首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are investigating the influence of the converter and relay domains on elementary rate constants of the actomyosin cross-bridge cycle. The converter and relay domains vary between Drosophila myosin heavy chain isoforms due to alternative mRNA splicing. Previously, we found that separate insertions of embryonic myosin isoform (EMB) versions of these domains into the indirect flight muscle (IFM) myosin isoform (IFI) both decreased Drosophila IFM power and slowed muscle kinetics. To determine cross-bridge mechanisms behind the changes, we employed sinusoidal analysis while varying phosphate and MgATP concentrations in skinned Drosophila IFM fibers. Based on a six-state cross-bridge model, the EMB converter decreased myosin rate constants associated with actin attachment and work production, k4, but increased rates related to cross-bridge detachment and work absorption, k2. In contrast, the EMB relay domain had little influence on kinetics, because only k4 decreased. The main alteration was mechanical, in that work production amplitude decreased. That both domains decreased k4 supports the hypothesis that these domains are critical to lever-arm-mediated force generation. Neither domain significantly influenced MgATP affinity. Our modeling suggests the converter domain is responsible for the difference in rate-limiting cross-bridge steps between EMB and IFI myosin—i.e., a myosin isomerization associated with MgADP release for EMB and Pi release for IFI.  相似文献   

2.
The myosin heavy chain (MHC) andmyosin light chain (MLC) isoforms in skeletal muscle of Ranapipiens have been well characterized. We measured theforce-velocity (F-V) properties of single intact fast-twitchfibers from R. pipiens that contained MHC types 1 or 2 (MHC1or MHC2) or coexpressed MHC1 and MHC2 isoforms. Velocities weremeasured between two surface markers that spanned most of the fiberlength. MHC and MLC isoform content was quantified after mechanicsanalysis by SDS-PAGE. Maximal shortening velocity(Vmax) and velocity at half-maximal tension(VP 50) increased with percentage of MHC1(%MHC1). Maximal specific tension (Po/CSA, wherePo is isometric tension and CSA is fiber cross-sectional area) and maximal mechanical power (Wmax) alsoincreased with %MHC1. MHC concentration was not significantlycorrelated with %MHC1, indicating that the influence of %MHC1 onPo/CSA and Wmax was due to intrinsicdifferences between MHC isoforms and not to concentration. TheMLC3-to-MLC1 ratio was not significantly correlated withVmax, VP 50,Po/CSA, or Wmax. These data demonstrate the powerful relationship between MHC isoforms and F-V properties of the two most common R. pipiensfiber types.

  相似文献   

3.
Stretch activation kinetics were investigated in skinned mouse skeletal muscle fibers of known myosin heavy chain (MHC) isoform content to assess kinetic properties of different myosin heads while generating force. The time to peak of stretch-induced delayed force increase (t3) was strongly correlated with MHC isoforms [t3 given in ms for fiber types containing specified isoforms; means ± SD with n in parentheses: MHCI 680 ± 108 (13), MHCIIa 110.5 ± 10.7 (23), MHCIIx(d) 46.2 ± 5.2 (20), MHCIIb 23.5 ± 3.3 (76)]. This strong correlation suggests different kinetics of force generation of different MHC isoforms in the following order:MHCIIb > MHCIIx(d) > MHCIIa >> MHCI. For rat, rabbit, and human skeletal muscles the same type of correlation was found previously. The kinetics decreases slightly with increasing body mass. Available amino acid sequences were aligned to quantify the structural variability of MHC isoforms of different animal species. The variation in t3 showed a correlation with the structural variability of specific actin-binding loops (so-called loop 2 and loop 3) of myosin heads (r = 0.74). This suggests that alterations of amino acids in these loops contribute to the different kinetics of myosin heads of various MHC isoforms. isoform structure-function relationship; stretch activation; muscle mechanics  相似文献   

