共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vehlow C Stehr H Winkelmann M Duarte JM Petzold L Dinse J Lappe M 《Bioinformatics (Oxford, England)》2011,27(11):1573-1574
SUMMARY: Contact maps are a valuable visualization tool in structural biology. They are a convenient way to display proteins in two dimensions and to quickly identify structural features such as domain architecture, secondary structure and contact clusters. We developed a tool called CMView which integrates rich contact map analysis with 3D visualization using PyMol. Our tool provides functions for contact map calculation from structure, basic editing, visualization in contact map and 3D space and structural comparison with different built-in alignment methods. A unique feature is the interactive refinement of structural alignments based on user selected substructures. AVAILABILITY: CMView is freely available for Linux, Windows and MacOS. The software and a comprehensive manual can be downloaded from http://www.bioinformatics.org/cmview/. The source code is licensed under the GNU General Public License. 相似文献
3.
Rieping W Habeck M Bardiaux B Bernard A Malliavin TE Nilges M 《Bioinformatics (Oxford, England)》2007,23(3):381-382
Modern structural genomics projects demand for integrated methods for the interpretation and storage of nuclear magnetic resonance (NMR) data. Here we present version 2.1 of our program ARIA (Ambiguous Restraints for Iterative Assignment) for automated assignment of nuclear Overhauser enhancement (NOE) data and NMR structure calculation. We report on recent developments, most notably a graphical user interface, and the incorporation of the object-oriented data model of the Collaborative Computing Project for NMR (CCPN). The CCPN data model defines a storage model for NMR data, which greatly facilitates the transfer of data between different NMR software packages. Availability: A distribution with the source code of ARIA 2.1 is freely available at http://www.pasteur.fr/recherche/unites/Binfs/aria2. 相似文献
4.
5.
We have developed a graphics based algorithm for semi-automated protein NMR assignments. Using the basic sequential triple resonance assignment strategy, the method is inspired by the Boolean operators as it applies "AND"-, "OR"- and "NOT"-like operations on planes pulled out of the classical three-dimensional spectra to obtain its functionality. The method's strength lies in the continuous graphical presentation of the spectra, allowing both a semi-automatic peaklist construction and sequential assignment. We demonstrate here its general use for the case of a folded protein with a well-dispersed spectrum, but equally for a natively unfolded protein where spectral resolution is minimal. 相似文献
6.
In biological NMR, assignment of NOE cross-peaks and calculation of atomic conformations are critical steps in the determination of reliable high-resolution structures. ARIA is an automated approach that performs NOE assignment and structure calculation in a concomitant manner in an iterative procedure. The log-harmonic shape for distance restraint potential and the Bayesian weighting of distance restraints, recently introduced in ARIA, were shown to significantly improve the quality and the accuracy of determined structures. In this paper, we propose two modifications of the ARIA protocol: (1) the softening of the force field together with adapted hydrogen radii, which is meaningful in the context of the log-harmonic potential with Bayesian weighting, (2) a procedure that automatically adjusts the violation tolerance used in the selection of active restraints, based on the fitting of the structure to the input data sets. The new ARIA protocols were fine-tuned on a set of eight protein targets from the CASD–NMR initiative. As a result, the convergence problems previously observed for some targets was resolved and the obtained structures exhibited better quality. In addition, the new ARIA protocols were applied for the structure calculation of ten new CASD–NMR targets in a blind fashion, i.e. without knowing the actual solution. Even though optimisation of parameters and pre-filtering of unrefined NOE peak lists were necessary for half of the targets, ARIA consistently and reliably determined very precise and highly accurate structures for all cases. In the context of integrative structural biology, an increasing number of experimental methods are used that produce distance data for the determination of 3D structures of macromolecules, stressing the importance of methods that successfully make use of ambiguous and noisy distance data. 相似文献
7.
