首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies have indicated that 20-hydroxyeicosatetraenoic acid (20-HETE) inhibits Na+ transport in the medullary thick ascending loop of Henle (mTALH), but the mechanisms involved remain uncertain. The present study compared the effects of 20-HETE with those of ouabain and furosemide on intracellular Na+ concentration ([Na+]i), Na+ -K+ -ATPase activity, and 86Rb+ uptake, an index of Na+ transport, in mTALH isolated from rats. Ouabain (2 mM) increased, whereas furosemide (100 microM) decreased, [Na+]i in the mTALH of rats. Ouabain and furosemide inhibited 86Rb+ uptake by 91 and 30%, respectively. 20-HETE (1 microM) had a similar effect as ouabain and increased [Na+]i from 19 +/- 1 to 30 +/- 1 mM. 20-HETE reduced Na+ -K+ -ATPase activity by 30% and 86Rb+ uptake by 37%, but it had no effect on 86Rb+ uptake or [Na+]i in the mTALH of rats pretreated with ouabain. 20-HETE inhibited 86Rb+ uptake by 12% and increased [Na+]i by 19 mM in mTALH pretreated with furosemide. These findings indicate that 20-HETE secondarily inhibits Na+ transport in the mTALH of the rat, at least, in part by inhibiting the Na+ -K+ -ATPase activity and raising [Na+]i.  相似文献   

2.
In this report, we elucidate the role of Na(+)-K+ pump in the regulation of polyamine spermidine (Spd) transport in murine leukemia (L 1210) cells in culture. Ouabain, known to bind extracellularly to the alpha-subunit of the Na(+)-K+ pump, inhibits the pump activity. The L 1210 cells were found to possess ouabain binding sites at 7.5 fmol/10(6) cells. Ouabain significantly inhibited the Spd uptake in a dose-dependent manner. The maximum inhibition of Spd uptake by ouabain was observed beyond 200 microM. Spd transport was inversely correlated with the [3H]ouabain binding to L 1210 cells: an increase in the saturation of ouabain binding to L 1210 cells resulted in a decrease of the Spd uptake process. Treatment of L 1210 cells with protein kinase C activator phorbol esters increased the Spd transport and, also, ouabain-sensitive 86Rb+ uptake, a measure of the activity of the Na(+)-K+ pump. H-7, a protein kinase C inhibitor, significantly inhibited the ouabain-sensitive 86Rb+ uptake by L 1210 cells. Phorbol esters stimulated the level, but not the rate, of 22Na+ influx. Addition of H-7 to L 1210 cells inhibited the 22Na+ influx process. A concomitant phorbol ester-induced increase in 22Na+ influx, [14C]Spd uptake, together with the functioning of Na(+)-K+ pump, indicates the role of the "Na+ cycle" in the regulation of the polyamine transport process.  相似文献   

3.
The effects of insulin and glucagon on the (Na+-K+)-ATPase transport activity in freshly isolated rat hepatocytes were investigated by measuring the ouabain-sensitive, active uptake of 86Rb+. The active uptake of 86Rb+ was increased by 18% (p less than 0.05) in the presence of 100 nM insulin, and by 28% (p less than 0.005) in the presence of nM glucagon. These effects were detected as early as 2 min after hepatocyte exposure to either hormone. Half-maximal stimulation was observed with about 0.5 nm insulin and 0.3 nM glucagon. The stimulation of 86Rb+ uptake by insulin occurred in direct proportion to the steady state occupancy of a high affinity receptor by the hormone (the predominant insulin-binding species in hepatocytes at 37 degrees C. For glucagon, half-maximal response was obtained with about 5% of the total receptors occupied by the hormone. Amiloride (a specific inhibitor of Na+ influx) abolished the insulin stimulation of 86Rb+ uptake while inhibiting that of glucagon only partially. Accordingly, insulin was found to rapidly enhance the initial rate of 22Na+ uptake, whereas glucagon had no detectable effect on 22Na+ influx. These results indicate that monovalent cation transport is influenced by insulin and glucagon in isolated rat hepatocytes. In contrast to glucagon, which appears to enhance 86Rb+ influx through the (Na+-K+)-ATPase without affecting Na+ influx, insulin stimulates Na+ entry which in turn may increase the pump activity by increasing the availability of Na+ ions to internal Na+ transport sites of the (Na+-K+)-ATPase.  相似文献   