4.
We investigated the biochemical and biophysical properties of one of the four alternative regions within the Drosophila myosin catalytic domain: the relay domain encoded by exon 9. This domain of the myosin head transmits conformational changes in the nucleotide-binding pocket to the converter domain, which is crucial to coupling catalytic activity with mechanical movement of the lever arm. To study the function of this region, we used chimeric myosins (IFI-9b and EMB-9a), which were generated by exchange of the exon 9-encoded domains between the native embryonic body wall (EMB) and indirect flight muscle isoforms (IFI). Kinetic measurements show that exchange of the exon 9-encoded region alters the kinetic properties of the myosin S1 head. This is reflected in reduced values for ATP-induced actomyosin dissociation rate constant (K1k+2) and ADP affinity (KAD), measured for the chimeric constructs IFI-9b and EMB-9a, compared to wild-type IFI and EMB values. Homology models indicate that, in addition to affecting the communication pathway between the nucleotide-binding pocket and the converter domain, exchange of the relay domains between IFI and EMB affects the communication pathway between the nucleotide-binding pocket and the actin-binding site in the lower 50-kDa domain (loop 2). These results suggest an important role of the relay domain in the regulation of actomyosin cross-bridge kinetics.  相似文献   

5.
Cerebral vasomotor reactivity at high altitude in humans   总被引:3,自引:0,他引:3  
The purpose of this study was twofold:1) to determine whether at highaltitude cerebral blood flow (CBF) as assessed during CO2 inhalation and duringhyperventilation in subjects with acute mountain sickness (AMS) wasdifferent from that in subjects without AMS and2) to compare the CBF as assessedunder similar conditions in Sherpas at high altitude and in subjects atsea level. Resting control values of blood flow velocity in themiddle cerebral artery (VMCA), pulseoxygen saturation (SaO2), andtranscutaneous PCO2 were measured at4,243 m in 43 subjects without AMS, 17 subjects with AMS, 20 Sherpas,and 13 subjects at sea level. Responses ofCO2 inhalation andhyperventilation onVMCA,SaO2, and transcutaneous PCO2 were measured, and the cerebralvasomotor reactivity (VMR = VMCA/PCO2)was calculated as the fractional change ofVMCA per Torrchange of PCO2, yielding ahypercapnic VMR and a hypocapnic VMR. AMS subjects showeda significantly higher resting controlVMCA than didno-AMS subjects (74 ± 22 and 56 ± 14 cm/s, respectively;P < 0.001), andSaO2 was significantly lower (80 ± 8 and 88 ± 3%, respectively; P < 0.001). Resting control VMCA values inthe sea-level group (60 ± 15 cm/s), in the no-AMS group, and inSherpas (59 ± 13 cm/s) were not different. Hypercapnic VMR valuesin AMS subjects were 4.0 ± 4.4, in no-AMS subjects were 5.5 ± 4.3, in Sherpas were 5.6 ± 4.1, and in sea-level subjects were 5.6 ± 2.5 (not significant). Hypocapnic VMR values were significantly higher in AMS subjects (5.9 ± 1.5) compared with no-AMS subjects (4.8 ± 1.4; P < 0.005) but werenot significantly different between Sherpas (3.8 ± 1.1) and thesea-level group (2.8 ± 0.7). We conclude that AMS subjects havegreater cerebral hemodynamic responses to hyperventilation, higherVMCAresting control values, and lower SaO2 compared with no-AMSsubjects. Sherpas showed a cerebral hemodynamic patternsimilar to that of normal subjects at sea level.  相似文献   

6.
The relay domain of myosin is hypothesized to function as a communication pathway between the nucleotide-binding site, actin-binding site and the converter domain. In Drosophila melanogaster, a single myosin heavy chain gene encodes three alternative relay domains. Exon 9a encodes the indirect flight muscle isoform (IFI) relay domain, whereas exon 9b encodes one of the embryonic body wall isoform (EMB) relay domains. To gain a better understanding of the function of the relay domain and the differences imparted by the IFI and the EMB versions, we constructed two transgenic Drosophila lines expressing chimeric myosin heavy chains in indirect flight muscles lacking endogenous myosin. One expresses the IFI relay domain in the EMB backbone (EMB-9a), while the second expresses the EMB relay domain in the IFI backbone (IFI-9b). Our studies reveal that the EMB relay domain is functionally equivalent to the IFI relay domain when it is substituted into IFI. Essentially no differences in ATPase activity, actin-sliding velocity, flight ability at room temperature or muscle structure are observed in IFI-9b compared to native IFI. However, when the EMB relay domain is replaced with the IFI relay domain, we find a 50% reduction in actin-activated ATPase activity, a significant increase in actin affinity, abolition of actin sliding, defects in myofibril assembly and rapid degeneration of muscle structure compared to EMB. We hypothesize that altered relay domain conformational changes in EMB-9a impair intramolecular communication with the EMB-specific converter domain. This decreases transition rates involving strongly bound actomyosin states, leading to a reduced ATPase rate and loss of actin motility.  相似文献   

