首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Apoptosis depends critically on regulated cytoskeletal reorganization events in a cell. We demonstrate that death effector domain containing DNA binding protein (DEDD), a highly conserved and ubiquitous death effector domain containing protein, exists predominantly as mono- or diubiquitinated, and that diubiquitinated DEDD interacts with both the K8/18 intermediate filament network and pro-caspase-3. Early in apoptosis, both cytosolic DEDD and its close homologue DEDD2 formed filaments that colocalized with and depended on K8/18 and active caspase-3. Subsequently, these filamentous structures collapsed into intracellular inclusions that migrated into cytoplasmic blebs and contained DEDD, DEDD2, active caspase-3, and caspase-3-cleaved K18 late in apoptosis. Biochemical studies further confirmed that DEDD coimmunoprecipitated with both K18 and pro-caspase-3, and kinetic analyses placed apoptotic DEDD staining prior to caspase-3 activation and K18 cleavage. In addition, both caspase-3 activation and K18 cleavage was inhibited by expression of DEDDDeltaNLS1-3, a cytosolic form of DEDD that cannot be ubiquitinated. Finally, siRNA mediated DEDD knockdown cells exhibited inhibition of staurosporine-induced DNA degradation. Our data suggest that DEDD represents a novel scaffold protein that directs the effector caspase-3 to certain substrates facilitating their ordered degradation during apoptosis.  相似文献   

2.
Death receptors belong to the tumor necrosis factor receptor family. They can induce apoptosis following engagement with specific ligands and are known to play an important role in the regulation of the immune system. Here we report that epoxycyclohexenone (ECH) inhibits apoptosis induced by anti-Fas antibody, Fas ligand (FasL), or tumor necrosis factor-alpha but not by staurosporine, MG-132, C2-ceramide, or UV irradiation. These results suggest that ECH specifically blocks death receptor-mediated apoptosis. Neither the surface expression of Fas nor the Fas-FasL interaction was influenced by ECH. However, ECH did block the activation of pro-caspase-8 in the death-inducing signaling complex, although recruitment of Fas-associating death domain (FADD) and pro-caspase-8 was not affected. ECH inhibited the enzymatic activity of recombinant active caspase-8 at slightly lower concentrations than it did for active caspase-3 and active caspase-9 in vitro. However, in FasL-treated cells, ECH was only able to inhibit the activation of pro-caspase-8, and it had no effect on the already activated caspase-8 at a concentration that is effective at inhibiting Fas-induced apoptosis. ECH directly bound the large subunit of active caspase-8 that contains the active center cysteine and had a relatively higher affinity to pro-caspase-8. Moreover, compared with pro-caspase-3 and pro-caspase-9, pro-caspase-8 was predominantly depleted by biotinylated ECH with avidin beads in the cell lysates, suggesting that ECH preferentially affects pro-caspase-8. Thus, our results suggest that ECH blocks the self-activation of pro-caspase-8 in the death-inducing signaling complex and thus selectively inhibits death receptor-mediated apoptosis.  相似文献   

3.
As shown here, mitochondria purified from different organs (liver, brain, kidney, spleen and heart) contain both pro-caspase-9 and the processed, mature form of caspase-9. Purified liver mitochondria release mature caspase-9 upon induction of permeability transition in vitro. This is accompanied by a discrete increase in the enzymatic cleavage of pro-caspase-9 substrates. We found that SHEP neuroblastoma cells constitutively contain pre-processed caspase-9 in their mitochondria, using a combination of subcellular fractionation and immunofluorescence with an antibody specific for the processed caspase. This is a cell type-specific phenomenon since HeLa cells mitochondria mainly contain pro-caspase-9 and comparatively little processed caspase-9. Upon introduction of apoptosis, mitochondrial pro-caspase-9 translocates to the cytosol and to the nucleus. This phenomenon is inhibited by transfection with Bcl-2. In synthesis, we report the unexpected finding that mitochondria can contain a pre-processed caspase isoform in non-apoptotic cells. Bcl-2-mediated regulation of mitochondrial membrane permeabilization may contribute to apoptosis control by preventing mitochondrial, pre-processed caspase-9 from interacting with its cytosolic activators.  相似文献   

