首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Calcineurin was dissociated into subunits A and B by 6 M urea in the presence (method A) and absence (method B) of MnCl2 and dissociated subunits were isolated by gel filtration in urea in the absence (method B) or presence (method A) of MnCl2. Phosphatase activity was associated with the A subunit isolated by either method. The phosphatase activity (nmol/mg) of subunit A isolated by method A was greater (2-5-fold) than by method B. Mn2+ increased subunit A phosphatase and calmodulin further increased the enzyme activity. Subunit B isolated by method A or B increased Mn2+ + calmodulin stimulated subunit A phosphatase prepared by method B but interestingly and unexpectedly inhibited such stimulated activity of the subunit A prepared by method A. These results imply the tightly bound cation (in our case, most likely Mn2+) with subunit A dramatically and differentially influences the effects of two Ca2+-binding proteins, calmodulin and subunit B, on the subunit A phosphatase.  相似文献   

2.
Calmodulin-dependent protein phosphatase isolated from bovine brain consists of a catalytic subunit A (Mr = 60,000) and a regulatory subunit B (Mr = 19,000) present in equal molar ratios. The two subunits were dissociated by gel filtration in 6 M urea and reconstituted to investigate the role of calmodulin and subunit B in regulating the phosphatase activity of subunit A. The activity of subunit A was stimulated 2-fold by calmodulin, 13-fold by subunit B, and 21-fold by both, indicating that the effects of both were synergistic. Maximum stimulation by calmodulin was observed at a calmodulin to subunit A molar ratio of 2:1 in the presence or absence of subunit B, whereas that by subunit B was observed at a B to A molar ratio of 3:1 in the presence or absence of calmodulin. Calmodulin and subunit B increased the Vmax of subunit A 2- and 5-fold, respectively, but had little effect on the Km for casein. The specific activity of the phosphatase reconstituted from subunits A and B reached 86% that of the native enzyme, whereas that of the holoenzyme reached 90%. Subunit B, even though similar to calmodulin in many respects, did not stimulate the activity of native phosphatase, suggesting that it cannot substitute for calmodulin. Limited trypsinization of subunit A increased its catalytic activity to the level observed with calmodulin; and this activity was further stimulated by subunit B but not by calmodulin. These results indicate that subunit A of phosphatase contains one catalytic domain and two distinct regulatory domains, one for calmodulin, and another for subunit B, that these two proteins do not substitute for one another and that they stimulate subunit A synergistically.  相似文献   

3.
Calcineurin A was purified by calmodulin-Sepharose affinity chromatography from Sf9 cells infected with recombinant baculovirus containing the cDNA of a rat calcineurin A isoform. The Sf9-expressed calcineurin A has a low basal phosphatase activity in the presence of EDTA (0.9 nmol/min/mg) which is stimulated 3-5-fold by Mn2+. Calmodulin increased the Mn2+ stimulated activity 3-5-fold. Bovine brain calcineurin B increased the A subunit activity 10-15-fold, and calmodulin further stimulated the activity of reconstituted A and B subunits 10-15-fold (644 nmol/min/mg). The Km of calcineurin A for 32P-RII pep (a peptide substrate (DLDVPIPGRFDRRVSVAAE) for CaN), was 111 microM with or without calmodulin, and calmodulin increased the Vmax about 4-fold. The Km of reconstituted calcineurin A plus B for 32P-RII pep was 20 microM, and calmodulin increased the Vmax 18-fold without affecting the Km. CaN A467-492, a synthetic autoinhibitory peptide (ITSFEEAKGLDRINERMPPRRDAMP) from calcineurin, inhibited the Mn2+/calmodulin-stimulated activities of the reconstituted enzyme and the A subunit with IC50's of 25 microM and 90 microM, respectively. The reconstitution of the phosphatase activity of an expressed isoform of calcineurin A by purified B subunit and calmodulin may facilitate comparative studies of the regulation of calcineurin A activity by the B subunit and calmodulin.  相似文献   