7.
We used a reconstituted fiber formed when 3T3fibroblasts are grown in collagen to characterize nonmusclecontractility and Ca2+ signaling. Calf serum (CS) andthrombin elicited reversible contractures repeatable for >8 h. CSelicited dose-dependent increases in isometric force; 30% produced thelargest forces of 106 ± 12 µN (n = 30), whichis estimated to be 0.5 mN/mm2 cell cross-sectionalarea. Half times for contraction and relaxation were 4.7 ± 0.3 and 3.1 ± 0.3 min at 37°C. With imposition of constant shortening velocities, force declined with time, yieldingtime-dependent force-velocity relations. Forces at 5 s fit thehyperbolic Hill equation; maximum velocity(Vmax) was 0.035 ± 0.002 Lo/s.Compliance averaged 0.0076 ± 0.0006 Lo/Fo. Disruption of microtubules with nocodazole in a CS-contracted fiber had no net effects on force, Vmax, or stiffness; force increased in 8, butdecreased in 13, fibers. Nocodazole did not affect baselineintracellular Ca2+ concentration([Ca2+]i) but reduced (~30%) the[Ca2+]i response to CS. The force afternocodazole treatment was the primary determinant of stiffness andVmax, suggesting that microtubules were not amajor component of fiber internal mechanical resistance. Cytochalasin Dhad major inhibitory effects on all contractile parameters measured butlittle effect on [Ca2+]i.

  相似文献   

8.
The hypothesis that protein kinase C (PKC) isable to regulate the whole cell Ca-activated K(KCa) current independently of PKC effects on local Ca release events was tested using the patch-clamp technique and freshly isolated rat tail artery smooth muscle cells dialyzed with a strongly buffered low-Ca solution. The active diacylglycerol analog1,2-dioctanoyl-sn-glycerol (DOG) at 10 µM attenuated the current-voltage(I-V)relationship of the KCa current significantly and reduced the KCacurrent at +70 mV by 70 ± 4% (n = 14). In contrast, 10 µM DOG after pretreatment of the cells with 1 µM calphostin C or 1 µM PKC inhibitor peptide, selective PKCinhibitors, and 10 µM1,3-dioctanoyl-sn-glycerol, aninactive diacylglycerol analog, did not significantly alter theKCa current. Furthermore, thecatalytic subunit of PKC (PKCC)at 0.1 U/ml attenuated theI-Vrelationship of the KCa currentsignificantly, reduced the KCacurrent at +70 mV by 44 ± 3% (n = 17), and inhibited the activity of singleKCa channels at 0 mV by 79 ± 9% (n = 6). In contrast, 0.1 U/mlheat-inactivated PKCC did notsignificantly alter the KCacurrent or the activity of singleKCa channels. Thus these resultssuggest that PKC is able to considerably attenuate theKCa current of freshly isolatedrat tail artery smooth muscle cells independently of effects of PKC onlocal Ca release events, most likely by a direct effect on theKCa channel.  相似文献   

9.
Chemically skinned muscle fibers,prepared from the rat medial gastrocnemius and soleus, were subjectedto four sequential slack tests in Ca2+-activating solutionscontaining 0, 15, 30, and 0 mM added Pi. Pi (15 and 30 mM) had no effect on the unloaded shortening velocity (Vo) of fibers expressing type IIb myosin heavychain (MHC). For fibers expressing type I MHC, 15 mM Pi didnot alter Vo, whereas 30 mM Pireduced Vo to 81 ± 1% of the original 0 mM Pi value. This effect was readily reversible whenPi was lowered back to 0 mM. These results are notcompatible with current cross-bridge models, developed exclusively fromdata obtained from fast fibers, in which Vo isindependent of Pi. The response of the type I fibers at 30 mM Pi is most likely the result of increased internal drag opposing fiber shortening resulting from fiber type-specific effects ofPi on cross bridges, the thin filament, or therate-limiting step of the cross-bridge cycle.