4.
The ubiquitin-proteasome pathway plays a critical role in the degradation of several proteins involved in the cell cycle. Dysregulation of this pathway leads to inhibition of cellular proliferation and the induction of apoptosis. Ubiquitination and its downstream consequences have been investigated intensively as targets for the development of drugs for tumour therapy. Here we have investigated the mechanism of apoptosis induced by the proteasome inhibitors MG-132, lactacystin and calpain inhibitor I (ALLN), in the HEK 293 cell line and the ovarian cancer cell lines SKOV3 and OVCAR3. We have found strong caspase-3-like and caspase-6-like activation upon treatment of HEK 293 cells with MG-132. Using a tricistronic expression vector based on a tetracycline-responsive system we generated stable SKOV3 nd OVCAR3 cell lines with inducible expression of pro-caspase-3. Induction of pro-caspase-3 expression in normally growing cells does not induce apoptosis. However, in the presence of the proteasome inhibitors MG-132, lactacystin or ALLN we found that cells overexpressing pro-caspase-3 are rapidly targeted for apoptosis. Our results demonstrate that pro-caspase-3 can sensitise ovarian cancer cells to proteasome inhibitor-induced apoptosis, and a combination of these approaches might be exploited for therapy of ovarian and other cancers.  相似文献   

5.
Inhibitor of apoptosis (IAP) gene products play an evolutionarily conserved role in regulating programmed cell death in diverse species ranging from insects to humans. Human XIAP, cIAP1 and cIAP2 are direct inhibitors of at least two members of the caspase family of cell death proteases: caspase-3 and caspase-7. Here we compared the mechanism by which IAPs interfere with activation of caspase-3 and other effector caspases in cytosolic extracts where caspase activation was initiated by caspase-8, a proximal protease activated by ligation of TNF-family receptors, or by cytochrome c, which is released from mitochondria into the cytosol during apoptosis. These studies demonstrate that XIAP, cIAP1 and cIAP2 can prevent the proteolytic processing of pro-caspases -3, -6 and -7 by blocking the cytochrome c-induced activation of pro-caspase-9. In contrast, these IAP family proteins did not prevent caspase-8-induced proteolytic activation of pro-caspase-3; however, they subsequently inhibited active caspase-3 directly, thus blocking downstream apoptotic events such as further activation of caspases. These findings demonstrate that IAPs can suppress different apoptotic pathways by inhibiting distinct caspases and identify pro-caspase-9 as a new target for IAP-mediated inhibition of apoptosis.  相似文献   

6.
Zhang J  Ghio AJ  Chang W  Kamdar O  Rosen GD  Upadhyay D 《FEBS letters》2007,581(22):4148-4152
We studied the role of Bim, a pro-apoptotic BCL-2 family member in Airborne particulate matter (PM 2.5 microm)-induced apoptosis in alveolar epithelial cells (AEC). PM induced AEC apoptosis by causing significant reduction of mitochondrial membrane potential and increase in caspase-9, caspase-3 and PARP-1 activation. PM upregulated pro-apoptotic protein Bim and enhanced translocation of Bim to the mitochondria. ShRNABim blocked PM-induced apoptosis by preventing activation of the mitochondrial death pathway suggesting a role of Bim in the regulation of mitochondrial pathway in AEC. Accordingly, we provide the evidence that Bim mediates PM-induced apoptosis via mitochondrial pathway.  相似文献   

7.
Intrinsic Purkinje cell death in heterozygous Lurcher (Grid2Lc/+) mice is accompanied by the target-related death of granule cells and olivary neurons. The expression of pro-caspase-3 is increased in Grid2Lc/+ Purkinje cells and activated caspase-3 is detected in all three cell types before their death. Bax inactivation in Grid2Lc/+ mutants rescues granule cells but not Purkinje cells. Here, we show that, while Bax inactivation inhibits caspase-3 activation in both cell types, p53 inactivation does not affect caspase-3 activation and neuronal loss in Grid2Lc/+ mice. The up-regulation of pro-caspase-3 in Grid2Lc/+ Purkinje cells is Bax and p53 independent. These results suggest that Grid2Lc/+ granule cell death is dependent on Bax and caspase-3 activation, whereas several pathways can mediate Grid2Lc/+ Purkinje cell death.  相似文献   