4.
Na+-dependent system ASC and Na+-independent system asc are characterized by a common selectivity for neutral amino acids of intermediate size such as L-alanine and by their interactions with dibasic amino acids. For system ASC, the positive charge on the dibasic amino acid side chain is considered to occupy the Na+-binding site on the transporter. We report here the use of harmaline (a Na+-site inhibitor in some systems) as a probe of possible structural homology between these two classes of amino acid transporter. Harmaline was found to inhibit human erythrocyte system ASC noncompetitively with respect to L-alanine concentration, but approximated competitive inhibition with respect to Na+ concentration (apparent Ki = 2.0 and 0.9 mM, respectively). Similarly, harmaline noncompetitively inhibited L-alanine uptake by horse erythrocyte systems asc1 and asc2 (apparent Ki = 2.0 and 1.9 mM, respectively). In contrast, harmaline functioned as a competitive inhibitor of L-lysine uptake by system asc1 (apparent Ki = 2.6 mM). It is concluded that harmaline competes with Na+ for binding to system ASC and that a topographically similar harmaline inhibition site is present on system asc. This site does not however bind Na+, the asc1 transporter exhibiting normal L-alanine and L-lysine influx kinetics in the total absence of extracellular cations.  相似文献   

5.
Sodium ions are required for the active transport of amino acids such as alpha-aminoisobutyric acid (AIB) into skeletal muscle. To examine the role of Na+-K+-ATPase in this phenomenon, studies were carried out using the isolated perfused rat hindquarter preparation. Perfusion for 30 min with ouabain at a dose sufficient to inhibit the Na+-K+ pump (10(-4) M) inhibited the basal rate of AIB uptake in all muscles studied by up to 80%. However, it failed to inhibit the stimulation of AIB uptake, either by insulin (200 microU/ml) or electrically-induced muscle contractions. The increase in K+ release by the hindquarter in the presence of ouabain was the same under all conditions suggesting comparable inhibition of the Na+-K+ pump. These studies suggest that the basal, but not insulin or exercise-stimulated AIB transport into muscle is acutely dependent on a functional Na+-K+ pump. They also suggest that stimulated and basal uptake of AIB involve different mechanisms.  相似文献   

6.
Hyperinsulinemia increases lactate release by various organs and tissues. Whereas it has been shown that aerobic glycolysis is linked to Na+-K+-ATPase activity, we hypothesized that stimulation by insulin of skeletal muscle Na+-K+-ATPase is responsible for increased muscle lactate production. To test this hypothesis, we assessed muscle lactate release in healthy volunteers from the [13C]lactate concentration in the effluent dialysates of microdialysis probes inserted into the tibialis anterior muscles on both sides and infused with solutions containing 5 mmol/l [U-13C]glucose. On one side, the microdialysis probe was intermittently infused with the same solution additioned with 2.10(-5) M ouabain. In the basal state, [13C]lactate concentration in the dialysate was not affected by ouabain. During a euglycemic-hyperinsulinemic clamp, [13C]lactate concentration increased by 135% in the dialysate without ouabain, and this stimulation was nearly entirely reversed by ouabain (56% inhibition compared with values in the dialysate collected from the contralateral probe). These data indicate that insulin stimulates muscle lactate release by activating Na+-K+-ATPase in healthy humans.  相似文献   

7.
The activity of the Na+-K+-ATPase along the intestinal mucosa of the gilthead seabream has been examined. Under optimal assay conditions, found at 35 degrees C, pH 7.5, 2-5 mM MgCl2, 5 mM ATP, 10 mM K+ and 200 mM Na+, maximal Na+-K+-ATPase activities were found in the microsomal fraction of pyloric caeca (PC) and anterior intestine (AI), which were more than two-fold the activity measured in the microsomes from the posterior intestine (PI). Na+-K+-ATPase activities from PC, AI and PI displayed similar pH dependence, optimal Mg2+/ATP and Na+/K+ ratios, affinities for Mg2+ and ATP, and inhibition by vanadate. However, considerable differences regarding sensitivity to ouabain, inhibition by calcium and responses to ionic strength were observed between segments. Thus, Na+-K+-ATPase activity from the AI was found to be ten-fold more sensitive to ouabain and calcium than the enzyme from the PC and PI and displayed distinct kinetic behaviours with respect to Na+ and K+, compared to PC and PI. Analysis of the data from the AI revealed the presence of two Na+-K+-ATPase activities endowed with distinguishable biochemical characteristics, suggesting the involvement of two different isozymes. Regional differences in Na+-K+-ATPase activities in the intestine of the gilthead seabream are compared with literature data on Na+-K+-ATPase isozymes and discussed on the basis of the physiological differences between intestinal regions.  相似文献   