  相似文献   

10.
We describe theuse of an in vivo human bronchial xenograft model of cystic fibrosis(CF) and non-CF airways to investigate pathophysiological alterationsin airway surface fluid (ASF) volume (Vs) and Cl content.Vs was calculated based on thedilution of an impermeable marker,[3H]inulin, duringharvesting of ASF from xenografts with an isosmotic Cl-free solution.These calculations demonstrated thatVs in CF xenographs (28 ± 3.0 µl/cm2;n = 17) was significantly less thanthat of non-CF xenografts (35 ± 2.4 µl/cm2;n = 30). The Cl concentration of ASF([Cl]s) wasdetermined using a solid-state AgCl electrode and adjusted for dilutionduring harvesting using the impermeable[3H]inulin marker.Cumulative results demonstrate small but significant elevations(P < 0.045) in[Cl]s in CF (125 ± 4 mM; n = 27) compared with non-CF(114 ± 4 mM; n = 48) xenografts.To investigate potential mechanisms by which CF airways may facilitatea higher level of fluid absorption yet retain slightly elevated levelsof Cl, we sought to evaluate the capacity of CF and non-CF airways toabsorb both 22Na and36Cl. Two consistent findings wereevident from these studies. First, in both CF and non-CF xenografts,22Na and36Cl were always absorbed in anequal molar ratio. Second, CF xenografts hyperabsorbed (~1.5-foldhigher) both 22Na and36Cl compared with non-CFxenografts. These results substantiate previously documented findingsof elevated Na absorption in CF airways and also suggest that theslightly elevated[Cl]s found in thisstudy of CF xenograft epithelia does not occur through a mechanism ofdecreased apical permeability to Cl.  相似文献   

11.
Although sepsis isknown to affect vascular function, little is known about changes at thecapillary level. We hypothesized that sepsis attenuates the"upstream" arteriolar response to vasoactive agents appliedlocally to capillaries. Sepsis in rats was induced by cecal ligationand perforation. After 24 h, extensor digitorum longus muscle wasprepared for intravital microscopy. Phenylephrine (PE, 10 mM) andacetylcholine (ACh, 10 mM) were applied iontophoretically on terminalarterioles and on their downstream daughter capillaries (300 µm fromarteriole). There was no significant difference between control andseptic rats in baseline arteriolar diameters [8.0 ± 0.6 vs.9.8 ± 0.8 (SE) µm] or baseline red blood cellvelocity (VRBC)in perfused daughter capillaries (255 ± 10 vs. 264 ± 13 µm/s). Application of PE onto arterioles resulted in comparable constrictions (i.e., 22% diameter change) andVRBC reductions (100%) in control and septic rats. In contrast, arteriolardiameter and VRBCincreases after application of ACh were attenuated in sepsis (diameter:from 41 to 14%;VRBC: from 67 to24%). Application of PE onto the capillary reducedVRBC to the samelevel (100%) in both groups, whereas application of AChincreased VRBCless in septic than in control rats (20 vs. 73%). On the basis ofarteriolar-capillary pair stimulations, sepsis affectedVRBC responses toACh more in the capillary than in the arteriole. When the adenosineanalog 5'-N-ethylcarboxamidoadenosine(0.1 mM) was used instead of ACh, similar effects of sepsis were seen.To test for a possible involvement of inducible NO synthase (iNOS) insepsis-induced attenuated ACh responses, arterioles and capillaries inseptic animals were locally pretreated with the iNOS blockeraminoguanidine (10 mM). In both microvessels, aminoguanidine restoredthe ACh response to the control level. We conclude that impairedcapillary VRBCand arteriolar diameter responses to vasodilators applied tocapillaries in septic rat skeletal muscle were due to dysfunction atarteriolar and capillary levels. The study underscores the significantrole iNOS/NO may play in sepsis-induced alteration of vascularreactivity in vivo.

  相似文献   

12.
Endogenous vasopressin does not mediate hypoxia-induced anapyrexia in rats   总被引:1,自引:0,他引:1  
The present study was designed to test the hypothesis thatarginine vasopressin (AVP) mediates hypoxia-induced anapyrexia. Therectal temperature of awake, unrestrained rats was measured before andafter hypoxic hypoxia, AVP-blocker injection, or a combination of thetwo. Control animals received saline injections of the same volume.Basal body temperature was 36.52 ± 0.29°C. We observed asignificant (P < 0.05) reduction inbody temperature of 1.45 ± 0.33°C after hypoxia (7% inspiredO2), whereas systemic andcentral injections of AVP V1- andAVP V2-receptor blockers caused nochange in body temperature. When intravenous injection of AVP blockerswas combined with hypoxia, we observed a reduction in body temperatureof 1.49 ± 0.41°C(V1-receptor blocker) and of 1.30 ± 0.13°C (V2-receptorblocker), similar to that obtained by application of hypoxia only.Similar results were observed when the blockers were injectedintracerebroventricularly. The data indicate that endogenous AVP doesnot mediate hypoxia-induced anapyrexia in rats.  相似文献   