8.
Calcium signaling in cancer and vitamin D   总被引:3,自引:0,他引:3  
Calcium signals induced by the Ca(2+) regulatory hormone 1,25(OH)(2)D(3) may determine the fate of the cancer cell. We have shown that, in breast cancer cell lines, 1,25(OH)(2)D(3) induces a sustained increase in concentration of intracellular Ca(2+) ([Ca(2+)](i)) by depleting the endoplasmic reticulum (ER) Ca(2+) stores via inositol 1,4,5-trisphosphate receptor/Ca(2+) release channel and activating Ca(2+) entry from the extracellular space via voltage-insensitive Ca(2+) channels. In normal cells, 1,25(OH)(2)D(3) triggered a transient Ca(2+) response via activation of voltage-dependent Ca(2+) channels, which were absent in breast cancer cells. The normal cells, but not breast cancer cells, expressed the Ca(2+) binding/buffering protein calbindin-D(28k) and were capable of buffering [Ca(2+)](i) increases induced by a mobilizer of the ER Ca(2+) stores, thapsigargin, or a Ca(2+) ionophore, ionomycin. The 1,25(OH)(2)D(3)-induced sustained increase in [Ca(2+)](i) in breast cancer cells was associated with induction of apoptotic cell death, whereas the transient [Ca(2+)](i) increase in normal cells was not. The forced expression of calbindin-D(28k) in cytosol or increase in the cytosolic Ca(2+) buffering capacity with the cell-permeant Ca(2+) buffer BAPTA prevented induction of apoptosis with 1,25(OH)(2)D(3) in cancer cells. The sustained increase in [Ca(2+)](i) in breast cancer cells was associated with activation of the Ca(2+)-dependent apoptotic proteases, mu-calpain and caspase-12, as evaluated with antibodies to active (cleaved) forms of the enzymes and the fluorogenic peptide substrates. Selective inhibition of the Ca(2+) binding sites of mu-calpain decreased apoptotic indices in the cancer cells treated with 1,25(OH)(2)D(3), thapsigargin, or ionomycin. The mu-calpain activation preceded expression/activation of caspase-12, and calpain was required for activation/cleavage of caspase-12. Certain non-calcemic vitamin D analogs (e.g., EB 1089) triggered a sustained [Ca(2+)](i) increase, activated Ca(2+)-dependent apoptotic proteases, and induced apoptosis in breast cancer cells in a fashion similar to that of 1,25(OH)(2)D(3). The 1,25(OH)(2)D(3)-induced transient Ca(2+) response in normal mammary epithelial cells was not accompanied by activation of mu-calpain and caspase-12. In conclusion, we have identified the novel apoptotic pathway in breast carcinoma cells treated with 1,25(OH)(2)D(3): increase in [Ca(2+)](i)-->mu-calpain activation-->caspase-12 activation-->apoptosis. Our results support the hypothesis that 1,25(OH)(2)D(3) directly activates this apoptotic pathway by inducing a sustained increase in [Ca(2+)](i). Differences of Ca(2+) regulatory mechanisms in cancer versus normal cells seem to allow 1,25(OH)(2)D(3) and vitamin D analogs to induce Ca(2+)-mediated apoptosis selectively in breast cancer cells. Thus, deltanoids may prove to be useful in the treatment of tumors susceptible to induction of Ca(2+)-mediated apoptosis.  相似文献   

9.
Taxol is used in chemotherapy regimens against breast and ovarian cancer. Treatment of tumor model cell lines with taxol induces apoptosis, but exact mechanism is not sufficiently understood. Our results demonstrate that in response to taxol, various cell types differentially utilize distinct apoptotic pathways. Using MCF7 breast carcinoma cells transfected with caspase-3 gene, we showed that taxol-induced apoptosis occurred in the absence of caspase-3 and caspase-9 activation. Similar results were obtained with ovarian SKOV3 carcinoma cells, expressing high level of endogenous caspase-3. In contrast, staurosporine-induced apoptosis in these cells was accompanied by proteolytic cleavage of pro-caspase-3 and induction of caspase-3 enzymatic activity. The effect of taxol appears to be cell type-specific, since taxol-induced apoptosis in leukemia U937 cells involved caspase-3 activation step. We conclude that a unique caspase-3 and caspase-9 independent pathway is elicited by taxol to induce apoptosis in human ovarian and breast cancinoma cells.  相似文献   