4.
The interaction of calmodulin antagonists with a phosphoprotein phosphatase, calcineurin, was investigated using para-nitrophenyl phosphate (pNPP) as a substrate. Calmidazolium, a potent calmodulin antagonist, inhibited the Ni(2+)-stimulated calmodulin-independent phosphatase activity to much the same extent as it did the Ca2+/calmodulin-stimulated activity. Other calmodulin antagonists, such as trifluoperazine, thioridazine, and W-7, also inhibited the Ni(2+)-stimulated phosphatase activity. On the other hand, calmidazolium only weakly and partially inhibited the Mn(2+)-stimulated phosphatase activity and the other calmodulin antagonists examined increased the Mn(2+)-stimulated activity, in the absence of calmodulin. With the addition of an equimolar amount, as to the inhibited holoenzyme, of the purified B subunit of calcineurin, the Ni(2+)-stimulated phosphatase activity recovered from 38 to 63% of the control level in the presence of 5 microM calmidazolium. When the amount of additional B subunit was increased, the phosphatase activity recovered to 94% of the control level, thereby implying that calmidazolium inhibits the Ni(2+)-stimulated phosphatase activity by interacting with the B subunit, in the absence of calmodulin. The Mn(2+)-stimulated phosphatase activity also recovered from the inhibition by calmidazolium, but a much larger amount of the B subunit was necessary for the recovery. These results indicate that the Ni(2+)- and Mn(2+)-stimulated activities of calcineurin are differentially affected by calmodulin antagonists and that the B subunit plays a crucial role in the expression of the Ni(2+)-stimulated phosphatase activity.  相似文献   

5.
A calmodulin-dependent protein phosphatase has been identified in human platelets by its cross-reactivity with an antibody developed against a bovine brain calmodulin-dependent protein phosphatase and by its calmodulin-stimulated dephosphorylation of 32P-labeled substrates. The platelet enzyme was partially purified to separate it from calmodulin and calmodulin-independent phosphatases. The partially purified enzyme was stimulated by calmodulin, requiring 15 nM calmodulin for half-maximal activation. Calmodulin increased the Vmax of the phosphatase, with no significant effect on its Km. The enzyme was stimulated irreversibly and made calmodulin-independent by limited proteolysis. The optimal pH for the phosphatase was 7.5. After partial purification, phosphatase activity was significantly increased in the presence of Mn2+ and Ca2+ over that observed in the presence of Ca2+ alone. The enzyme effectively dephosphorylated casein, histone, protamine, and platelet actin. The holophosphatase was estimated to have a molecular weight of 76,900 as determined by sedimentation on sucrose gradients. Immunoblotting techniques using an antibody against the brain phosphatase suggests that the enzyme consists of 2 subunits of 60,000 and 16,500 daltons; the 60,000-dalton subunit co-migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a 60,000-dalton calmodulin-binding protein in the platelet suggesting that it is the calmodulin-binding subunit of the enzyme. The identification of a calmodulin-dependent protein phosphatase in human platelets suggests a role for Ca2+-dependent dephosphorylation in platelet activation.  相似文献   

6.
Calcineurin, a calmodulin-stimulated phosphatase from bovine brain, was hydrolyzed by calpain I from human erythrocytes. In the absence of calmodulin, calpain rapidly transformed the 60-kilodalton (kDa) catalytic subunit of calcineurin into a transient 57-kDa fragment and thereafter a 43-kDa limit fragment. In the presence of calmodulin, the 60-kDa subunit was sequentially proteolyzed to a 55-kDa fragment and then a 49-kDa fragment. Upon proteolysis in the absence or presence of calmodulin, the p-nitrophenyl phosphatase activity (assayed in the presence of calmodulin) was increased by 300%. The 43- and the 49-kDa fragments were found to (i) remain associated with the small subunit (17 kDa), (ii) have lost the ability to bind and to be activated by calmodulin, and (iii) have phosphatase activity that was still stimulated by Mn2+ or Ni2+. The 43- + 17-kDa form had similar Km values for various substrates, but the Vmax values were increased compared with the native enzyme. It is proposed that (i) a 43-kDa core segment of the 60-kDa subunit of calcineurin contained the catalytic domain, the small subunit-binding domain, and the metal ion (Mn2+ and (or) Ni2+) binding site; and (ii) two distinct types of inhibitory domains exist near the end(s) of the large subunit, one of which is calmodulin regulated, while the other is calmodulin independent.  相似文献   