13.
The aim of the presentstudy was to examine the kinetic characteristics of theL-3,4-dihydroxyphenylalanine (L-DOPA)transporter and the fate of newly formed dopamine in Caco-2 cells. Inthe presence of 50 µM benserazide (an inhibitor of aromaticL-amino acid decarboxylase), L-DOPA was rapidlyaccumulated in Caco-2 cells. At equilibrium (30 min of incubation) theintracellular L-DOPA concentration was 10.2 ± 0.1 µM ata medium concentration of 0.5 µM. In saturation experiments theaccumulation of L-DOPA was saturable with aMichaelis-Menten constant (Km) of 60 ± 10 µMand a maximal reaction velocity (Vmax) of 6.6 ± 0.3 nmol · mg protein1 · 6 min1; at 4°C the amount of L-DOPAaccumulated in the cells was nonsaturable. When cells were incubatedwith increasing concentrations of L-DOPA (10-100 µM)in the absence of benserazide, a substantial amount of theL-DOPA that was taken up was decarboxylated to dopamine, with an apparent Km of 27.2 µM. In experimentsperformed in cells cultured in polycarbonate filters, theaccumulation of L-DOPA in the presence of benserazide wasgreater when the substrate was applied from the basolateral cell borderthan when it was applied from the apical cell border. In the absence ofbenserazide, L-DOPA applied from the basolateral cellborder resulted in a nonlinear formation of dopamine(Km = 43 ± 7 µM,Vmax = 23.7 ± 1.2 nmol · mgprotein1 · 6 min1). Theamount of dopamine leaving the cell through the apical cell border waslower than the amount that escaped through the basolateral cell border,and the process was saturable (Km = 623 ± 238 µM, Vmax = 0.19 ± 0.02 nmol · mgprotein1 · 6 min1). Inconclusion, the data presented here show that Caco-2 cells are endowedwith an efficient L-DOPA uptake system, and intracellular L-DOPA was found to be rapidly converted to dopamine, someof which diffuses out of the cell. The utilization of Caco-2 cells cultured on polycarbonate filters probably provides a better way tolook at processes such as the outward transfer of intracellular molecules, namely, the outward transfer of newly formed dopamine.

  相似文献   

14.
In Aplysia intestine,stimulation of Na+ absorption withluminal alanine increases apical membraneK+ conductance(GK,a), whichpresumably regulates enterocyte volume during stimulatedNa+ absorption. However, themechanism responsible for the sustained increase in plasma membraneK+ conductance is not known forany nutrient-absorbing epithelium. In the present study, we have begunto test the hypothesis that the alanine-induced increase inGK,a inAplysia enterocytes results fromexocytic insertion of K+ channelsinto the apical membrane. We used the fluid-phase marker horseradishperoxidase to assess the effect of alanine on apical membraneexocytosis and conventional microelectrode techniques to assess theeffect of alanine on fractional capacitance of the apical membrane(fCa). Luminalalanine significantly increased apical membrane exocytosis from 1.04 ± 0.30 to 1.39 ± 0.38 ng · min1 · cm2.To measure fCa,we modeled the Aplysia enterocyte as adouble resistance-capacitance (RC) electric circuit arranged in series. Several criteria were tested to confirm application of the model to theenterocytes, and all satisfied the model. When added to the luminalsurface, alanine significantly increasedfCa from 0.27 ± 0.02 to 0.33 ± 0.04 (n = 10)after 4 min. There are two possible explanations for our findings:1) the increase in exocytosis, whichadds membrane to the apical plasma membrane, prevents plasma membranefracture, and 2) the increase inexocytosis delivers K+ channels tothe apical membrane by exocytic insertion. After the alanine-induceddepolarization of apical membrane potential (Va), there isa strong correlation (r = 0.96)between repolarization ofVa, whichreflects the increase inGK,a, andincrease in fCa. This correlation supports the exocytic insertion hypothesis for activation ofGK,a.