Reliable automated NOE assignment and structure calculation on the basis of a largely complete, assigned input chemical shift list and a list of unassigned NOESY cross peaks has recently become feasible for routine NMR protein structure calculation and has been shown to yield results that are equivalent to those of the conventional, manual approach. However, these algorithms rely on the availability of a virtually complete list of the chemical shifts. This paper investigates the influence of incomplete chemical shift assignments on the reliability of NMR structures obtained with automated NOESY cross peak assignment. The program CYANA was used for combined automated NOESY assignment with the CANDID algorithm and structure calculations with torsion angle dynamics at various degrees of completeness of the chemical shift assignment which was simulated by random omission of entries in the experimental 1H chemical shift lists that had been used for the earlier, conventional structure determinations of two proteins. Sets of structure calculations were performed choosing the omitted chemical shifts randomly among all assigned hydrogen atoms, or among aromatic hydrogen atoms. For comparison, automated NOESY assignment and structure calculations were performed with the complete experimental chemical shift but under random omission of NOESY cross peaks. When heteronuclear-resolved three-dimensional NOESY spectra are available the current CANDID algorithm yields in the absence of up to about 10% of the experimental 1H chemical shifts reliable NOE assignments and three-dimensional structures that deviate by less than 2 Å from the reference structure obtained using all experimental chemical shift assignments. In contrast, the algorithm can accommodate the omission of up to 50% of the cross peaks in heteronuclear- resolved NOESY spectra without producing structures with a RMSD of more than 2 Å to the reference structure. When only homonuclear NOESY spectra are available, the algorithm is slightly more susceptible to missing data and can tolerate the absence of up to about 7% of the experimental 1H chemical shifts or of up to 30% of the NOESY peaks.Abbreviations: BmPBPA – Bombyx mori pheromone binding protein form A; CYANA – combined assignment and dynamics algorithm for NMR applications; NMR – nuclear magnetic resonance; NOE – nuclear Overhauser effect; NOESY – NOE spectroscopy; RMSD – root-mean-square deviation; WmKT – Williopsis mrakii killer toxin 相似文献
8.
Proton NMR studies of a metallothionein from Neurospora crassa: sequence-specific assignments by NOE measurements in the rotating frame 总被引:1,自引:0,他引:1
Sequential 1H NMR assignments of a metallothionein from Neurospora crassa have been accomplished by the combined use of COSY, 2QF-COSY, HOHAHA, and rotating-frame NOE experiments. All potentially observable resonances were assigned except for the epsilon-NH3 group of the C-terminal lysine. 1H NOEs, when observed in the laboratory frame and at 500-MHz spectrometer frequency, were negligible in this protein due to the inherent rotational correlation time of the molecule. This difficulty was circumvented by measuring transverse NOEs in the rotating frame under spin-locking conditions. The observed pattern of NOEs reveals a marked absence of "regular" secondary structures in the protein. Thus, the stability of this metallothionein's tertiary structure must arise primarily from its metal ligation. This appears to be a general feature of MTs since a general lack of extensive secondary structural elements was also observed in other metallothioneins. 相似文献
9.
Recent developments in protein NMR technology have provided spectral data that are highly amenable to analysis by advanced computer software systems. Specific data collection strategies, coupled with these computer programs, allow automated analysis of extensive backbone and sidechain resonance assignments and three-dimensional structures for proteins of 50 to 200 amino acids. 相似文献
10.
Heteronuclear editing has found widespread use in the detection ofproton–proton dipolar interactions in isotopically labelled proteins.However, in cases where both the resonances of protons and directly bound13C or 15N spins of two or more sites aredegenerate, unambiguous assignments are difficult to obtain by conventionalmethods. Here, we present simple extensions of well-known triple-resonancepulse sequences which improve the dispersion of NOESY spectra. In order torecord the chemical shifts of backbone nuclei which allow a resolution ofoverlapping cross peaks, the magnetization is relayed via the scalarcoupling network either before or after the NOE mixing period. The novelpulse sequences are applied to flavodoxin from the sulfate-reducing organismDesulfovibrio vulgaris. A number of previously unassigned NOE interactionsinvolving -, - and amide protons can be unequivocallyidentified, suggesting that the accuracy of protein structure determinationcan be improved. 相似文献
11.
1H NMR assignments of apo calcyclin and comparative structural analysis with calbindin D9k and S100 beta.
下载免费PDF全文

B. C. Potts G. Carlstrm K. Okazaki H. Hidaka W. J. Chazin 《Protein science : a publication of the Protein Society》1996,5(11):2162-2174
The homodimeric S100 protein calcyclin has been studied in the apo state by two-dimensional 1H NMR spectroscopy. Using a combination of scalar correlation and NOE experiments, sequence-specific 1H NMR assignments were obtained for all but one backbone and > 90% of the side-chain resonances. To our knowledge, the 2 x 90 residue (20 kDa) calcyclin dimer is the largest protein system for which such complete assignments have been made by purely homonuclear methods. Sequential and medium-range NOEs and slowly exchanging backbone amide protons identified directly the four helices and the short antiparallel beta-type interaction between the two binding loops that comprise each subunit of the dimer. Further analysis of NOEs enabled the unambiguous assignment of 556 intrasubunit distance constraints, 24 intrasubunit hydrogen bonding constraints, and 2 x 26 intersubunit distance constraints. The conformation of the monomer subunit was refined by distance geometry and restrained molecular dynamics calculations using the intrasubunit constraints only. Calculation of the dimer structure starting from this conformational ensemble has been reported elsewhere. The extent of structural homology among the apo calcyclin subunit, the monomer subunit of apo S100 beta, and monomeric apo calbindin D9k has been examined in detail by comparing 1H NMR chemical shifts and secondary structures. This analysis was extended to a comprehensive comparison of the three-dimensional structures of the calcyclin monomer subunit and calbindin D9k, which revealed greater similarity in the packing of their hydrophobic cores than was anticipated previously. Together, these results support the hypothesis that all members of the S100 family have similar core structures and similar modes of dimerization. Analysis of the amphiphilicity of Helix IV is used to explain why calbindin D9k is monomeric, but full-length S100 proteins form homodimers. 相似文献
12.