7.
C Y Wang  S K Kong  J H Wang 《Biochemistry》1988,27(4):1254-1260
Fodrin, an actin and calmodulin binding and spectrin-like protein present in many nonerythrocyte tissues, could be phosphorylated up to more than 1.5 mol of phosphate/mol of protein by a highly purified non-receptor-associated protein tyrosine kinase from bovine spleen. The protein phosphorylation was not affected by Ca2+/calmodulin or by F-actin. Km and Vmax values of the reaction were 91 nM and 0.35 nmol of P2 min-1 (mg of kinase)-1, respectively. Both subunits A and B of fodrin were phosphorylated, with the rate of subunit A phosphorylation much greater than that of subunit B phosphorylation. Tryptic phosphopeptide mapping of the phosphorylated subunits suggested that there were three major phosphorylation sites in subunit A and one in subunit B. Phosphotyrosylfodrin could be dephosphorylated by the calmodulin-stimulated phosphatase (calcineurin) in the presence of activating metal ions; Ni2+ was a much more effective activator than Mn2+ for this reaction. Fodrin phosphorylation by the spleen protein tyrosine kinase did not appear to alter the actin and calmodulin binding properties of the protein. On the other hand, the calmodulin-dependent stimulation of smooth muscle actomyosin Mg2+-ATPase by fodrin was enhanced by 101% +/- 3% (n = 3) upon fodrin phosphorylation. Ni2+-calcineurin, which was shown to effectively dephosphorylate the phosphotyrosyl residues on fodrin, could reverse the phosphorylation-enhanced Mg2+-ATPase stimulatory activity of fodrin.  相似文献   

8.
A glycogen synthase phosphatase was purified from the yeast Saccharomyces cerevisiae. The purified yeast phosphatase displayed one major protein band which coincided with phosphatase activity on nondenaturing polyacrylamide gel electrophoresis. This phosphatase had a molecular mass of about 160,000 Da determined by gel filtration and was comprised of three subunits, termed A, B, and C. The subunit molecular weights estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 60,000 (A), 53,000 (B), and 37,000 (C), indicating that this yeast glycogen synthase phosphatase is a heterotrimer. On ethanol treatment, the enzyme was dissociated to an active species with a molecular weight of 37,000 estimated by gel filtration. The yeast phosphatase dephosphorylated yeast glycogen synthase, rabbit muscle glycogen phosphorylase, casein, and the alpha subunit of rabbit muscle phosphorylase kinase, was not sensitive to heat-stable protein phosphatase inhibitor 2, and was inhibited 90% by 1 nM okadaic acid. Dephosphorylation of glycogen synthase, phosphorylase, and phosphorylase kinase by this yeast enzyme could be stimulated by histone H1 and polylysines. Divalent cations (Mg2+ and Ca2+) and chelators (EDTA and EGTA) had no effect on dephosphorylation of glycogen synthase or phosphorylase while Mn2+ stimulated enzyme activity by approximately 50%. The specific activity and kinetics for phosphorylase resembled those of mammalian phosphatase 2A. An antibody against a synthetic peptide corresponding to the carboxyl terminus of the catalytic subunit of rabbit skeletal muscle protein phosphatase 2A reacted with subunit C of purified yeast phosphatase on immunoblots, whereas the analogous peptide antibody against phosphatase 1 did not. These data show that this yeast glycogen synthase phosphatase has structural and catalytic similarity to protein phosphatase 2A found in mammalian tissues.  相似文献   