  相似文献   

15.
The purpose of this study was to examine the effect of prolongedbed rest (BR) on the peak isometric force(Po) and unloaded shorteningvelocity (Vo)of single Ca2+-activated musclefibers. Soleus muscle biopsies were obtained from eight adult malesbefore and after 17 days of 6° head-down BR. Chemicallypermeabilized single fiber segments were mounted between a forcetransducer and position motor, activated with saturating levels ofCa2+, and subjected to slacklength steps. Vowas determined by plotting the time for force redevelopment vs. theslack step distance. Gel electrophoresis revealed that 96% of the pre-and 87% of the post-BR fibers studied expressed only the slow type Imyosin heavy chain isoform. Fibers with diameter >100 µm made uponly 14% of this post-BR type I population compared with 33% of thepre-BR type I population. Consequently, the post-BR type I fibers(n = 147) were, on average, 5%smaller in diameter than the pre-BR type I fibers(n = 218) and produced 13% lessabsolute Po. BR had no overalleffect on Po per fibercross-sectional area(Po/CSA), even though halfof the subjects displayed a decline of 9-12% inPo/CSA after BR. Type Ifiber Voincreased by an average of 34% with BR. Although the ratio of myosinlight chain 3 to myosin light chain 2 also rose with BR, there was nocorrelation between this ratio andVo for either thepre- or post-BR fibers. In separate fibers obtained from the originalbiopsies, quantitative electron microscopy revealed a 20-24%decrease in thin filament density, with no change in thick filamentdensity. These results raise the possibility that alterations in thegeometric relationships between thin and thick filaments may be atleast partially responsible for the elevatedVo of the post-BRtype I fibers.

  相似文献   

16.
The Ca2+ affinity andpermeation of the epithelial Ca2+ channel (ECaC1) wereinvestigated after expression in Xenopus oocytes. ECaC1displayed anomalous mole-fraction effects. Extracellular Ca2+ and Mg2+ reversibly inhibited ECaC1 wholecell Li+ currents: IC50 = 2.2 ± 0.4 µM (n = 9) and 235 ± 35 µM (n = 10), respectively. These values compare well with theCa2+ affinity of the L-type voltage-gated Ca2+(CaV1.2) channel measured under the same conditions,suggesting that high-affinity Ca2+ binding is awell-conserved feature of epithelial and voltage-gated Ca2+channels. Neutralization of D550 and E535 in the pore region had nosignificant effect on Ca2+ and Mg2+ affinities.In contrast, neutralization of D542 significantly decreasedCa2+ affinity (IC50 = 1.1 ± 0.2 mM,n = 6) and Mg2+ affinity(IC50 > 25 ± 3 mM, n = 4).Despite a 1,000-fold decrease in Ca2+ affinity in D542N,Ca2+ permeation properties and theCa2+-to-Ba2+ conductance ratio remainedcomparable to values for wild-type ECaC1. Together, our observationssuggest that D542 plays a critical role in Ca2+ affinitybut not in Ca2+ permeation in ECaC1.

  相似文献   

17.
Whole cellpatch-clamp techniques were used to investigate amiloride-sensitivesodium conductance (GNa) in the everted initial collecting tubule of Ambystoma. Accessibility to both theapical and basolateral membranes made this preparation ideal forstudying the regulation of sodium transport by insulin.GNa accounted for 20% of total cell conductance(GT) under control conditions. A restingmembrane potential of 75 ± 2 mV (n = 7)together with the fact that GT is stable withtime suggested that the cells studied were viable. Measurements ofcapacitance and use of a known uncoupling agent, heptanol, suggestedthat cells were not electrically coupled. Thus the values ofGT and GNa represented individual principal cells. Exposure of the basolateral membrane toinsulin (1 mU/ml) for 10-60 min significantly (P < 0.05) increased the normalized GNa [1.2 ± 0.3 nS (n = 6) vs. 2.0 ± 0.4 nS(n = 6)]. Cell-attached patch-clamp techniques wereused to further elucidate the mechanism by which insulin increasesamiloride-sensitive epithelial sodium channel (ENaC) activity. In thepresence of insulin there was no apparent change in either the numberof active levels/patch or the conductance of ENaC. The openprobability increased significantly (P < 0.01) from0.21 ± 0.04 (n = 6) to 0.46 ± 0.07 (n = 6). Thus application of insulin enhanced sodium reabsorption by increasing the fraction of time the channel spent inthe open state.

