首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of exogenous gonadal steroids, testosterone (T), and 17beta-estradiol (E(2)) upon the hypothalamo-pituitary-gonadal axis were reported to be different between prepubertal and adult Siberian hamsters. Utilizing an in vitro static culture system, we investigated if age-related differences in steroid responsiveness occurs at the pituitary. Prepubertal (20 days old) or adult (140 days old) male Siberian hamsters were implanted with 1 mm silastic capsules containing undiluted T, E(2) or cholesterol (Ch, control). After 15 days, pituitaries were removed, incubated in vitro, and subjected to the following treatments: two baseline measurements, one challenge with 10ng/ml of D-Lys(6)-gonadotropin-releasing hormone (GnRH), and three post-challenge washes. Fractions were collected every 30 minutes and measured for follicle-stimulating hormone (FSH) and luteinizing hormone (LH). T and E(2 )reduced basal secretion of LH and FSH in juveniles but not adults. In juveniles, E(2) increased GnRH-induced FSH and LH secretion, while T augmented GnRH-induced FSH secretion but attenuated GnRH-induced LH secretion. Steroid treatment had no effect on GnRH-stimulated LH or FSH release in adults. The only effect of steroid hormones upon adult pituitaries was the more rapid return of gonadotropin secretion to baseline levels following a GnRH challenge. These data suggest both basal and GnRH-induced gonadotropin secretion are more sensitive to steroid treatment in juvenile hamsters than adults. Further, differential steroidal regulation of FSH and LH at the level of the pituitary in juveniles might be a mechanism for the change in sensitivity to the negative effects of steroid hormones that occurs during the pubertal transition.  相似文献   

2.
Previous in vivo studies from our laboratory suggested that glucocorticoids antagonize estrogen-dependent actions on LH secretion. This study investigated whether corticosterone (B) may have similar actions on gonadotropin biosynthesis and secretion in vitro. Enzymatically dispersed anterior pituitary cells from adult female rats were cultured for 48 h in alpha-modified Eagle's medium containing 10% steroid-free horse serum with or without 0.5 nM estradiol (E2). The cells were then cultured for 24 h with or without B in the presence or absence of E2. To evaluate hormone release, 5 x 10(5) cells were incubated with varying doses of GnRH (0, 10(-11)-10(-7) M) or pulsatile GnRH (10(-9) M; 20 min/h) for 4 h. Cell and medium LH and FSH were measured by RIA. To evaluate LH biosynthesis, 5 x 10(6) cells were incubated for an additional 24 h with 10(-10) M GnRH, 60 microCi 3H-glucosamine (3H-Gln), 20 microCi 35S-methionine (35S-Met), and the appropriate steroid hormones. Radiolabeled precursor incorporation into LH subunits was determined by immunoprecipitation, followed by SDS-PAGE. Continuous exposure to GnRH stimulated LH release in a dose-dependent manner, and this response was enhanced by E2. B by itself had no effect on LH release, but inhibited LH secretion in E2-primed cells at low concentrations of GnRH (10(-10) M or less). Total LH content was not altered by GnRH or steroid treatment. Similar effects of B were observed in cells that were given a pulsatile GnRH stimulus. In contrast to LH, E2 or B enhanced GnRH-stimulated FSH release at the higher doses of GnRH, while the combination of E2 and B increased basal and further augmented GnRH-stimulated release. Total FSH content was also increased in the presence of B, but not E2 alone, and was further augmented in cells treated with both steroids. There were no effects of the steroids on the magnitude of FSH release in response to GnRH pulses, but the cumulative release of FSH was greater in the E2 + B group compared to controls, indicating an increased basal release. Independent of E2, B suppressed the incorporation of 3H-Gln into LH by more than 50% of control, with only subtle effects on the incorporation of 35S-Met.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Hemicastration of Holstein bulls at 3 months of age resulted in increased (P<0.005) testicular weitht and testis sperm cell content at 330 days after treatment, but did not alter sperm cell concentration in the remaining hypertrophied testis. Radioimmuroassay of blood hormones at 1, 6, 12, and 24 weeks after treatment revealed that unilateral castration did not alter (P>0.1) basal levels or GnRH response profiles of either LH or testosterone compared to intact bulls. Hemicastration caused FSH to be elevated (P<0.01) compared to intact bulls at all sampling periods in both unstimulated and GnRH stimulated bulls. Prolactin varied with season and was greater (P<0.001) in hemicastrated bulls than in intact bulls at 1 and 6 weeks after treatment. Results indicate that unilateral castration at 3 months of age caused testicular hypertrophy of both steroidogenic and gametogenic function and this phenomena may be triggered by increased FSH or prolactin secretion, or both. Further, results indicate different testicular regulation mechanisms exist for pituitary LH and FSH release in bulls.  相似文献   

