首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NAD(P)H dehydrogenase (EC 1.6.99.2) purified from rat liver cytosol revealed three discrete bands, of mol.wts. about 27000, 18000 and 9000, when subjected to polyacrylamidegel electrophoresis in the presence of sodium dodecyl sulphate. Elution of the bands from the gel and individual re-electrophoresis on separate gels showed that the 27000-mol.wt. band yielded three bands similar to those obtained with the intact enzyme, whereas the 18000-mol.wt. band retained its characteristic mobility. Amino acid analysis of native enzyme and protein extracted from each of the three bands from sodium dodecyl sulphate/polyacrylamide gels suggests that the native enzyme is composed of two subunits and that each subunit consists of two dissimilar non-covalently bound polypeptides, so that altogether the enzyme is composed of four polypeptides, two of mol.wt. 18000 and two of mol.wt. 9000. NAD(P)H dehydrogenase was active over a wide pH range with no sharp optimum. The same K(m) value for NADH but different values for V(max.) were obtained for the enzyme purified from Sprague-Dawley and Wistar rats. In immunodiffusion, however, the enzymes from the two rat strains showed a reaction of complete identity. NAD(P)H dehydrogenase was effectively inhibited by thiol-blocking reagents, indicating that the activity is dependent on free thiol group(s). By amino acid analysis six cysteine residues were found per mol of enzyme. Guanidino-group- and amino-group-selective reagents had only moderate inactivating effects on the enzyme activity.  相似文献   

2.
Various kinetic approaches were carried out to investigate kinetic attributes for the dual coenzyme activities of mitochondrial aldehyde dehydrogenase from rat liver. The enzyme catalyses NAD(+)- and NADP(+)-dependent oxidations of ethanal by an ordered bi-bi mechanism with NAD(P)+ as the first reactant bound and NAD(P)H as the last product released. The two coenzymes presumably interact with the kinetically identical site. NAD+ forms the dynamic binary complex with the enzyme, while the enzyme-NAD(P)H complex formation is associated with conformation change(s). A stopped-flow burst of NAD(P)H formation, followed by a slower steady-state turnover, suggests that either the deacylation or the release of NAD(P)H is rate limiting. Although NADP+ is reduced by a faster burst rate, NAD+ is slightly favored as the coenzyme by virtue of its marginally faster turnover rate.  相似文献   

3.
We have previously reported that rats fed on the Steenbock and Black's rickets-inducing diet (deficient in vitamin D and with an altered Ca/P ratio) show metabolic modifications in kidney and intestinal mucosa. We have therefore decided to investigate if also in liver, seat of vitamin D hydroxylation, changes in the metabolic pattern occur. An increase of mitochondrial NAD+-dependent isocitrate dehydrogenase and a decrease of citrate and ATP content was demonstrated in liver of rachitic rats, together with changes in ATP-citrate lyase and glucose-6-phosphate dehydrogenase activity. The inhibitory effect of ATP on liver mitochondria NAD+-dependent isocitrate dehydrogenase was also studied.  相似文献   

4.
Characterization of phytol-phytanate conversion activity in rat liver   总被引:1,自引:0,他引:1  
The enzymatic conversion of phytol to phytanic acid was investigated in rat liver postnuclear and other subcellular fractions using [1-3H]phytol as the substrate. The assay method involved incubation of the substrate with appropriate cofactors and the enzyme source, followed by subjecting the mixture to Folch partition and measuring the radioactivity in the upper layer. The phytol-phytanate conversion activity was present in mitochondrial and microsomal fractions. Cytosol had no activity. In mitochondrial fraction, investigation of cofactor requirements indicated that only NAD was required for activity. Other pyridine nucleotides supported the activity to a lesser extent when compared with NAD. FAD at 1 mM concentration did not support the activity. Bovine serum albumin (0.4 mg/ml) stimulated the activity. The reaction did not require molecular oxygen. From substrate kinetic studies, an apparent Km of 14.3 and 11.1 microM was calculated for phytol in mitochondrial and microsomal fractions, respectively. The amount of tritiated water produced from incubation increased linearly up to 7-8 min. The activity was linear with the amount of mitochondrial and microsomal protein up to 200 and 40 micrograms, respectively. Among the various rat tissue homogenates tested, liver had the highest activity. Spleen and kidney had 8-9% of the activity of liver. Brain possessed negligible activity. Both ethanol and pyrazole had no inhibitory effect on phytol-phytanate conversion. This observation and the absence of activity in cytosol suggests that alcohol dehydrogenase may not be involved in phytol-phytanate conversion.  相似文献   