8.
Harmaline inhibits K+ influx into primary cell cultures of ground squirrel kidneys to a greater extent than either ouabain or furosemide. A concentration of 200 μM harmaline was required to inhibit half of the total K+ influx; this effect was also seen at low temperature (5°C), and in another species (hamster). Although kinetic analysis of K+ influx indicates that harmaline does not compete with extracellular K+, harmaline did reduce the binding of [3H]ouabain to the cells. K+ efflux was also reduced. Therefore, harmaline may inhibit the furosemide-sensitive Na+/K+ cotransport system as well as the ouabain-sensitive Na+/K+ pump.  相似文献   

9.
The most conspicuous, Na(+)-independent amino acid transport process in preimplantation mouse blastocysts was provisionally designated system b0,+ because it accepts some cationic and zwitterionic amino acids about equally well as substrates. Although system b0,+ is not Na(+)-stimulated, it has not been determined if it is inhibited by Na+, or if its activity is affected by most other ions. Therefore, we measured uptake of amino acids by blastocysts in isotonic solutions of different ionic and nonionic osmolites. Na(+)-independent L-leucine uptake was unaffected by the ion concentration, but L-lysine transport was several-fold faster in isotonic solutions of non-electrolytes than in similar solutions of inorganic and organic salts or zwitterions. The Km value for 'Na(+)-independent' L-lysine transport was about 10-fold higher in isotonic salt solutions than in solutions of nonionic osmolites, whereas the Km value for L-leucine transport was about the same in either type of solution. Therefore, inorganic and organic cations and the cationic portions of zwitterions appear to compete with cationic but not zwitterionic amino acids for system b0,+ receptor sites. The cation, harmaline, was a particularly strong competitive inhibitor of 'Na(+)-independent' L-lysine uptake by system b0,+, even in isotonic salt solutions, whereas it inhibited L-leucine uptake noncompetitively. Moreover, harmaline appeared to compete with inorganic cations for the lysine receptor sites of system b0,+. Harmaline also has been found by other investigators to competitively inhibit L-lysine uptake by the Na(+)-independent system asc1 in horse erythrocytes, whereas it noncompetitively inhibits alanine uptake by the same system. Similarly, harmaline noncompetitively inhibits L-alanine uptake by the Na(+)-dependent system ASC in human erythrocytes, but it appears to compete for binding with L-alanine's cosubstrate, Na+. In addition, others have found that the positively-charged side chains of cationic amino acids seem to take the place of Na+ needed near side chains in order for zwitterionic amino acids to be transported by systems ASC and y+. We conclude that system b0,+ may be similar to systems asc1, ASC and y+, and that each of these systems may be a variant of the same ancestral transport process. We speculate that since it appears to accept a broader scope of substrates and to interact with a wider variety of cations than do systems asc1, ASC or y+, system b0,+ may more closely resemble the proposed ancestral transport process than any of the other contemporary systems.  相似文献   

10.
Ouabain uptake was studied on isolated rat hepatocytes. Hepatocellular uptake of the glycoside is saturable (Km = 348 mumol/l, Vmax = 1.4 nmol/mg cell protein per min), energy dependent and accumulative. Concentrative ouabain uptake is not present on permeable hepatocytes, Ehrlich ascites tumor cells and AS-30D ascites hepatoma cells. There is no correlation between ouabain binding to rat liver (Na+ + K+)ATPase and ouabain uptake into isolated rat hepatocytes. While ouabain uptake is competitively inhibited by cevadine, binding to (Na+ + K+)-ATPase is not affected by the alkaloid. Although the affinities of digitoxin and ouabain to (Na+ + K+)-ATPase are similar, digitoxin is 10000-times more potent in inhibiting [3H]ouabain uptake as compared to ouabain. That binding to (Na+ + K+)-ATPase appears to be no precondition for ouabain uptake was also found in experiments with plasmamembranes derived from Ehrlich ascites tumor cells and AS-30D hepatoma cells. While tumor cell (Na+ + K+)-ATPase is ouabain sensitive, the intact cells are transport deficient. Hepatic ouabain uptake might be related to bile acid transport. Several inhibitors of the bile acid uptake system also inhibit ouabain uptake.  相似文献   