4.
The purpose of this study was to investigate whether progesterone exerted progesterone receptor mediated direct effects on the anterior pituitary in the secretion of FSH and whether such effects were mediated through the 5 alpha-reduction of progesterone. Treatment of anterior pituitary dispersed cells for 48 h with 0.5 nM estradiol reduced the ED50 for gonadotropin releasing hormone (GnRH)-stimulated FSH release from 0.58 to 0.36 ng/ml and the ED50 for GnRH-induced LH release from 0.54 to 0.19 ng/ml. When dispersed pituitary cells were treated with 0.5 nM estradiol and exposed to various doses of progesterone for 1 to 6 h, the most consistent rise in basal and GnRH-stimulated FSH release was observed with the 50 nM dose of progesterone with a 3-h exposure period. All three doses of progesterone elevated basal LH and GnRH-stimulated LH was increased by the 50 and 100 nM doses of progesterone during the 3-h period of treatment. Using the 50 nM dose of progesterone, basal and GnRH-stimulated LH was increased after 2, 3 and 6 h of progesterone treatment. When the period of exposure of progesterone was extended to 12, 36 or 48 h, there was a significant inhibition of GnRH-stimulated FSH release. GnRH-stimulated LH release was inhibited at 36 and 48 but not 12 h after progesterone treatment. These studies showed that the effect of progesterone administered for periods of 1 to 6 h enhanced the secretion of LH and FSH whereas progesterone administered for periods beyond 12 h inhibited FSH and LH release by dispersed pituitary cells in culture. These results are similar to those observed in vivo after progesterone treatment. Furthermore estrogen priming of the dispersed pituitary cells was necessary to observe the effects of progesterone. The progesterone antagonist RU486 prevented the progesterone-induced rise in GnRH-stimulated FSH release. Furthermore the 5 alpha-reductase inhibitor N,N-diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane- 17 beta-carboxamide also prevented the progesterone-induced rise in GnRH-stimulated FSH release in estrogen-treated dispersed pituitary cells. These results indicate that the anterior pituitary is a major site of action of progesterone in the release of FSH and that 5 alpha-reduction of progesterone plays an important role in FSH release.  相似文献   

5.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

6.
There is a monotypic change in basal serum gonadotropin levels following retinol treatment of chronically vitamin A-deficient (VAD) male rats. The present study was undertaken to investigate the hypothesis that the specific increase in serum follicle-stimulating hormone (FSH) represents a change in gonadotrope responsiveness to gonadotropin-releasing hormone (GnRH). To this end, a test dose of GnRH was given to VAD rats pre-, 5 days post-, and 10 days postreplacement of vitamin A (PVA). In VAD rats, basal serum FSH and luteinizing hormone (LH) levels were higher than those of controls. Increased LH/testosterone ratios, both in basal levels and in the secretory response to GnRH, suggested Leydig cell hyporesponsiveness in VAD animals. Both the FSH and LH responses to GnRH were maximal at 1 h, declining thereafter. Although the absolute increments in FSH and LH 1 h after GnRH in VAD rats were greater than in controls, the percent increase in FSH tended to be lower in VAD rats and to increase after vitamin A replacement. The specific enhancement of FSH release PVA became evident only when assessing total secretion of FSH and LH after GnRH. Luteinizing hormone response to GnRH increased PVA, but not significantly, while FSH secretion after GnRH increased both 5 and 10 days PVA, times during which basal FSH levels were also increasing. These changes in FSH secretion could not be attributed either to increases in endogenous GnRH or to changes in testosterone or estradiol levels. Basal serum androgen binding protein levels, elevated in VAD animals, did not respond to the acute increases in FSH after GnRH and remained high PVA, suggesting no acute change in Sertoli cell function. Thus, the PVA increase in FSH secretion unmasks a partial inhibition of the gonadotrope present in the retinol-deficient, retinoic acid-fed male rat.  相似文献   