  相似文献   

18.
Isolated rat heart perfused with 1.5-7.5µM NO solutions or bradykinin, which activates endothelial NOsynthase, showed a dose-dependent decrease in myocardial O2uptake from 3.2 ± 0.3 to 1.6 ± 0.1 (7.5 µM NO, n = 18,P < 0.05) and to 1.2 ± 0.1 µM O2 · min1 · gtissue1 (10 µM bradykinin, n = 10,P < 0.05). Perfused NO concentrations correlated with aninduced release of hydrogen peroxide (H2O2) inthe effluent (r = 0.99, P < 0.01). NO markedlydecreased the O2 uptake of isolated rat heart mitochondria(50% inhibition at 0.4 µM NO, r = 0.99,P < 0.001). Cytochrome spectra in NO-treated submitochondrial particles showed a double inhibition of electron transfer at cytochrome oxidase and between cytochrome b andcytochrome c, which accounts for the effects in O2uptake and H2O2 release. Most NO was bound tomyoglobin; this fact is consistent with NO steady-state concentrationsof 0.1-0.3 µM, which affect mitochondria. In the intact heart,finely adjusted NO concentrations regulate mitochondrial O2uptake and superoxide anion production (reflected byH2O2), which in turn contributes to thephysiological clearance of NO through peroxynitrite formation.

  相似文献   

19.
Albert, T. S. E., V. L. Tucker, and E. M. Renkin.Atrial natriuretic peptide levels and plasma volume contraction in acute alveolar hypoxia. J. Appl.Physiol. 82(1): 102-110, 1997.Arterial oxygentensions (PaO2), atrial natriureticpeptide (ANP) concentrations, and circulating plasma volumes (PV) weremeasured in anesthetized rats ventilated with room air or 15, 10, or8% O2(n = 5-7). After 10 min ofventilation, PaO2 values were 80 ± 3, 46 ± 1, 32 ± 1, and 35 ± 1 Torrand plasma immunoreactive ANP (irANP) levels were 211 ± 29, 229 ± 28, 911 ± 205, and 4,374 ± 961 pg/ml, respectively. AtPaO2 40 Torr, irANP responses weremore closely related to inspiredO2(P = 0.014) than toPaO2 (P = 0.168). PV was 36.3 ± 0.5 µl/g in controls but 8.5 and9.9% lower (P  0.05) for10 and 8% O2, respectively.Proportional increases in hematocrit were observed in animals withreduced PV; however, plasma protein concentrations were not differentfrom control. Between 10 and 50 min of hypoxia, small increases (+40%)in irANP occurred in 15% O2;however, there was no further change in PV, hematocrit, plasma protein,or irANP levels in the lower O2groups. Urine output tended to fall during hypoxia but was notsignificantly different among groups. These findings are compatiblewith a role for ANP in mediating PV contraction during acute alveolarhypoxia.

  相似文献   

20.
Bovine adrenalzona fasciculata cells (AZF) express a noninactivatingK+ current(IAC) whoseinhibition by adrenocorticotropic hormone and ANG II may be coupled tomembrane depolarization andCa2+-dependentcortisol secretion. We studiedIACinhibition byCa2+ and theCa2+ionophore ionomycin in whole cell and single-channel patch-clamp recordings of AZF. In whole cell recordings with intracellular (pipette)Ca2+concentration([Ca2+]i)buffered to 0.02 µM,IAC reachedmaximum current density of 25.0 ± 5.1 pA/pF(n = 16); raising[Ca2+]ito 2.0 µM reduced it 76%. In inside-out patches, elevated[Ca2+]idramatically reducedIAC channelactivity. Ionomycin inhibited IAC by 88 ± 4% (n = 14) without altering rapidlyinactivating A-type K+ current.Inhibition of IACby ionomycin was unaltered by adding calmodulin inhibitory peptide tothe pipette or replacing ATP with its nonhydrolyzable analog5'-adenylylimidodiphosphate.IAC inhibition byionomycin was associated with membrane depolarization. When[Ca2+]iwas buffered to 0.02 µM with 2 and 11 mM1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), ionomycin inhibitedIAC by 89.6 ± 3.5 and 25.6 ± 14.6% and depolarized the same AZF by 47 ± 8 and 8 ± 3 mV, respectively (n = 4). ANG II inhibitedIAC significantlymore effectively when pipette BAPTA was reduced from 11 to 2 mM. Raising[Ca2+]iinhibits IACthrough a mechanism not requiring calmodulin or protein kinases,suggesting direct interaction withIAC channels. ANGII may inhibitIAC anddepolarize AZF by activating parallel signaling pathways, one of whichuses Ca2+ asa mediator.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号