11.
The present study evaluated the hypothesis of whether increases in vectorial Na+ transport translate into facilitation of Na+-dependent L-DOPA uptake in cultured renal epithelial tubular cells. Increases in vectorial Na+ transport were obtained in opossum kidney (OK) cells engineered to overexpress Na+-K+-ATPase after transfection of wild type OK cells with the rodent Na+-K+-ATPase alpha1 subunit. The most impressive differences between wild type and transfected OK cells are that the latter overexpressed Na+-K+-ATPase accompanied by an increased activity of the transporter. Non-linear analysis of the saturation curve for l-DOPA uptake revealed a Vmax value (in nmol mg protein/6 min) of 62 and 80 in wild type and transfected cells, respectively. The uptake of a non-saturating concentration (0.25 microM) of [14C]-L-DOPA in OK-WT cells was not affected by Na+ removal, whereas in OK-alpha1 cells accumulation of [14C]-L-DOPA was clearly dependent on the presence of extracellular Na+. When Na+ was replaced by choline, the inhibitory profile of neutral l-amino acids, but not of basic and acidic amino acids, upon [14C]-L-DOPA uptake in both cell types, was significantly greater than that observed in the presence of extracellular Na+. It is concluded that enhanced ability of OK cells overexpressing Na+-K+-ATPase to translocate Na+ from the apical to the basal cell side correlates positively with their ability to accumulate L-DOPA, which is in agreement with the role of Na+ in taking up the precursor of renal dopamine.  相似文献   

12.
Nitric oxide (NO) plays an important role in the control of numerous vascular functions including basal Na+-K+-ATPase activity in arterial tissue. Hyperglycemia inhibits Na+-K+-ATPase activity in rabbit aorta, in part, through diminished bioactivity of NO. The precise mechanism(s) for such observations, however, are not yet clear. The purpose of this study was to examine the role of superoxide in modulating NO-mediated control of Na+-K+-ATPase in response to hyperglycemia. Rabbit aorta incubated with hyperglycemic glucose concentrations (44 mM) demonstrated a 50% reduction in Na+-K+-ATPase activity that was abrogated by superoxide dismutase. Hyperglycemia also produced a 50% increase in steady-state vascular superoxide measured by lucigenin-enhanced chemiluminescence that was closely associated with reduced Na+-K+-ATPase activity. Specifically, the hyperglycemia-induced increase in vascular superoxide was endothelium dependent, inhibited by L-arginine, and stimulated by N(omega)-nitro-L-arginine. Aldose reductase inhibition with zopolrestat also inhibited the hyperglycemia-induced increase in vascular superoxide. In each manipulation of vascular superoxide, a reciprocal change in Na+-K+-ATPase activity was observed. Finally, a commercially available preparation of Na+-K+-ATPase was inhibited by pyrogallol, a superoxide generator. These data suggest that hyperglycemia induces an increase in endothelial superoxide that inhibits the stimulatory effect of NO on vascular Na+-K+-ATPase activity.  相似文献   

13.
The freeze-dry autoradiographic method devised originally by Stirling (J Cell Biol 53:704, 1972) to localize Na+ pump sites with (3H)ouabain is reviewed. Biochemical, physiological, and autoradiographic data are discussed which establish that ouabain binding to intact tissue conforms to rigid criteria for high Na+ pump specificity. Among these are that glycoside binding exhibits saturation kinetics, ligand dependence, and close correlation with degrees of inhibition of Na+-K+-ATPase and Na+ transport. Moreover, localization of Na+ pump sites by this technique shows a cell and membrane specificity which mirrors that obtained by cytochemical and immunocytochemical methods. In addition to resolving cell-specific patterns of localization in heterogeneous tissues, the demonstration of Na+-K+-ATPase by these techniques indicates that Na+ pumps are distributed uniformly along plasmalemmal surfaces and are restricted to the basolateral interface in reabsorptive and secretory epithelia despite the opposing polarity of net transepithelial electrolyte transport.  相似文献   