7.
The role of diacylglycerol (DG) as a source of arachidonic acid during gonadotropin-releasing hormone (GnRH) stimulation of gonadotropin secretion was analyzed in primary cultures of rat anterior pituitary cells. An inhibitor of DG lipase (RHC 80267, RHC) caused dose-dependent blockade of GnRH-stimulated luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion. The DG lipase inhibitor did not alter gonadotropin responses to arachidonic acid, and addition of arachidonic acid reversed its inhibition of GnRH-stimulated LH and FSH release. In [3H]arachidonic acid-prelabeled cells, incubation with RHC increased the accumulation of [3H]DG. These results suggest that DG lipase participates in GnRH action and that arachidonic acid mobilization from DG is involved in the mechanism of gonadotropin release. Gonadotropin responses to tetradecanoyl phorbol acetate and dioctanoyl glycerol were not altered by RHC, and the addition of these activators of protein kinase C (Ca2+- and phospholipid-dependent enzyme) did not prevent the inhibition of GnRH-induced gonadotropin release by RHC. Activation of phospholipase A2 by melittin increased LH and FSH secretion, whereas blockade of this enzyme by quinacrine reduced GnRH-stimulated hormone release. However, RHC did not diminish the gonadotropin response to melittin. The inhibitory actions of RHC and quinacrine were additive and were reversed by concomitant treatment with arachidonic acid. Ionomycin also increased LH and FSH release, and the gonadotropin responses to the ionophore were unaltered by RHC but were reduced by quinacrine. Incubation of cells in Ca2+-depleted (+/- [ethylenebis(oxyethylenenitrilo)]tetraacetic acid) medium reduced but did not abolish the LH and FSH releasing activity of GnRH. Treatment with RHC also reduced the gonadotropin responses to GnRH under Ca2+-depleted conditions. These observations indicate that RHC inhibition of GnRH action is not due to nonspecific actions on Ca2+ entry, protein kinase C activation and actions, nor phospholipase A2 enzyme activity. The results of this study provide further evidence for an extracellular Ca2+-independent mechanism of GnRH action, and suggest that GnRH causes mobilization of arachidonic acid by two distinct lipases, namely, phospholipase A2 and DG lipase, during stimulation of gonadotropin secretion.  相似文献   

8.
Bull fertility is an important target for genetic improvement, and early prediction using genetic markers is therefore a goal for livestock breeding. We performed genome-wide association studies to identify genes associated with fertility traits measured in young bulls. Data from 1118 Brahman bulls were collected for six traits: blood hormone levels of inhibin (IN) at 4 mo, luteinizing hormone (LH) following a gonadotropin-releasing hormone challenge at 4 mo, and insulin-like growth factor 1 (IGF1) at 6 mo, scrotal circumference (SC) at 12 mo, ability to produce sperm (Sperm) at 18 mo, and percentage of normal sperm (PNS) at 24 mo. All the bulls were genotyped with the BovineSNP50 chip. Sires and dams of the bull population (n = 304) were genotyped with the high-density chip (~800?000 polymorphisms) to allow for imputation, thereby contributing detail on genome regions of interest. Polymorphism associations were discovered for all traits, except for Sperm. Chromosome 2 harbored polymorphisms associated with IN. For LH, associated polymorphisms were located in five different chromosomes. A region of chromosome 14 contained polymorphisms associated with IGF1 and SC. Regions of the X chromosome showed associations with SC and PNS. Associated polymorphisms yielded candidate genes in chromosomes 2, 14, and X. These findings will contribute to the development of genetic markers to help select cattle with improved fertility and will lead to better annotation of gene function in the context of reproductive biology.  相似文献   