10.
The aim of this study was to characterize the mechanism implicated in Zn(2+) transport in MDCK cells. Trace elements such as Zn(2+), Cd(2+) or Cu(2+) induced MDCK cell depolarization at the micromolar level as demonstrated by bis-oxonol fluorescence and whole-cell patch experiments. This depolarization was inhibited by La(3+) and Gd(3+) and was not related to the activation of Na(+) or Cl(-) channels. Uptake of 65Zn was assessed under initial rate conditions. The kinetic parameters obtained at 37 degrees C were a K(m) of 18.9 microM and a V(max) of 0.48 nmol min(-1) (mg protein(-1)). Intracellular pH measurements using BCECF probe demonstrated that Zn(2+) transport induced a cytoplasmic acidification. The cytoplasmic acidification resulting from Zn(2+) uptake activated Na(+)/H(+) antiporter, which allowed for the recycling of protons. These data suggest that Zn(2+) enters MDCK cells through a proton-coupled metal-ion transporter, the characteristics of which are slightly different from those described for the metal transporter DCT1. This mechanism could be in part responsible of the metal transport evidenced in the distal parts of the renal tubule.  相似文献   

11.
羊栖菜多糖通过激活Caspase途径诱导Lovo细胞凋亡   总被引:1,自引:0,他引:1  
研究了羊栖菜多糖(Sargassum Fusiforme Polysaccharides,SFPS)诱导人大肠癌lovo细胞凋亡及凋亡过程中caspase-3、caspase-8、caspase-9的活性变化。MTT法检测SFPS对lovo细胞增殖的抑制率;通过电镜、琼脂糖凝胶电泳、流式细胞术鉴定细胞凋亡;应用Western印迹法测定caspase-3酶原和caspase-9的变化;RToPCR检测caspase-3 mRNA表达;caspase-3,caspase-8、caspase-9活性检测试剂盒观察caspase-3、caspase-8、caspase-9的活性改变。结果显示,SFPS对lovo细胞增殖有显著抑制作用,经形态变化、DNA条带和流式细胞分析,可见明显的细胞凋亡特征。SFPS处理lovo细胞后,发现caspase-3酶原蛋白表达降低,caspase-3 mRNA高表达,并具有剂量和时间的依赖性。而在检测蛋白中,也发现caspase-9被激活进而形成具有活性的片段。另外,caspase的活性检测也进一步发现caspase-3、caspase-9的活性逐步增高。实验结果提示SFPS在体外诱导lovo胞凋亡,这可能是SFPS抑制肿瘤增殖的机制之一,并且是通过激活启动caspase-9,进而激活下游效应caspase-3的级联反应来实现的。  相似文献   

12.
The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), an IP(3)-gated Ca(2+) channel located on intracellular Ca(2+) stores, modulates intracellular Ca(2+) signaling. During apoptosis of the human T-cell line, Jurkat cells, as induced by staurosporine or Fas ligation, IP(3)R type 1 (IP(3)R1) was found to be cleaved. IP(3)R1 degradation during apoptosis was inhibited by pretreatment of Jurkat cells with the caspase-3 (-like protease) inhibitor, Ac-DEVD-CHO, and the caspases inhibitor, z-VAD-CH(2)DCB but not by the caspase-1 (-like protease) inhibitor, Ac-YVAD-CHO, suggesting that IP(3)R1 was cleaved by a caspase-3 (-like) protease. The recombinant caspase-3 cleaved IP(3)R1 in vitro to produce a fragmentation pattern consistent with that seen in Jurkat cells undergoing apoptosis. N-terminal amino acid sequencing revealed that the major cleavage site is (1888)DEVD*(1892)R (mouse IP(3)R1), which involves consensus sequence for caspase-3 cleavage (DEVD). To determine whether IP(3)R1 is cleaved by caspase-3 or is proteolyzed in its absence by other caspases, we examined the cleavage of IP(3)R1 during apoptosis in the MCF-7 breast carcinoma cell line, which has genetically lost caspase-3. Tumor necrosis factor-alpha- or staurosporine-induced apoptosis in caspase-3-deficient MCF-7 cells failed to demonstrate cleavage of IP(3)R1. In contrast, MCF-7/Casp-3 cells stably expressing caspase-3 showed IP(3)R1 degradation upon apoptotic stimuli. Therefore IP(3)R1 is a newly identified caspase-3 substrate, and caspase-3 is essential for the cleavage of IP(3)R1 during apoptosis. This cleavage resulted in a decrease in the channel activity as IP(3)R1 was digested, indicating that caspase-3 inactivates IP(3)R1 channel functions.  相似文献   