9.
Calmodulin-dependent protein phosphatase (CaM-PPase) was isolated from bovine parotid gland by sequential application of DEAE-52, Affi-gel blue and calmodulin-affinity chromatography followed by gel filtration and high performance liquid chromatography. The enzyme was activated in the simultaneous presence of Ni2+ or Mn2+ and Ca2+ plus calmodulin. Ca2+/calmodulin-dependent activation of CaM-PPase was antagonized by inhibitors of calmodulin action, such as W-7 and trifluoperazine. Tryptophan fluorescence was quenched in the presence of Ni2+. CaM-PPase was a heterodimer. The molecular weights of large subunits which bound calmodulin (CaM) were 68 kD and 58 kD - the 68 kD subunit was predominant. Polyclonal antibodies against bovine calcineurin cross-reacted with both types of larger subunits. Using polyclonal antibodies against bovine calcineurin or the monoclonal antibody against subunit B of bovine calcineurin, the smaller molecular weight subunit (19 kD) was found to be immunologically identical to subunit B of bovine calcineurin. In bovine parotid gland, CaM-PPase was found both in acinar and duct cells.  相似文献   

10.
Calcineurin, a calmodulin-regulated phosphatase, is composed of two distinct subunits (A and B) and requires certain metal ions for activity. The binding of the two most potent activators, Ni2+ and Mn2+, to calcineurin and its subunits has been studied. Incubation of the protein with 63Ni2+ (or 54Mn2+) followed by gel filtration to separate free and protein-bound ions indicated that calcineurin could maximally bind 2 mol/mol of Ni2+ or Mn2+. While isolated A subunit also bound 2 mol/mol of Ni2+, no Mn2+ binding was demonstrated for either isolated A or B subunit. When bindings were monitored by nitrocellulose filter assay, only 1 mol/mol bound Ni2+ or Mn2+ was detected, suggesting that the two Ni2+ (or Mn2+) binding sites had different relative affinities and that only metal ions bound at the higher affinity sites were detected by the filter assay. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the filter assay-measured Ni2+ (or Mn2+) binding by only 30%. Preincubation of the protein with Zn2+ decreased the filter assay-measured Ni2+ or Mn2+ binding by 90 or 17%, respectively. The results suggest that the higher affinity sites are a Ni2+-specific site and a distinct Mn2+-specific site. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the gel filtration-determined Ni2+ (or Mn2+) binding from 2 to 1 mol/mol suggesting that calcineurin also contains a site which binds either metal ion. The time course of Ni2+ (or Mn2+) binding was correlated with that of the enzyme activation, and the extent of deactivation of the Ni2+-activated calcineurin by EDTA or by incubation with Ca2+ and calmodulin (Pallen, C. J., and Wang, J. H. (1984) J. Biol. Chem. 259, 6134-6141) was correlated with the release of the bound ions, thus suggesting that the bound ion is directly responsible for enzyme activation.  相似文献   

11.
A calmodulin-binding protein from sea urchin eggs consisting of two subunits (55 and 17K-daltons) was identified as a Ca2+-dependent phosphoprotein phosphatase similar to calcineurin in mammalian brain and to phosphatase 2B in skeletal muscle. Peptide mappings showed that the 55K subunit was different from 61K subunit of calcineurin, whereas the 17K subunit was similar to 19K subunit of calcineurin but different from calmodulin. The 55K + 17K protein of sea urchin eggs dephosphorylated 32P-inhibitor-1 in a Ca2+- and calmodulin-dependent manner. Vmax and Km for inhibitor-1 in the presence of Ca2+ and calmodulin were 2,100 pmol Pi/min/mg and 2.7 microM. Ca2+-dependent phosphatase activity for inhibitor-1 was detected in homogenates of both unfertilized and fertilized eggs, but was not detected in isolated cortices and mitotic apparatus.  相似文献   

12.
A Mn2+-dependent protein phosphatase 2A which is composed of a 34 kDa catalytic C' subunit and a 63 kDa regulatory A' subunit, was purified from human erythrocyte cytosol. C' and A' produced V8- and papain-peptide maps identical to those of the 34 kDa catalytic C and the 63 kDa regulatory A subunits of the Mn2+-independent conventional protein phosphatase in human erythrocyte cytosol, respectively. Reconstitution of C'A and CA' revealed that the metal dependency resided in C' and not in A'. In CA, 0.87 +/- 0.12 mol zinc and 0.35 +/- 0.18 mol iron per mol enzyme were detected by atomic absorption spectrophotometry, but manganese, magnesium and cobalt were not detected. None of these metals was detected in C'A'. Pre-incubation of C' with ZnCl2 and FeCl2, but not FeCl3, synergistically stimulated the Mn2+-independent protein phosphatase activity. The protein phosphatase activity of C was unaffected by the same zinc and/or iron treatment. These results suggest that C is a Zn2+- and Fe2+-metalloenzyme and that C' is the apoenzyme.  相似文献   