5.
Abstract: The application of enzymatic staining techniques, using tetrazolium dyes, to aldehyde-treated brain sections has revealed the presence of NADPH-diaphorase activity attributed to nitric oxide synthase. When evaluating the specificity of the putative guanylyl cyclase inhibitor LY 83583, a robust and novel staining pattern was noted in epithelial, endothelial, and astrocytic cells when LY 83583 was included in the NADPH-diaphorase histochemical reaction. This LY 83583-dependent staining could be blocked by the NAD(P)H:quinone oxidoreductase inhibitor dicumarol. Based on its quinone structure, we hypothesized that LY 83583 was a substrate for the enzyme NAD(P)H:quinone oxidoreductase. Transfection of human embryonic kidney 293 cells with the rat liver isoform of NAD(P)H:quinone oxidoreductase resulted in robust NADPH- and LY 83583-dependent staining that was completely blocked by dicumarol and was not observed in untransfected cells. Analysis of transfected cell extracts and brain homogenates indicated that LY 83583 was a substrate for NAD(P)H:quinone oxidoreductase, with a K m similar to the well-characterized substrate menadione. Sensitivity of the nitroblue tetrazolium reduction to superoxide dismutase indicated that the reduction of LY 83583 by NAD(P)H:quinone oxidoreductase leads to superoxide generation. The localization of NAD(P)H:quinone oxidoreductase activity to astrocytic cells suggests a role for glia in combating oxidative insults to brain and in activating quinone-like drugs such as LY 83583.  相似文献   

6.
1. The inducibility of hepatic cytosolic aldehyde dehydrogenase activity was studied in rat, mouse, guinea pig, chicken, frog, salamander and rainbow trout, by using two different types of inducers of drug metabolism. 2. Phenobarbital (a type I inducer of drug metabolizing enzymes) increased total liver cytosolic aldehyde dehydrogenase activity (up to 20-fold) in a genetically defined substrain of responsive rats (RR) and only slightly, if at all, in a non-responsive substrain (rr). On the contrary, both types of rats showed a highly induced aldehyde dehydrogenase activity after treatment with methylcholanthrene (a type II inducer). Phenobarbital is affecting mainly an isozyme of aldehyde dehydrogenase which is best measured with propionaldehyde as the substrate and NAD as the coenzyme (P/NAD). 3. Administration of phenobarbital to mice produced only a slight increase (2-fold) in the P/NAD aldehyde dehydrogenase activity. 4. Methylcholanthrene treatment caused a 2-fold increase of the hepatic P/NAD aldehyde dehydrogenase activity in the chicken. 5. In the guinea pig, phenobarbital produced an approximate 3-fold increase of the P/NAD activity. Methylcholanthrene had a similar effect, although to a lesser extent. 6. In the salamander, a 4-fold increase was detected in the enzyme activity measured with benzaldehyde as the substrate and NADP as the coenzyme (B/NADP), after treatment with either phenobarbital or methylcholanthrene. 7. The hepatic aldehyde dehydrogenase activities were found unchanged in the rainbow trout, after treatment with phenobarbital or 2,3,7,8-tetrachlorodibenzo-p-dioxin. 8. The rat model remains the only one examined that shares with human hepatocytes strong inducibility of the B/NADP aldehyde dehydrogenase isozyme upon treatment with polycyclic aromatic hydrocarbons.  相似文献   