14.
G Ferard  M Galluser  I Sall  A Pousse 《Enzyme》1980,25(6):387-393
The effects of deoxycholate on glucose transport and intestinal (Na+-K+)-ATPase activity have been investigated in the rat jejunum in vivo using a perfusion technique.  相似文献   

15.
Cytochemical localization of Na+-K+-ATPase in rat type II pneumocytes   总被引:3,自引:0,他引:3  
The distribution of sodium-potassium-activated adenosinetriphosphatase (Na+-K+-ATPase) in the alveolar portion of rat lungs was examined by indirect immunofluorescence with the use of a mouse monoclonal anti-rat Na+-K+-ATPase and by ultrastructural cytochemistry using p-nitrophenylphosphate as substrate. The reaction was inhibitable by 10 mM ouabain or by the omission of K+ from the reaction mixture. Cysteine or levamisole was used to inhibit alkaline phosphatase activity. By immunofluorescence, staining was confined to cuboidal cells in alveolar spaces. These were tentatively identified as type II pneumocytes. By ultrastructural cytochemistry reaction product was present on the cytoplasmic side of the basolateral membranes of type II pneumocytes. No reaction product was observed in type I pneumocytes or in endothelium. These results indicate that type II pneumocytes contain more Na+-K+-ATPase, an enzyme important in vectorial electrolyte transport, than type I pneumocytes or endothelial cells. More sensitive methods, however, are required to determine the amounts and distribution of this enzyme in type I pneumocytes and pulmonary vascular endothelial cells.  相似文献   

16.
The effect of ouabain on K+ transport was examined in 3T3 and virally transformed 3T3 cells. A 10 min exposure to ouabain (10(-3) M) produced approximately 40% inhibition of the unidirectional K+ influx in all cell lines. In 3T3 cells the response was not significantly altered by up to 70 min exposure to the drug. In contrast, the continued exposure of transformed cells to ouabain produced a time-dependent increase in the K+ influx. This increased influx was shown to be accompanied by an increase in the K+ efflux. The results suggest that, in transformed cells, ouabain produces both an inhibition of Na+-K+ exchange and a stimulation of K+-K+ exchange. The latter was shown to be more readily reversible than the former.  相似文献   

17.
Prolonged exhaustive submaximal exercise in humans induces marked metabolic changes, but little is known about effects on muscle Na+-K+-ATPase activity and sarcoplasmic reticulum Ca2+ regulation. We therefore investigated whether these processes were impaired during cycling exercise at 74.3 +/- 1.2% maximal O2 uptake (mean +/- SE) continued until fatigue in eight healthy subjects (maximal O2 uptake of 3.93 +/- 0.69 l/min). A vastus lateralis muscle biopsy was taken at rest, at 10 and 45 min of exercise, and at fatigue. Muscle was analyzed for in vitro Na+-K+-ATPase activity [maximal K+-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase) activity], Na+-K+-ATPase content ([3H]ouabain binding sites), sarcoplasmic reticulum Ca2+ release rate induced by 4 chloro-m-cresol, and Ca2+ uptake rate. Cycling time to fatigue was 72.18 +/- 6.46 min. Muscle 3-O-MFPase activity (nmol.min(-1).g protein(-1)) fell from rest by 6.6 +/- 2.1% at 10 min (P <0.05), by 10.7 +/- 2.3% at 45 min (P <0.01), and by 12.6 +/- 1.6% at fatigue (P <0.01), whereas 3[H]ouabain binding site content was unchanged. Ca2+ release (mmol.min(-1).g protein(-1)) declined from rest by 10.0 +/- 3.8% at 45 min (P <0.05) and by 17.9 +/- 4.1% at fatigue (P < 0.01), whereas Ca2+ uptake rate fell from rest by 23.8 +/- 12.2% at fatigue (P=0.05). However, the decline in muscle 3-O-MFPase activity, Ca2+ uptake, and Ca2+ release were variable and not significantly correlated with time to fatigue. Thus prolonged exhaustive exercise impaired each of the maximal in vitro Na+-K+-ATPase activity, Ca2+ release, and Ca2+ uptake rates. This suggests that acutely downregulated muscle Na+, K+, and Ca2+ transport processes may be important factors in fatigue during prolonged exercise in humans.  相似文献   