9.
Treatment of immature, hypophysectomized male rats with 50 micrograms ovine FSH (NIH-FSH-S12) twice a day for 5 days stimulated the maximum quantity of 17 beta-hydroxyandrogen produced by isolated Leydig cells in response to hCG. Pretreatment of the FSH preparation with an LH antiserum in one study markedly reduced and in another study completely abolished this stimulatory effect of FSH, but only slightly impaired the capacity of the hormone to stimulate the Sertoli cell in vivo (epididymal androgen-binding protein). Administration of another highly potent FSH preparation (LER-1881) had no discernible effects on the dose-response characteristics of the Leydig cells but was superior to the NIH-FSH-S12 in its capacity for stimulating the Sertoli cell. When all hormone preparations were tested for their ability to stimulate steroid secretion from normal Leydig cells in vitro, a close correlation was obtained between their Leydig cell-stimulating activity (a measure of LH contamination) and their capacity to alter Leydig cell responsiveness after in-vivo treatment. FSH treatment had no effects on specific LH binding per 10(6) Leydig cells. It is concluded that the stimulatory influence of FSH on rat Leydig cells may to some extent be a result of the LH contaminating the hormone preparation.  相似文献   

10.
Experiments were conducted to assess the relative contribution of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) to the regulation of estradiol secretion by the testis of the 12-day-old rat. In an in vivo model system, stimulation of the whole testis with NIH-FSH-S13 (5% LH activity) caused an 8-fold increase in testosterone secretion within 1 h followed by a 5-fold increase in estradiol secretion. Qualitatively, similar findings were obtained from whole testes incubated in tissue culture medium 199. The in vitro system was used to further examine the response of the testes to LH and FSH. Testes exposed to a variety of doses of LH or 10 ng/ml of highly purified FSH (3 X 13, 1% LH activity) showed no change in estradiol secretion. However, a synergistic effect was observed when purified FSH and LH were combined, provided the LH concentration exceeded 25 pg/ml. It is suggested that FSH secretion in infant rats maintains the aromatizing capacity of the seminiferous tubule at a level such that availability of aromatizable substrate becomes a major factor in the rate of tubular estrogen formation.  相似文献   

11.
Frequent blood samples were collected to study hormonal responses to GnRH in male and female leopards and tigers. Animals were anaesthetized with ketamine-HCl and blood samples were collected every 5 min for 15 min before and 160 min after i.v. administration of GnRH (1 micrograms/kg body weight) or saline. No differences in serum cortisol concentrations were observed between sexes within species, but mean cortisol was 2-fold greater in leopards than tigers. GnRH induced a rapid rise in LH in all animals (18.3 +/- 0.9 min to peak). Net LH peak height above pretreatment levels was 3-fold greater in males than conspecific females and was also greater in tigers than leopards. Serum FSH increased after GnRH, although the magnitude of response was less than that observed for LH. Basal LH and FSH and GnRH-stimulated FSH concentrations were not influenced by sex or species. Serum testosterone increased within 30-40 min after GnRH in 3/3 leopard and 1/3 tiger males. Basal testosterone was 3-fold greater in tiger than leopard males. LH pulses (1-2 pulses/3 h) were detected in 60% of saline-treated animals, suggesting pulsatile gonadotrophin secretion; however, in males concomitant testosterone pulses were not observed. These results indicate that there are marked sex and species differences in basal and GnRH-stimulated hormonal responses between felids of the genus Panthera which may be related to differences in adrenal activity.  相似文献   