13.
The analgesic buprenorphine hydrochloride (Bph) induced apoptosis-like cell death in the caspase-3-deficient human breast cancer cell line, MCF-7. This apoptosis-like cell death activated key molecules in the mitochondrial apoptotic pathway: cytochrome c, caspase-9, caspase-7, and caspase-6. Bph caused the release of fluorescent protein from the mitochondria of MCF-7 cells transfected with the pDsRed2-Mito-vector in a time-dependent manner, suggesting disruption of the mitochondrial membrane. Zn(2+) as high as 2 mM did not inhibit the DNase that took part in this apoptosis. Thus, this unidentified DNase might resemble other DNases involved in apoptosis-like cell death whose activity is not inhibited by zinc ion.  相似文献   

14.
Virus infection may induce host cell death by apoptosis, but some DNA viruses are capable of preventing this process. RNA viruses were thought not to display anti-apoptotic activities, as their spread appears to benefit from a rapid induction of cell death. Here, we report an antiapoptotic activity in the Picornavirus Coxsackievirus B4 (CVB4). CVB4 infection of HeLa cells induced negligible apoptosis over a period of 10 h. However, infected cells developed resistance to drug-induced apoptosis using staurosporine and actinomycin D and to death receptor-induced apoptosis using tumor necrosis factor-related apoptosis-inducing ligand. Despite this resistance, the apoptotic machinery was nonetheless fully activated in these drug-treated infected cells because the levels of pro-caspase-3 processing to its active form were similar to control cells. However, the DEVDase (Asp-Glu-Val-Asp protease) activity of the processed caspase was significantly inhibited in the virus-infected staurosporine-treated cells compared with drug treatment alone. Likewise, extracts of CVB4-infected cells suppressed recombinant caspase-3 activity in vitro. Immunoprecipitation of activated caspase-3 from radiolabeled virus-infected cells revealed the co-precipitation of a 48-kDa protein that was tentatively identified as viral protein 2BC. Recombinant caspase-3 was found to co-precipitate with virus protein 2BC. Finally, when protein 2BC was expressed in HeLa cells, both staurosporine-induced apoptosis and in vitro caspase-3 DEVDase activity were significantly reduced. Taken together these data imply that CVB4 infection suppresses apoptosis through virus protein 2BC associating with caspase-3 and inhibiting its function. Thus, 2BC is the first reported RNA virus inhibitor of apoptosis protein.  相似文献   