7.
An isolation procedure of mitochondrial menadione reductase from rat liver using an ethanol-ether extraction for solubilization of the enzyme is described. The enzyme was purified 930-fold. The molecular weight of mitochondrial menadione reductase is 62,000. According to spectroscopic and enzymic analysis the prosthetic group of the enzyme was identified as FAD. Mitochondrial menadione reductase is inhibitied by dicumarol and p-chloromecuribenzoate. The enzyme is characterized by a group substrate specificity towards quinones. A high catalytic activity of menadione reductase towards 4-aniline-5-methoxy-1,2-benzoquinone (AMOBQ), and 4-N-(p-sulfoanilino)-5-methoxy-1,2-benzoquinone (AMOBQS) as acceptors was demonstrated. It was shown that the reduction of these orto-benzoquinones by NAD(P) H follows the "ping-pong" kinetics. The kinetic constants for NAD(P)H,AMOBQ and and AMOBQS were determined.  相似文献   

8.
1. Glutamate dehydrogenase (L-glutamate:NAD(P) oxidoreductase, EC 1.4.1.3) from rat liver has been crystallized with a method carefully avoiding all denaturating agents. A 236-fold purification was achieved at a yield of 20%. The specific activity was 185 units/mg protein. The enzyme was homogeneous by analytical zone electrophoresis and sedimentation studies. The s0(20),w value was 13.2. 2. Sedimentation studies in the analytical ultracentrifuge and the behaviour of the enzyme in the disc-electrophoresis revealed that glutamate dehydrogenase from rat liver did not undergo a reversible association-dissociation reaction as reported of glutamate dehydrogenase of nearly all other mammalians. 3. Using antibodies prepared against crystalline bovine liver glutamate dehydrogenase, no immunological differences between the rat and the bovine liver enzyme could be observed.  相似文献   

9.
The cytosolic activity of aldehyde dehydrogenase (ALDH) was studied in the rat liver, after acute administration of various carcinogenic and chemically related compounds. Male Wistar rats were treated with 27 different chemicals, including polycyclic aromatic hydrocarbons, aromatic amines, nitrosamines, azo dyes, as well as with some known direct-acting carcinogens. The cytosolic ALDH activity of the liver was determined either with propionaldehyde and NAD (P/NAD), or with benzaldehyde and NADP (B/NADP). The activity of ALDH remained unaffected after treatment with 1-naphthylamine, nitrosamines and also with the direct-acting chemical carcinogens tested. On the contrary, polycyclic aromatic hydrocarbons, polychlorinated biphenyls (Arochlor 1254) and 2-naphthylamine produced a remarkable increase of ALDH. In general, the response to the effectors was disproportionate between the two types of enzyme activity, being much in favour for the B/NADP activity. This fact resulted to an inversion of the ratio B/NADP vs. P/NAD, which under constitutive conditions is lower than 1. In this respect, the most potent compounds were found to be polychlorinated biphenyls, 3-methylcholanthrene, benzo(a)pyrene and 1,2,5,6-dibenzoanthracene. Our results suggest that the B/NADP activity of the soluble ALDH is greatly induced after treatment with compounds possessing aromatic ring(s) in their molecule. It is not known, if this response of the hepatocytes is related with the process of chemical carcinogenesis.  相似文献   