PRODECOMP (projection decomposition) is an implementation of a multi-way decomposition algorithm for the analysis of two-dimensional projections of high-dimensional nuclear magnetic resonance spectra. The newest version, PRODECOMPv3, features a dramatic speedup, more reliable decompositions, a substantial reduction in memory demands, a new graphical user interface and integration into third-party software. These improvements extend the applicability of decompositions to novel types of NMR data on proteins, yielding backbone and side-chain assignments as well as structural information, and therewith enabling complete characterizations of proteins. AVAILABILITY: Program, short manual and an example calculation are freely available at www2.chem.gu.se/bcbp/nmr/prodecomp.html. 相似文献
13.
Magic-angle-spinning solid-state 13C NMR spectroscopy is useful for structural analysis of non-crystalline proteins. However, the signal assignments and structural analysis are often hampered by the signal overlaps primarily due to minor structural heterogeneities, especially for uniformly-13C,15N labeled samples. To overcome this problem, we present a method for assigning 13C chemical shifts and secondary structures from unresolved two-dimensional 13C–13C MAS NMR spectra by spectral fitting, named reconstruction of spectra using protein local structures (RESPLS). The spectral fitting was conducted using databases of protein fragmented structures related to 13Cα, 13Cβ, and 13C′ chemical shifts and cross-peak intensities. The experimental 13C–13C inter- and intra-residue correlation spectra of uniformly isotope-labeled ubiquitin in the lyophilized state had a few broad peaks. The fitting analysis for these spectra provided sequence-specific Cα, Cβ, and C′ chemical shifts with an accuracy of about 1.5 ppm, which enabled the assignment of the secondary structures with an accuracy of 79 %. The structural heterogeneity of the lyophilized ubiquitin is revealed from the results. Test of RESPLS analysis for simulated spectra of five different types of proteins indicated that the method allowed the secondary structure determination with accuracy of about 80 % for the 50–200 residue proteins. These results demonstrate that the RESPLS approach expands the applicability of the NMR to non-crystalline proteins exhibiting unresolved 13C NMR spectra, such as lyophilized proteins, amyloids, membrane proteins and proteins in living cells. 相似文献
14.
J M Moratal M J Martinez-Ferrer H R Jiménez A Donaire J Castells J Salgado 《Journal of inorganic biochemistry》1992,45(4):231-243
The binding of acetazolamide, p-fluorobenzensulfonamide, p-toluenesulfonamide, and sulfanilamide to nickel(II)-substituted carbonic anhydrase II has been studied by 1H NMR and electronic absorption spectroscopies. These inhibitors bind to the metal ion forming 1:1 complexes and their affinity constants were determined. The 1H NMR spectra of the formed complexes show a number of isotropically shifted signals corresponding to the histidine ligands. The complexes with benzene-sulfonamides gave rise to very similar 1H NMR spectra. The NMR data suggest that these aromatic sulfonamides bind to the metal ion altering its coordination sphere. In addition, from the temperature dependence of 1H NMR spectra of the p-fluorobenzenesulfonamide adduct, a conformational change is suggested. The T1 values of the meta-like protons of the coordinated histidines have been measured and resonance assignments based on NOE experiments were performed. 相似文献
15.
Sequence-specific resonance assignments for the isolated second or b domain of the bovine seminal fluid protein PDC-109 have been obtained from analysis of two-dimensional 1H NMR experiments recorded at 500 MHz. These assignments include the identification of all aromatic and most aliphatic amino acid resonances. Stereospecific assignment of resonances stemming from the Val2 CH3 gamma,gamma' groups and from seven CH beta,beta' geminal pairs has been accomplished by analysis of 3J alpha beta coupling constants in conjunction with patterns of cross-peak intensities observed in two-dimensional nuclear Overhauser effect (NOESY) spectra. Analysis of NOESY and 3J alpha NH data reveals a small antiparallel beta-sheet involving stretches containing residues 25-28 and 39-42, a cis-proline residue (Pro4), antiparallel strands consisting of residues 1-3, 5-7, and 10-13, and an aromatic cluster composed of Tyr7, Trp26, and Tyr33. The results of distance geometry and restrained molecular dynamics calculations indicate that the global fold of the PDC-109 b domain, a type II module related to those found in fibronectin, is somewhat different from that predicted by modeling the structure on the basis of homology between type II and kringle units. A shallow depression in the molecular surface which presents a solvent-exposed hydrophobic area--a potential ligand-binding site-is identified in the NMR-based models. 相似文献
16.