12.
The rhinoceros is an endangered species related to the horse family. Little is known of its reproductive endocrinology. The objectives of this study were to partially purify rhinoceros pituitary hormones, determine which assays could be used for their assessment, and to ascertain whether rhinoceros LH possesses the intrinsic FSH activity of equine LH. A single pituitary each from a White (1.3 g) and a Black (1.2 g) Rhinoceros was homogenized and extracted (pH 9.5), then subjected to pH and salt fractionation, and ion-exchange chromatography (DEAE and Sephadex SP-C50) to yield partially purified fractions of LH, FSH, growth hormone (GH), and prolactin (PRL). LH was readily measured by a rat Leydig cell assay (0.1-1% x equine LH) and an RIA using a monoclonal antibody to bovine LH (6-11% x equine LH). FSH activity detected in the LH by either an FSH RIA or a calf testis radioreceptor assay (RRA) was extremely low. No FSH activity could be detected in the White Rhinoceros pituitary "FSH" fraction, but was readily detected in the Black Rhinoceros fraction (RIA: 0.2% x equine FSH: RRA: 0.8% x equine FSH). The presence of GH and PRL was determined by SDS-PAGE and Western blots. Results showed a single immunoreactive GH band and multiple immunoreactive PRL bands. Adsorption with Concanavalin A-Sepharose indicated that some of the PRL bands are glycosylated.  相似文献   

13.
Forty-week-old male broiler breeders were used in two experiments. Males were reared as recommended by the breeder, housed in individual cages, and cannulated to facilitate blood sampling. In experiment 1, blood samples were collected at 10- min intervals for 4 h commencing the day of cannulation (Day 0) and for 12 h on each of Days 1 and 2. In experiment 2, blood samples were collected at 10-min intervals for 8 h on Day 1. After centrifugation, plasma was stored at -20 degrees C until LH, FSH (experiment 1 and 2), testosterone, and corticosterone (experiment 1) concentrations were determined by RIA. Different statistical methods used to identify hormone secretion profiles revealed a characteristic pulsatile pattern of LH and FSH in plasma. However, LH pulses were more frequent and had greater amplitude than FSH pulses. Less than 32% of the FSH pulses were associated with LH episodes. Conversely, the association between LH and testosterone pulses averaged 83% in birds with testis weight greater than 10 g. Concentrations of corticosterone tended to increase after cannulation and remained elevated for only 3-4 h. Our data indicate that LH, FSH, and testosterone secretion is pulsatile in male broiler breeders. Additionally, LH pulses are associated with testosterone episodes but not with FSH pulses. The pulsatile pattern of FSH secretion, which is unique from those of LH, in adult males suggests that FSH secretion is independently regulated in the adult male fowl.  相似文献   

14.
Ovine LH is needed for differentiation of juvenile Leydig cells and for their maintenance and steroidogenic potential, while FSH is necessary for Sertoli cell activity and spermatogonial multiplication suggesting that LH is steroidogenic hormone and FSH is gametogenic in the developing pigeon, C. livia. Homoplastic pituitary extract is more potent than ovine LH + FSH in stimulating gametogenic and endocrine components of the developing testis.  相似文献   