15.
We previously reported that in addition to mitochondrial cytochrome c dependent activation, lysosomal cysteine proteases were also involved in the activation of caspase-3. In this study, we have separately obtained the lysosomal and mitochondrial caspase-3 activating factors in a crude mitochondrial fraction and characterized their ability to activate pro-caspase-3 in the in vitro assay system. When a rat liver crude mitochondrial fraction containing lysosomes (ML) was treated with a low concentration of digitonin, lysosomal factors were selectively released without the release of a mitochondrial factor (cytochrome c, Cyt.c). Treatment of ML with Ca(2+) in the presence of inorganic phosphate (P(i)), in contrast, released mitochondrial Cyt.c without the release of lysosomal factors. The obtained lysosomal and mitochondrial factors activated caspase-3 in different manners; caspase-3 activation by lysosomal and mitochondrial factors was specifically suppressed by E-64, a cysteine protease inhibitor, and caspase-9 inhibitor, respectively. Thus, the activation of caspase-3 by lysosomal factors was found to be distinct from the activation by mitochondrial Cyt.c dependent formation of the Apaf-1/caspase-9 complex. To further determine whether or not the activation of caspase-3 by lysosomal cysteine proteases is involved in cellular apoptosis, the effect of E-64-d, a cell-permeable inhibitor of cysteine protease, on 2,2'-azobis-(2-amidinopropane)dihydrochloride (AAPH)-induced apoptosis in HL-60 cells was investigated. As a result, DNA fragmentation induced by AAPH was found to be remarkably (up to 50%) reduced by pretreatment with E-64-d, indicating the participation of lysosomal cysteine proteases in AAPH-induced apoptosis in HL-60 cells.  相似文献   

16.
Primary cultures of rat type II alveolar epithelial cells (AECs) or human AEC-derived A549 cells, when exposed to bleomycin (Bleo), exhibited concentration-dependent apoptosis detected by altered nuclear morphology, fragmentation of DNA, activation of caspase-3, and net cell loss over time. In both cell culture models, exposure to Bleo caused time-dependent increases in angiotensinogen (ANGEN) mRNA. Antisense oligonucleotides against ANGEN mRNA inhibited Bleo-induced apoptosis of rat AEC or A549 cells by 83 and 84%, respectively (P < 0.01 and P < 0.05), and prevented Bleo-induced net cell loss. Apoptosis of rat AECs or A549 cells in response to Bleo was inhibited 91% by the ANG-converting enzyme inhibitor captopril or 82%, respectively, by neutralizing antibodies specific for ANG II (both P < 0.01). Antagonists of ANG receptor AT(1) (losartan, L-158809, or saralasin), but not an AT(2)-selective blocker (PD-123319), inhibited Bleo-induced apoptosis of either rat AECs (79%, P < 0.01) or A549 cells (83%, P < 0.01) and also reduced the activity of caspase-3 by 52% (P < 0.05). These data indicate that Bleo, like Fas(L) or TNF-alpha, induces transactivation of ANG synthesis de novo that is required for AEC apoptosis. They also support the theory that ANG system antagonists have potential for the blockade of AEC apoptosis in situ.  相似文献   

17.
TNF-related apoptosis-inducing ligand (TRAIL/ Apo-2L) is a member of the TNF family of apoptosis-inducing proteins that initiates apoptosis in a variety of neoplastic cells while displaying minimal or absent cytotoxicity to most normal cells. Therefore, TRAIL is currently considered a promising target to develop anti-cancer therapies. TRAIL-receptor ligation recruits and activates pro-caspase-8, which in turn activates proteins that mediate disruption of the mitochondrial membranes. These events lead to the nuclear and cytosolic damage characteristic of apoptosis. Here we report that TRAIL-induced apoptosis is mediated by oxidative stress and that vitamin C (ascorbic acid), a potent nutritional antioxidant, protects cancer cell lines from apoptosis induced by TRAIL. Vitamin C impedes the elevation of reactive oxygen species (ROS) levels induced by TRAIL and impairs caspase-8 activation. We found that the removal of hydrogen peroxide by extracellular catalase during TRAIL-induced apoptosis also impairs caspase-8 activation. These data suggest that hydrogen peroxide is produced during TRAIL-receptor ligation, and that the increase of intracellular ROS regulates the activation of caspase-8 during apoptosis. Additionally we propose a mechanism by which cancer cells might resist apoptosis via TRAIL, by the intake of the nutritional antioxidant vitamin C. This work was supported by grants from the National Institutes of Health (CA 30388), the New York State Department of Health (M020113) and the Lebensfeld Foundation.  相似文献   