10.
IMP dehydrogenase (EC 1.2.1.14) was purified 180-fold from rat liver and from the transplantable rat hepatoma 3924A. The enzymes from the two sources were apparently identical; they exhibited hyperbolic saturation kinetics and an ordered, sequential mechanism, and were subject to inhibition by a number of purine nucleotides. Km values for the substrates, IMP and NAD+, were 12 and 24 micrometer respectively. IMP dehydrogenase activity in a spectrum of rat hepatomas was increased, relative to normal liver, by 2.5--13-fold; these increases correlated with tumour growth rate. Activity in two rat kidney tumours was increased 3-fold relative to that in normal renal cortex; control of activity of this enzyme is apparently altered in neoplastic cells. After partial hepatectomy, IMP dehydrogenase activity began to rise 6 h after operation, reaching a peak of 580% of normal activity by 18 h. Activity in neonatal liver, however, was only slightly higher than that in the adult. Organ-distribution studies showed highest enzyme activities in spleen and thymus. In livers of rats starved for 3 days, where all enzymes, except those involved in gluconeogenesis, showed decreased activity IMP dehydrogenase activity was increased; this change was accompanied by a rise in hepatic GTP concentrations. It is concluded that IMP dehydrogenase is a key enzyme in the regulation of GTP production, and thus involved in regulation of nucleic acid biosynthesis. The increased activity of IMP dehydrogenase in liver of starved rats may be related to the requirements for GTP for gluconeogenesis.  相似文献   

11.
The subcellular distribution and certain properties of rat liver aldehyde dehydrogenase are investigated. The enzyme is shown to be localized in fractions of mitochondria and microsomes. Optimal conditions are chosen for detecting the aldehyde dehydrogenase activity in the mentioned fractions. The enzyme of mitochondrial fraction shows the activity at low (0,03-0.05 mM; isoenzyme I) and high (5 mM; isoenzyme II) concentrations of the substrate. The seeming Km and V of aldehyde dehydrogenase from fractions of mitochondria and microsomes of rat liver are calculated, the acetaldehyde and NAD+ reaction being used as a substrate.  相似文献   

12.
In adult male and female rat liver, the activity of NAD(+)-and NADP(+)-dependent glutamate dehydrogenase (GDH) was microquantitatively measured in tissue samples of 50-150 ng, microdissected continuously along the sinusoidal length. Total activity of GDH with NAD+ as co-factor was found to be higher by a ratio of about 1:2.3 than with NADP+. All intra-acinar enzyme profiles, irrespective of sex, showed an increasing gradient of GDH activity from the periportal beginning to the perivenous end. These findings are at variance with the immunohistochemical localization of GDH in rat liver. The microquantitative GDH profiles with higher perivenous values could indicate a more pronounced glutamine synthesis in Zone 3 of the liver acinus.  相似文献   

13.
The determinants of reduction of the dye MTT (3-[4,5dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) in rat hepatocytes have been investigated. NADH, NADPH, and succinate were substrates for MTT reduction in rat liver homogenate, activity being greatest with NADH and least with succinate. Similar results were obtained with submitochondrial particles isolated from rat liver. NAD(P)Hdependent reduction of MTT was also detected in rat liver microsomes and cytosol. Rotenone, at a concentration that inhibited NAD(P)H-dependent MTT reduction in submitochondrial particles, did not inhibit MTT reduction in rat hepatocytes. Malonate, at a concentration that inhibited succinate-dependent MTT reduction in liver homogenate, did not inhibit MTT reduction in rat hepatocytes. Incubation of rat hepatocytes with ethanol or lactate (increase NADH levels), dicoumarol (inhibitor of DT-diaphorase), aminopyrine or hexobarbitone (substrates for the NADPH-requiring cytochrome P450-dependent microsomal monooxygenase) led to significant increases in the level of cellular MTT reduction. From these data, it is concluded that extramitochondrial NAD(P)H is the principal reductant for MTT reduction in rat hepatocytes, with mitochondrial dehydrogenase activity being only a minor contributor. It is also possible that cellular generation of superoxide (as might be expected on redox cycling of endogenous quinones following inhibition of DT diaphorase by dicoumarol) may be another source of MTT reduction. Caution should be exercised in ascribing an alteration in the level of cellular MTT reduction to a change in mitochondrial performance in the absence of corroborating evidence.  相似文献   