15.
Experiment I: Hyperadrenal states were induced in intact heifers (N = 3) or adrenalectomized (ADRX) heifers (N = 3) by constant infusion of ACTH (20.8 micrograms, 1-24 ACTH/h) or hydrocortisone succinate (HS) (30 mg/h), respectively. Control infusions consisted of the saline vehicle. All infusions began on Day 2 of a normal estrous cycle. Exogenous gonadotropin releasing hormone (GnRH) was given as a 100-micrograms bolus i.v. on Days 7, 9, and 11 (intact) or 5, 7, and 9 (ADRX) of the cycle. In intact heifers, the cumulative luteinizing hormone (LH) response was reduced (P less than 0.05) by the ACTH treatment. In ADRX heifers, the HS treatment did not alter the cumulative response but did alter the qualitative response with a time X treatment interaction (P less than 0.01). The LH response in the HS-ADRX animals had a slower onset and lower peak concentrations with a more prolonged response. Experiment II: Dispersed bovine pituitary cells were prepared and incubated at concentrations of 2 X 10(6) viable cells in 2.0 ml per dish. Cells were exposed to cortisol at concentrations of 0.01, 0.10, 0.21 and 1.03 X 10(-6) M for time periods of 8, 14, 20 or 26 h for basal LH secretion studies and 10, 16, 22 and 28 h for GnRH-stimulated LH secretion. Both dosage of cortisol and length of exposure had a depressing effect on basal LH release. The cortisol pretreatment also decreased (P less than 0.001) the LH release following addition of GnRH (8.5 X 10(-8) M) in cultures at all dosages and exposure times of cortisol. However, there was no decrease in LH or protein content of cells. These experiments indicate a direct action of cortisol on the pituitary gland to depress both basal and stimulated LH release.  相似文献   

16.
The effectiveness of androgens in suppressing gonadotropin secretion declines with time following orchidectomy; however, the mechanism for this acquired resistance to androgen action is unknown. The role of the pituitary was studied by use of perifused rat pituitary cells and cells in monolayer culture. Pituitary cells from 7-wk-old intact male rats and rats that had been castrated 2 wk previously were treated with 10 nM testosterone (T) for 24 h; cells were then packed into perifusion chambers and stimulated with 2.5 nM GnRH for 2 min every hour for 8 h during which time T treatment was continued. T suppressed GnRH-stimulated LH secretion and LH pulse amplitude equally in both groups to approximately 60% of control values. Interpulse LH secretion was unchanged by T in either group. GnRH-stimulated FSH release was suppressed more (p less than 0.05) by T with cells from castrated rats than with cells from intact rats (76 +/- 4% vs. 90 +/- 2% of control; mean +/- SEM). By contrast, the action of T to increase interpulse basal FSH secretion was less (p less than 0.05) with cells from castrated rats (115 +/- 10% of control) than with cells from intact rats (146 +/- 6% of control). T treatment for 72 h also increased basal FSH secretion by pituitary cells in monolayer culture to a lesser extent with cells from castrated rats than with cells from intact rats (151 +/- 14% vs. 191 +/- 16% of control, p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The objective was to compare the relative response between rams and bulls in characteristics of LH, FSH and testosterone (T) secretion, during and after long-term treatment with GnRH analogs. Animals were treated with GnRH agonist, GnRH antagonist, or vehicle (Control) for 28 days. Serial blood samples were collected on day 21 of treatment, and at several intervals after treatment. Injections of natural sequence GnRH were used to evaluate the capacity of the pituitary to release gonadotropins during and after treatment. Treatment with GnRH agonist increased basal LH and T concentrations in both rams and bulls, with a greater relative increase in bulls. Endogenous LH pulses and LH release after administration of GnRH were suppressed during treatment with GnRH agonist. Treatment with GnRH antagonist decreased mean hormone concentrations, LH and T pulse frequency, and the release of LH and T after exogenous GnRH, with greater relative effects in bulls. Rams previously treated with antagonist had a greater release of LH after administration of GnRH compared with control rams, while rams previously treated with agonist showed a reduced LH response. Bulls previously treated with agonist had reduced FSH concentrations and LH pulse amplitudes compared with control bulls while bulls previously treated with antagonist had greater T concentrations and pulse frequency. The present study was the first direct comparison between domestic species of the response in males to treatment with GnRH analogs. The findings demonstrated that differences do occur between rams and bulls in LH, FSH and testosterone secretion during and after treatment. Also, the consequences of treatment with either GnRH analog can persist for a considerable time after discontinuation of treatment.  相似文献   

