of organic solvents, the half-life of the Lip3 lipase was similar to that of the LST-03 lipase. However, in the presence of most of the organic solvents tested in this study (the exceptions were ethylene glycol and glycerol), the stability of the Lip3 lipase was lower than that of the LST-03 lipase.Communicated by H. Ikeda  相似文献   

15.
Immobilization of enzymes on some solid supports has been used to stabilize enzymes in organic solvents. In this study, we evaluated applications of genetically immobilized Rhizopus oryzae lipase displayed on the cell surface of Saccharomyces cerevisiae in organic solvents and measured the catalytic activity of the displayed enzyme as a fusion protein with α-agglutinin. Compared to the activity of a commercial preparation of this lipase, the activity of the new preparation was 4.4 × 104-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate and 3.8 × 104-fold higher in an esterification reaction with palmitic acid and n-pentanol (0.2% H2O). Increased enzyme activity may occur because the lipase displayed on the yeast cell surface is stabilized by the cell wall. We used a combination of error-prone PCR and cell surface display to increase lipase activity. Of 7,000 colonies in a library of mutated lipases, 13 formed a clear halo on plates containing 0.2% methyl palmitate. In organic solvents, the catalytic activity of 5/13 mutants was three- to sixfold higher than that of the original construct. Thus, yeast cells displaying the lipase can be used in organic solvents, and the lipase activity may be increased by a combination of protein engineering and display techniques. Thus, this immobilized lipase, which is more easily prepared and has higher activity than commercially available free and immobilized lipases, may be a practical alternative for the production of esters derived from fatty acids.  相似文献   

16.
Functional expression of lipase from Burkholderia sp. C20 (Lip) in various cellular compartments of Escherichia coli was explored. The poor expression in the cytoplasm of E. coli was improved by several strategies, including coexpression of the cytoplasmic chaperone GroEL/ES, using a mutant E. coli host strain with an oxidative cytoplasm, and protein fusion technology. Fusing Lip with the N-terminal peptide tags of T7PK, DsbA, and DsbC was effective in enhancing the solubility and biological activity. Non-fused Lip or Lip fusions heterologously expressed in the periplasm of E. coli formed insoluble aggregates with a minimum activity. Biologically active and intact Lip was obtained upon the secretion into the extracellular medium using the native signal peptide and the expression performance was further improved by coexpression of the periplasmic chaperon Skp. The extracellular expression was even more effective when Lip was secreted as a Lip–HlyA fusion via the α-hemolysin transporter. Finally, Lip could be functionally displayed on the E. coli cell surface when fused with the carrier EstA.  相似文献   

17.
The 1641 bp cDNA encoding an extra-cellular lipase of the basidiomycete Pleurotus sapidus (Lip2) was cloned from a cDNA library. Expression of the cDNA in Escherichia coli, with and without signal sequence, led to the production of recombinant Lip2, mainly as inclusion bodies with low catalytic activity. Refolding yielded catalytically active protein. A C-terminal His tag was used for purification and immunochemical detection. The recombinant lipase hydrolysed xanthophyll esters with high efficiency, and omitting the signal sequence did not alter the catalytic properties. The P. sapidus lipase represents the first enzyme of the lipase/esterase family from a basidiomycetous fungus characterised on the molecular level and expressed in a manageable host.  相似文献   

18.
A lipolytic enzyme gene (lip8) was cloned from organic solvent-tolerant Pseudomonas aeruginosa LST-03 and sequenced. In the sequenced nucleotides, an open reading frame consisting of 1,173 nucleotides and encoding 391 amino acids was found. Lip8 is considered to belong to the family VIII of lipolytic enzymes whose serine in the consensus sequence of -Ser-Xaa-Xaa-Lys- acts as catalytic nucleophile. The gene was expressed in Escherichia coli and purified by a combination of ammonium sulfate fractionation and hydrophobic interaction and ion-exchange chromatographies to homogeneity on SDS-PAGE analysis. The optimum temperature and heat stability of Lip8 were not as high as those of Lip3 and LST-03 lipase, two other lipolytic enzymes from the same strain. Addition of glycerol to a solution containing Lip8 stabilized this enzyme. By measuring the activities against various triacylglycerols and fatty acid methyl esters having carbon chains of different lengths, Lip8 was categorized as an esterase which has higher activities against fatty acid methyl esters with short-chain fatty acids.  相似文献   

19.
A novel lipase was isolated from a metagenomic library of Baltic Sea sediment bacteria. Prokaryotic DNA was extracted and cloned into a copy control fosmid vector (pCC1FOS) generating a library of >7000 clones with inserts of 24-39 kb. Screening for clones expressing lipolytic activity based on the hydrolysis of tributyrin and p-nitrophenyl esters, identified 1% of the fosmids as positive. An insert of 29 kb was fragmented and subcloned. Subclones with lipolytic activity were sequenced and an open reading frame of 978 bp encoding a 35.4-kDa putative lipase/esterase h1Lip1 (DQ118648) with 54% amino acid similarity to a Pseudomonas putida esterase (BAD07370) was identified. Conserved regions, including the putative active site, GDSAG, a catalytic triad (Ser148, Glu242 and His272) and a HGG motif, were identified. The h1Lip1 lipase was over expressed, (pGEX-6P-3 vector), purified and shown to hydrolyse p-nitrophenyl esters of fatty acids with chain lengths up to C14. Hydrolysis of the triglyceride derivative 1,2-di-O-lauryl-rac-glycero-3-glutaric acid 6'-methylresorufin ester (DGGR) confirmed that h1Lip1 was a lipase. The apparent optimal temperature for h1Lip1, by hydrolysis of p-nitrophenyl butyrate, was 35 degrees C. Thermal stability analysis showed that h1Lip1 was unstable at 25 degrees C and inactivated at 40 degrees C with t1/2 <5 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号