18.
Apoptosis induction through CD95 (APO-1/Fas) critically depends on generation of active caspase-8 at the death-inducing signaling complex (DISC). Depending on the cell type, active caspase-8 either directly activates caspase-3 (type I cells) or relies on mitochondrial signal amplification (type II cells). In MCF7-Fas cells that are deficient for pro-caspase-3, even high amounts of caspase-8 produced at the DISC cannot directly activate downstream effector caspases without mitochondrial help. Overexpression of Bcl-x(L) in these cells renders them resistant to CD95-mediated apoptosis. However, activation of caspase-8 in control (vector) and Bcl-x(L) transfectants of MCF7-Fas cells proceeds with similar kinetics, resulting in a complete processing of cellular caspase-8. Most of the cytosolic caspase-8 substrates are not cleaved in the Bcl-x(L) protected cells, raising the question of how Bcl-x(L)-expressing MCF7-Fas cells survive large amounts of potentially cytotoxic caspase-8. We now demonstrate that active caspase-8 is initially generated at the DISC of both MCF7-Fas-Vec and MCF7-Fas-Bcl-x(L) cells and that the early steps of CD95 signaling such as caspase-8-dependent cleavage of DISC bound c-FLIP(L), caspase-8-dependent clustering, and internalization of CD95, as well as processing of pro-caspase-8 bound to mitochondria are very similar in both transfectants. However, events downstream of mitochondria, such as release of cytochrome c, only occur in the vector-transfected MCF7-Fas cells, and no in vivo caspase-8 activity can be detected in the Bcl-x(L)-expressing cells. Our data suggest that, in Bcl-x(L)-expressing MCF7-Fas cells, active caspase-8 is sequestered on the outer mitochondrial surface presumably by association with the protein "bifunctional apoptosis regulator" in a way that does not allow substrates to be cleaved, identifying a novel mechanism of regulation of apoptosis sensitivity by mitochondrial Bcl-x(L).  相似文献   

19.
Asbestos causes pulmonary toxicity by mechanisms that in part involve reactive oxygen species (ROS). However, the precise source of ROS is unclear. We showed that asbestos induces alveolar epithelial cell (AEC) apoptosis by a mitochondrial-regulated death pathway. To determine whether mitochondrial-derived ROS are necessary for causing asbestos-induced AEC apoptosis, we utilized A549-rho(omicron) cells that lack mitochondrial DNA and a functional electron transport. As expected, antimycin, which induces an oxidative stress by blocking mitochondrial electron transport at complex III, increased dichlorofluoroscein (DCF) fluorescence in A549 cells but not in A549-rho(omicron) cells. Compared with A549 cells, rho(omicron) cells have less asbestos-induced ROS production, as assessed by DCF fluorescence, and reductions in total glutathione levels as well as less caspase-9 activation and apoptosis, as assessed by TdT-mediated dUTP nick end labeling staining and DNA fragmentation. A mitochondrial anion channel inhibitor that prevents ROS release from the mitochondria to the cytoplasm also blocked asbestos-induced A549 cell caspase-9 activation and apoptosis. Finally, a role for nonmitochondrial-derived ROS with exposure to high levels of asbestos (50 microg/cm(2)) was suggested by our findings that an iron chelator (phytic acid or deferoxamine) or a free radical scavenger (sodium benzoate) provided additional protection against asbestos-induced caspase-9 activation and DNA fragmentation in rho(omicron) cells. We conclude that asbestos fibers affect mitochondrial DNA and functional electron transport, resulting in mitochondrial-derived ROS production that in turn mediates AEC apoptosis. Nonmitochondrial-associated ROS may also contribute to AEC apoptosis, particularly with high levels of asbestos exposure.  相似文献   

20.
Doxorubicin (DOX)-induced apoptosis is suppressed by p21 (waf1/cip1/sdi1), a cyclin dependent kinase (CDK) inhibitor. Here we show that exogenous expression of p21 before, but not after, the DOX-treatment protected p21-deficient human colorectal cancer cell line DLD1 from DOX-induced apoptosis. In previous work, we demonstrated that p21 inhibits DOX-induced apoptosis via its CDK-binding and CDK-inhibitory activity. Here we report that pre-existing p21 can associate with pro-caspase-3 and inhibit caspase-3 activation in the cells, which was at least in part responsible for enhancing survival of DOX-treated cells. Furthermore, the N-terminal domain of p21 was found to interact with pro-caspase-3 in DLD1 cells. Thus, we propose that pre-existing p21 is required to prevent DOX-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号