13.
A calmodulin-dependent protein phosphatase isolated from bovine brain [Tallant, E.A., & Cheung, W.Y. (1983) Biochemistry 22, 3630-3635] is stimulated by limited trypsinization to the same activity level as that by calmodulin. Prolonged trypsinization caused gradual loss of phosphatase activity, a process retarded in the presence of Ca2+, and even more in the presence of calmodulin. Trypsinized phosphatase, when fully activated, had a molecular weight of 60 000 and was composed of two protein species of 43 000 and 16 000 daltons. Trypsinization decreased the Km of phosphatase for casein from 10.8 to 1.2 microM and increased the Vmax from 4.9 to 30.9 nmol (mg of protein)-1 min-1. The proteolyzed enzyme was insensitive to calmodulin and did not bind to a calmodulin-Sepharose affinity column. It was, however, stimulated by Ca2+, requiring 0.4 microM Ca2+ for half-maximal activation. Both native and trypsinized phosphatase were stimulated by Mn2+ to a level considerably higher than that by Ca2+.  相似文献   

14.
Phosphohistone phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) of canine heart extract has been separated by DEAE-cellulose chromatography into 4 molecular forms, namely phosphatases A (Mr = 156 000), B (Mr = 161 000), C (Mr = 95 600) and U (Mr = 61 000). ATP inhibited phosphatase A, stimulated phosphatase B and did not significantly affect phosphatase C activity. Phosphatase U requires Mn2+ for activity, under which condition ATP is inhibitory. Phosphatases A, B and C, but not phosphatase U, were dissociated by ethanol into catalytic subunits that were inhibited by ATP, insensitive to Mn2+, and had a common molecular weight of 34 800 (phosphatase S). The dissociation was accompanied by an increase of enzymic activity. Chromatography of the ethanol-treated 55% (NH4)2SO4 fraction of canine heart extract on DEAE-cellulose demonstrated that the multiple forms of phosphohistone phosphatase could be reduced to two forms: phosphatase U and phosphatase S, which may represent two basic constituents of the multiple forms of phosphohistone phosphatase in canine heart.  相似文献   

15.
Sarcoplasmic phosphorylase phosphatase extracted from ground skeletal muscle was recovered in a high molecular weight from (Mr = 250000). This enzyme has been purified from extracts by anion-exchange and gel chromatography to yield a preparation with three major protein components of Mr 83000, 72000, and 32000 by sodium dodecyl sulfate gel electrophoresis. The phosphorylase phosphatase activity of the complex form was activated more than 10-fold by Mn2+, with a K0.5 of 10(-5) M, but not by Mg2+ or Ca2+. Manganese activation occurred over a period of several minutes and resulted primarily in an increase in Vmax of a phosphatase that was sensitive to trypsin. Activation persisted after gel filtration, and the active form of the enzyme did not contain bound manganese measured by using 54Mn2+. A contaminating p-nitrophenylphosphatase was activated by either Mn2+ (K0.5 of 10(-4) M) or Mg2+ (K0.5 of 10(-3) M). Unlike the protein phosphatase this enzyme was inactive following removal of the metal ions by gel filtration. The phosphatase complex could be dissociated into its component subunits by precipitation with 50% acetone at 20 degrees C in the presence of an inert divalent cation, reducing agent, and bovine serum albumin. Two catalytic subunits were quantitatively recovered; one of Mr 83000 was a trypsin-sensitive manganese-activated phosphatase and the second of Mr 32000 was trypsin-stable and metal ion dependent. Both enzymes were effective in catalyzing the dephosphorylation of either phosphorylase a or the regulatory subunit of adenosine cyclic 3',5'-phosphate (cAMP) dependent protein kinase, but neither subunit possessed p-nitrophenylphosphatase activity.  相似文献   