14.
Ubiquinol is considered to serve as an endogenous antioxidant. However, the mechanism by which the redox state of intracellular ubiquinone (UQ) is maintained is not well established. The effect of dicumarol, an inhibitor of NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1=DT-diaphorase, EC 1.6.99.2), on the reduction of UQ in cultured rat hepatocytes was investigated in order to clarify whether or not NQO1 is involved in reducing intracellular UQ. A concentration of 5 μM dicumarol, which does not inhibit cytosolic NADPH-dependent UQ reductase in vitro , was observed to almost completely inhibit NQO1 and thereby to stimulate cytotoxicity of 2-methyl-1,4-naphthoquinone (menadione) in cultured rat hepatocytes. However, 5 μM dicumarol did not inhibit reduction of endogenous UQ-9, as well as exogenous UQ-10 added to the hepatocytes. In addition, it did not stimulate the formation of thiobarbituric acid reactive substances (TBARS) in the hepatocytes. These results suggested that NQO1 is not involved in maintaining UQ in the reduced state in the intact liver cells.  相似文献   

15.
The oxidation of formaldehyde by rat liver mitochondria in the presence of 50 mM phosphate was enhanced 2-fold by exogenous NAD+. Absolute requirement of NAD+ for formaldehyde oxidation was demonstrated by depleting the mitochondria of their NAD+ content (4.6 nmol/mg of protein), followed by reincorporation of the NAD+ into the depleted mitochondria. Aldehyde (formaldehyde) dehydrogenase activity was completely abolished in the depleted mitochondria, but the enzyme activity was restored to control levels following reincorporation of the pyridine nucleotide. Phosphate stimulation of formaldehyde oxidation could not be explained fully by the phosphate-induced swelling which enhances membrane permeability to NAD+, since stimulation of the enzyme activity by increased phosphate concentrations was still observed in the absence of exogenous NAD+. The Km for formaldehyde oxidation by the mitochondria was found to be 0.38 nM, a value similar to that obtained with varying concentrations of NAD+; both Vmax values were very similar, giving a value of 70 to 80 nmol/min/mg of protein. The pH optimum for the mitochondrial enzyme was 8.0. Inhibition of the enzyme activity by anaerobiosis was apparently due to the inability of the respiratory chain to oxidize the generated NADH. The inhibition of mitochondrial formaldehyde oxidation by succinate was found to be due to a lowering of the NAD+ level in the mitochondria. Succinate also inhibited acetaldehyde oxidation by the mitochondria. Malonate, a competitive inhibitor of succinic dehydrogenase, blocked the inhibitory effect of succinate. The respiratory chain inhibitors, rotenone, and antimycin A plus succinate, strongly inhibited formaldehyde oxidation by apparently the same mechanism, although the crude enzyme preparation (freed from the membrane) was slightly sensitive to rotenone. The mitochondria were subfractionated, and 85% of the enzyme activity was found in the inner membrane fraction (mitoplast). Furthermore, separation into inner membrane and matrix components indicated a distribution of aldehyde dehydrogenase activity similar to malic dehydrogenase.  相似文献   

16.
Summary A quantitative histochemical assay for NADPH-ferrihemoprotein (P450) reductase had been developed. For optimal activity, it is necessary to use a relatively electropositive tetrazolium salt such as neotetrazolium chloride as the final acceptor. The apparentK m of the reaction is 0.83 mM. Its specificity has been proven in two ways: (i) activity is increased selectively in the pericentral zone of liver from rats treated with phenobarbitone, an inducer of the reductase, though not in liver of rats injected with 3-methylcholanthrene, which induces NAD(P)H dehydrogenase; (ii) it is competitively inhibited by NADP+ (K i=1.50mm) though unaffected by dicumarol, an inhibitor of NAD(P)H dehydrogenase activity. An NADP+ concentration ten times greater than the substrate concentration inhibits the histochemical reaction and the reaction in a microsomal fraction assayed biochemically to the same degree (70% inhibition). The amount of inhibition is independent of temperature, of the zone of the acinus and of the treatment of the animal.Continuous microdensitometric monitoring of the reaction product as it is formed has shown that the specific reaction is linear with incubation up to 10 min, thus allowing end-point measurements to be used for cytophotometric analysis.  相似文献   