D M LeMaster 《Quarterly reviews of biophysics》1990,23(2):133-174
17.
Two-dimensional NMR studies on des-pentapeptide-insulin. Proton resonance assignments and secondary structure analysis 总被引:1,自引:0,他引:1
The shortened analogue of insulin, des-(B26-B30)-pentapeptide insulin, has been characterized by two-dimensional 1H NMR. The 1H resonance assignments and the secondary structure in water solution are discussed The results indicate that the secondary structure in solution is very similar to that reported for the crystalline state. A high flexibility of both A and B chains is observed. Of the two conformations seen in the 2-Zn insulin crystals and indicated as molecules 1 and 2 (Chinese nomenclature), the structure of the analogue is more similar to that of molecule 1. 相似文献
18.
L P McIntosh F W Dahlquist A G Redfield 《Journal of biomolecular structure & dynamics》1987,5(1):21-34
This article reviews methods based on direct observation of proton NMR in macromolecules containing 13C or 15N labels. The resonances and Overhauser effects of protons attached to the labels can be edited or filtered from the remaining overlapping resonances. This leads to simplification of the spectra when labels are incorporated selectively. In 2D and related methods the label's chemical shift provides a second dimension which is useful for spectral differentiation and identification. The methods are useful for larger proteins and we describe our progress on studies of T4 lysozyme, mass 18.7 kD, in which we have already identified a large number of resonances. 相似文献
19.
1H and 15N NMR resonance assignments and preliminary structural characterization of Escherichia coli apocytochrome b562 总被引:3,自引:0,他引:3
The 1H and 15N resonances of uniformly enriched apocytochrome b562 (106 residues) have been assigned. The assignment work began with the identification of the majority of HN-H alpha-H beta subspin systems in two-dimensional DQF-COSY and TOCSY spectra of unlabeled protein in D2O and in 95% H2O/5% D2O buffer. Intraresidue and interresidue NOE connectivities were then searched for in two-dimensional homonuclear NOESY spectra recorded on unlabeled protein and in the three-dimensional NOESY-HMQC spectrum recorded on uniformly 15N-enriched protein. Those data, combined with the main-chain-directed assignment strategy (MCD), led to the assignment of the main-chain and many side-chain resonances of 103 of the 106 residues. Qualitatively, the helical conformation is found to be the dominant secondary structure in apocytochrome b562 as it is in holocytochrome b562. The helical segments in apocytochrome b562 overlap extensively with the helical regions defined in the crystal structure of ferricytochrome b562. In addition, a number of tertiary NOEs have been identified which indicate that the global fold of the apoprotein at least partially resembles the four-helix bundle of the holoprotein. The results presented here, together with the evidence obtained with other methods [Feng and Sligar (1991) Biochemistry (submitted)], support the notion that the interior of the protein is fluid and may correspond to a molten globule state. 相似文献
20.
Structural analysis of multi-domain protein complexes is a key challenge in current biology and a prerequisite for understanding the molecular basis of essential cellular processes. The use of solution techniques is important for characterizing the quaternary arrangements and dynamics of domains and subunits of these complexes. In this respect solution NMR is the only technique that allows atomic- or residue-resolution structure determination and investigation of dynamic properties of multi-domain proteins and their complexes. As experimental NMR data for large protein complexes are sparse, it is advantageous to combine these data with additional information from other solution techniques. Here, the utility and computational approaches of combining solution state NMR with small-angle X-ray and Neutron scattering (SAXS/SANS) experiments for structural analysis of large protein complexes is reviewed. Recent progress in experimental and computational approaches of combining NMR and SAS are discussed and illustrated with recent examples from the literature. The complementary aspects of combining NMR and SAS data for studying multi-domain proteins, i.e. where weakly interacting domains are connected by flexible linkers, are illustrated with the structural analysis of the tandem RNA recognition motif (RRM) domains (RRM1-RRM2) of the human splicing factor U2AF65 bound to a nine-uridine (U9) RNA oligonucleotide. 相似文献