18.
In less than 1 min ouabain maximally inhibits oxygen consumption due to gramicidin-induced ATP turnover by the Na+/K+-ATPase in hepatocytes. Ouabain rapidly inhibits respiration on palmitate or glucose by only 6-10% indicating that the Na+/K+-ATPase plays a minor role in cell ATP turnover. 29% of the extra oxygen consumption of hepatocytes isolated from hyperthyroid rats was inhibited by ouabain showing that the Na+/K+-ATPase is responsible for some but not the majority of the stimulation of respiration induced by thyroid hormone.  相似文献   

19.
Omega- and omega-1 hydroxylations are the major pathways by which arachidonic acid is metabolized in cortical and outer medullary microsomes of rat and rabbit kidneys. It is a cytochrome P450-dependent oxidation leading to the formation of 20-hydroxy- and 19-hydroxyeicosatetraenoic acids. In this study, we compared the effects of the synthetically prepared omega- and omega-1 metabolites of arachidonic acid on the activity of the renal Na+-K+-ATPase partially purified from rat renal cortical microsomes. 19(S)-hydroxyeicosatetraenoic acid caused a dose related stimulation of Na+-K+-ATPase activity with an EC50 of 3 x 10(-7) M. In contrast, neither 19(R)-hydroxyeicosatetraenoic acid, 20-hydroxyeicosatetraenoic acid nor arachidonic acid at 10(-6) M had any effect on Na+-K+-ATPase activity. In the same preparation, ouabain at 10(-3) M and 12(R)-hydroxyeicosatetraenoic acid at 10(-6) M inhibited the enzyme activity by 75% and 60%, respectively. We conclude that 19(S)-hydroxyeicosatetraenoic acid is a specific stimulator of renal Na+-K+-ATPase. Therefore, the formation of 19(S)-hydroxyeicosatetraenoic acid by renal cortical cytochrome P450 omega-1-hydroxylase may contribute to the regulation of renal function by regulating Na+-K+-ATPase which is essential for transtubular transport processes.  相似文献   

20.
Vectorial Na(+) reabsorption across the proximal tubule is mediated by apical entry of Na(+), primarily via Na(+)/H(+) exchanger isoform 3 (NHE3), and basolateral extrusion via the Na(+) pump (Na(+)-K(+)-ATPase). We hypothesized that regulation of Na(+) reabsorption should involve not only the activity of the basolateral Na(+)-K(+)-ATPase, but also the apical NHE3, in a concerted manner. To generate a cell line that overexpresses Na(+)-K(+)-ATPase, opossum kidney (OK) cells were transfected with the rodent Na(+)-K(+)-ATPase alpha(1)-subunit (pCMV ouabain vector), and native cells were used as a control. The existence of distinct functional classes of Na(+)-K(+)-ATPase in wild-type and transfected cells was confirmed by the inhibition profile of Na(+)-K(+)-ATPase activity by ouabain. In contrast to wild-type cells, transfected cells exhibited two IC(50) values for ouabain: the first value was similar to the IC(50) of control cells, and the second value was 2 log units greater than the first, consistent with the presence of rat and opossum alpha(1)-isozymes. It is shown that transfection of OK cells with Na(+)-K(+)-ATPase increased Na(+)-K(+)-ATPase and NHE3 activities. This was associated with overexpression of the Na(+)-K(+)-ATPase alpha(1)-subunit and NHE3 in transfected OK cells. The abundance of the Na(+)-K(+)-ATPase beta(1)-subunit was slightly lower in transfected OK cells. In conclusion, the increase in expression and function of Na(+)-K(+)-ATPase in cells transfected with the rodent Na(+) pump alpha(1)-subunit cDNA is expected to stimulate apical Na(+) influx into the cells, thereby accounting for the observed stimulation of the apical NHE3 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号