16.
Summary Calcineurin was dicovered as an inhibitor of calmodulin stimulated cyclic AMP phosphodiesterase and its ability to act as a calmodulin binding protein largely explains its inhibitory action on calmodulin regulated enzymes. Recent studies establish calcineurin as the enzyme protein phosphatase whose activity is regulated by calmodulin and a variety of divalent metals. In this work, we have investigated the effects of several agents including sulfhydryl agents, trifluoperazine (a calmodulin antagonist), PPi, NaF and orthovanadate and of tryptic proteolysis on the calcineurin inhibition of cyclic AMP phosphodiesterase (called inhibitory activity) and on protein phosphatase activity. Inhibitors for sulfhydryl groups (pHMB, NEM) inhibited phosphatase activity without any effect on the inhibitory activity. Dithioerythritol completely reversed the inhibition by pHMB. Limited proteolysis of calcineurin caused an activation of basal phosphatase activity with a complete loss of inhibitory activity. Phosphatase activity of the proteolyzed calcineurin was not stimulated by calmodulin. The presence of calmodulin along with calcineurin during tryptic digestion appeared to preserve the stimulation of phosphatase by Ca2+-calmodulin. [3H]-Trifluoperazine (TFP) was found to be incorporated irreversibly into calcineurin in the presence of ultraviolet light. This incorporation was evident into the A and B subunits of calcineurin. TFP-caused a decrease in the phosphatase activity and an increase in its inhibitory activity. [3H]-TFP incorporation into the A subunit was drastically decreased in the proteolyzed calcineurin. This was also true when the [3H]-TFP incorporated calcineurin was subjected to tryptic proteolysis. The incorporation into the B unit was essentially unaffected in the trypsinized calcineurin. Phosphatase activity was inhibited by orthovanadate, NaF, PPi, and EDTA. Inhibitions by these compounds were more pronounced when the phosphatase was determined in the presence of Ca2+-cahnodulin than in their absence.  相似文献   

17.
Two type 2A protein phosphatases, phosphatases I (Mr = 180,000) and III (Mr = 177,000), were purified to near homogeneity from human erythrocyte cytosol. Phosphatase I was composed of alpha (34 kDa), beta (63 kDa), and delta (74 kDa) subunits in a ratio of 1:1:1. Phosphatase III comprised alpha, beta, and gamma (53 kDa) subunits in the same ratio. Heparin-Sepharose column chromatography converted most of phosphatase I and 20% of phosphatase III into alpha 1 beta 1 which were indistinguishable from phosphatase IV (Usui, H., Kinohara, N., Yoshikawa, K., Imazu, M., Imaoka, T., and Takeda, M. (1983) J. Biol. Chem. 258, 10455-10463). The catalytic subunit alpha and the beta subunit of phosphatases I, III, and IV displayed identical V8 and papain peptide maps, respectively, while the peptide maps of the alpha, beta, gamma, and delta subunits were clearly distinct. The molar ratio of phosphatases I, III, and IV in erythrocyte cytosol was estimated to be 6:1:14. Comparison of molecular activities of alpha, alpha 1 beta 1, alpha 1 beta 1 delta 1, and alpha 1 beta 1 gamma 1 revealed that beta suppressed phosphorylase and P-H2B histone phosphatase activities of alpha but stimulated the P-H1 histone phosphatase activity, and delta suppressed all the phosphatase activities of alpha 1 beta 1. The gamma subunit stimulated the P-histone phosphatase activity of alpha 1 beta 1 but inhibited the phosphorylase and P-spectrin phosphatase activities. The beta subunit increased the Mg2+ or Mn2+ requirement for P-H2B histone phosphatase activity of alpha, an effect which was counteracted by delta. The effects of heparin, H1 histone, protamine, and polylysine on the phosphorylase phosphatase activity of phosphatases I, III, IV, and alpha were described and discussed in connection with the functions of the subunits.  相似文献   