17.
SH-reagents: tetraethylthiuram disulphide (TETD), 5,5'-dithiobisnitrobenzoic acid (DTNB), p-chloromercurybenzoate (p-ChMB), N-ethylmaleimide (NEM) were studied for their effect on the aldehyde dehydrogenase activity of mitochondrion (isoenzymes I and II) and microsome (isoenzyme II) fractions of the rat liver. TETD is established to inhibit isoenzyme I and isoenzyme II activity of mitochondrial aldehyde dehydrogenase by 100 and 50%, respectively, and the microsomal enzyme activity by 20%. DTNB and NEM inhibit 30-50% of the activity in two isoforms of mitochondrial aldehyde dehydrogenase having no effect on the enzymic activity in microsomes; p-ChMB inhibits completely the activity of the enzyme under study both in the mitochondrial and microsomal fractions. A conclusion is drawn that SH-groups are very essential for manifestation of the catalytic activity in the NAD+-dependent aldehyde dehydrogenase from mitochondrial and microsomal fractions.  相似文献   

18.
Methionine metabolism is disrupted in patients with alcoholic liver disease, resulting in altered hepatic concentrations of S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and other metabolites. The present study tested the hypothesis that reductive stress mediates the effects of ethanol on liver methionine metabolism. Isolated rat livers were perfused with ethanol or propanol to induce a reductive stress by increasing the NADH/NAD(+) ratio, and the concentrations of SAM and SAH in the liver tissue were determined by high-performance liquid chromatography. The increase in the NADH/NAD(+) ratio induced by ethanol or propanol was associated with a marked decrease in SAM and an increase in SAH liver content. 4-Methylpyrazole, an inhibitor the NAD(+)-dependent enzyme alcohol dehydrogenase, blocked the increase in the NADH/NAD(+) ratio and prevented the alterations in SAM and SAH. Similarly, co-infusion of pyruvate, which is metabolized by the NADH-dependent enzyme lactate dehydrogenase, restored the NADH/NAD(+) ratio and normalized SAM and SAH levels. The data establish an initial link between the effects of ethanol on the NADH/NAD(+) redox couple and the effects of ethanol on methionine metabolism in the liver.  相似文献   

19.
The effect of ethanol upon leucine oxidation by rat tissues in vitro is reported. The activities of branched chain amino acid aminotransferase and 2-oxo acid dehydrogenase were decreased by chronic administration of ethanol (20% v/v solution as drinking water for 35 d) in muscle and kidney but were increased, although not significantly, in liver. Acute administration of ethanol (8 g kg-1 body-weight 0.73) did not affect enzyme activities. Tissue NAD+:NADH ratios, calculated from lactate:pyruvate ratios, were significantly decreased in the liver and kidney of rats receiving ethanol acutely. These data are consistent with the view that ethanol decreases leucine oxidation by decreasing availability of NAD+ when given acutely and by decreasing enzyme activity when administered chronically.  相似文献   

20.
Glutamate dehydrogenase (GDH) from vertebrates is unusual among NAD(P)H-dependent dehydrogenases in that it can use either NAD(H) or NADP(H) as cofactor. In this study, we measure the rate of cofactor utilization by bovine GDH when both cofactors are present. Methods for both reaction directions were developed, and for the first time, to our knowledge, the GDH activity has been simultaneously studied in the presence of both NAD(H) and NADP(H). Our data indicate that NADP(H) has inhibitory effects on the rate of NAD(H) utilization by GDH, a characteristic of GDH not previously recognized. The response of GDH to allosteric activators in the presence of NAD(H) and NADP(H) suggests that ADP and leucine moderate much of the inhibitory effect of NADP(H) on the utilization of NAD(H). These results illustrate that simple assumptions of cofactor preference by mammalian GDH are incomplete without an appreciation of allosteric effects when both cofactors are simultaneously present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号