18.
The effect of uni- and bilateral cryptorchidism on testicular inhibin and testosterone secretion and their relationships to gonadotropins were studied in rats. Mature Wistar male rats weighing approximately 300 g were made either uni- or bilaterally cryptorchid. Testicular inhibin and testosterone content and plasma levels of LH and FSH were examined 2 weeks later. A similar remarkable decrease in testicular inhibin content was found in uni- and bilaterally cryptorchid testes. On the other hand, the testicular testosterone content was significantly decreased only in unilaterally cryptorchid testis with an inverse increase in the contralateral testis. Plasma testosterone levels were normal and plasma LH and FSH increased significantly in both of the cryptorchid groups. These results showed that cryptorchidism impairs both Sertoli and Leydig cell functions. While testosterone production was compensated by increased LH for 2 weeks, neither inhibin secretion nor storage changed in cryptorchid or contralateral testes during the same period.  相似文献   

19.
This was a study that retrospectively analyzed serum gonadotropin secretion and the ultrasonographic appearance of the testis during development in prepubertal bull calves to determine whether there were differences between early and late maturing bulls. Blood samples were taken every other week from 2 wk of age until puberty. Samples were also taken at 12 minute intervals for 12 hours at 4, 10, 20, 25, 30, 35, 40 and 45 wk of age. The GnRH treatment was administered 10 hours after the start of each period of frequent blood sampling. Bull calves fell into two distinctive groups, with one group maturing between 36.6 and 44.2 wk (n = 12) and the other between 46.4 and 48.9 wk of age (n = 8). In samples taken every other week mean serum LH concentrations were greater in early maturing bulls than in late maturing bulls at 12, 14 and 16 wk of age (P<0.05). In blood samples taken every 12 minutes for 10 hours early maturing bull calves had higher mean serum LH concentrations at 4 and 10 wk of age (P<0.05) and higher LH pulse frequency at 10 and 20 wk of age (P<0.05). Mean serum LH concentrations at 4, 10 and 40 wk of age and LH pulse frequency at 10 and 20 wk of age were negatively correlated with age at puberty in bull calves. Mean pixel units of the right and left testis were higher from 34 to 40 wk of age in early maturing than in late maturing animals (P<0.05). It seems possible that hormone measurements and ultrasonographic characteristics of the testes could be developed into powerful tools for studies on the regulation of reproductive development and may aid in the prediction of reproductive potential.  相似文献   

20.
Effects of pure human follicle-stimulating hormone (hFSH) and ovine luteinizing hormone (oLH) on testicular function were investigated in long-term hypophysectomized or photoinhibited Djungarian hamsters. hFSH (5 IU) or oLH (5 micrograms) or a combination of FSH and LH (5 IU and 5 micrograms, respectively) were injected s.c. twice daily for 7 days to hypophysectomized and photoinhibited hamsters. Other photoinhibited hamsters were treated for 14 and 21 days with FSH and LH (3 IU and 3 micrograms, respectively) in a similar way. LH alone had little, if any, effect on testicular weights; FSH, when injected alone or in combination with LH (FSH/LH), caused a significant increase in testes weights at each time point. On the other hand, LH or FSH/LH, but not FSH alone, caused a significant increase in the accessory organ weights. FSH had no effect on intratesticular testosterone (T) or on 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity but enhanced the in vitro response of interstitial cells to hCG. LH and FSH/LH had pronounced effects on intratesticular T, 3 beta-HSD activity, and in vitro response of interstitial cells to human chorionic gonadotropin. Treatment with FSH or FSH/LH caused regrowth of the testis and restoration of tubular lumen and tubular diameter and restored complete spermatogenesis. However, LH had little effect on spermatogenesis in spite of increased intratesticular and peripheral T levels. These results indicate that although LH can cause a full redifferentiation of Leydig cells in photoinhibited hamsters, it has only minor effects on tubular function. On the other hand, FSH alone induces full restoration of tubular function in these animals and has no direct effect on Leydig cell steroidogenesis, but may enhance the Leydig cell responsiveness to LH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号