18.
1. Phosphoprotein phosphatase IB is a form of rat liver phosphoprotein phosphatase, distinguished from the previously studied phosphoprotein phosphatase II [Tamura et al. (1980) Eur. J. Biochem. 104, 347-355] by earlier elution from DEAE-cellulose, by higher molecular weight on gel filtration (260000) and by lower activity toward phosphorylase alpha. This enzyme was purified to apparent homogeneity by chromatography on DEAE-cellulose, aminohexyl--Sepharose-4B, histone--Sepharose-4B, protamine--Sepharose-4B and Sephadex G-200. 2. The molecular weight of purified phosphatase IB was 260000 by gel filtration and 185000 from S20,W and Stokes' radius. Using histone phosphatase activity as the reference for comparison, the phosphorylase phosphatase activity of purified phosphatase IB was only one-fifth that of phosphatase II. 3. Sodium dodecyl sulfate gel electrophoresis revealed that phosphatase IB contains three types of subunit, namely alpha, beta and gamma, whose molecular weights are 35000, 69000 and 58000, respectively. The alpha subunit is identical to the alpha subunit of phosphatase II. While the beta subunit is also identical or similar to the beta subunit of phoshatase II, the gamma subunit appears to be unique to phosphatase IB. 4. When purified phosphatase IB was treated with 2-mercaptoethanol at -20 degrees C, the enzyme was dissociated to release the catalytically active alpha subunit. Along with this dissociation, there was a 7.4-fold increase in phosphorylase phosphatase activity; but histone phosphatase activity increased only 1.6-fold. The possible functions of the gamma subunit are discussed in relation to this activation of enzyme.  相似文献   

19.
Bovine brain calmodulin-dependent protein phosphatase comprises a catalytic subunit A (Mr 60,000) and a regulatory subunit B (Mr 19,000). The native enzyme was active with Ca2+ or Mn2+. Upon resolution into its subunits in 6 M urea and 15 mM EDTA, subunit A was active with Mn2+; Co2+ and Ni2+ partially substituted for Mn2+, but Ca2+, Mg2+ and Zn2+ were ineffective. The stimulating effect of Mn2+ was not easily reversed by EGTA. Like the native phosphatase, subunit A was markedly stimulated by calmodulin or by controlled trypsinization. Unlike the native enzyme, however, trypsinized subunit A still required Mn2+ for activity. These findings provide evidence that the catalytic subunit of phosphatase may be a metallo (possibly Mn2+) enzyme.  相似文献   

20.
The catalytically active domain in the A subunit of calcineurin   总被引:1,自引:0,他引:1  
Xiang B  Liu P  Jiang G  Zou K  Yi F  Yang S  Wei Q 《Biological chemistry》2003,384(10-11):1429-1434
Calcineurin (CaN) is a heterodimer composed of a catalytic subunit A (CaNA) and a regulatory subunit B (CaNB). We report here an active truncated mutation of the rat CaNAdelta that contains only the catalytic domain (residues 1-347, also known as a/CaNA). The p-nitrophenyl phosphatase activity and protein phosphatase activity of a/CaNA were higher than that of CaNA. Both p-nitrophenyl phosphatase activity and protein phosphatase activity of a/CaNA were unaffected by CaM and the B-subunit; the B-subunit and CaM have relatively little effect on p-nitrophenyl phosphatase activity and a crucial effect on protein phosphatase activity of CaNA. Mn2+ and Ni2+ ions effeciently activated CaNA. The Km of a/CaNA was about 16 mM, and the k(cat) of a/CaNA was 10.03 s(-1) using pNPP as substrate. With RII peptide as a substrate, the Km of a/CaNA was about 21 microM and the k(cat) of a/CaNA was 0.51 s(-1). The optimum reaction temperature was about 45 degrees C, and the optimum reaction pH was about 7.2. Our results indicate that a/CaNA is the catalytic core of CaNA, and CaN and the B-subunit binding domain itself might play roles in the negative regulation of the phosphatase activity of CaN. The results provide the basis for future studies on the catalytic domain of CaN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号