首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic effects induced in ethanolic fermentation by Saccharomyces cerevisiae strain DAUFPE-1012 were studied during a 24 h exposure to 220 mT steady magnetic fields (SMF) at 23 +/- 1 degrees C, produced by NdFeB rod magnets. The magnets were attached diametrically opposed (N to S) to a cylindrical tube reactor. The biomass growth in the reactor culture media (yeast extract + glucose 2%) during 24 h was monitored by measurements of optical density, which was correlated to cell dry weight. Ethanol concentration and glucose level were measured every 2 h. The pH of the culture media was maintained between 4 and 5. As a result, biomass (g/L) increased 2.5-fold and ethanol concentration 3.4-fold in magnetized cultures (n = 8) as compared with SMF nonexposed cultures (n = 8). Glucose consumption was higher in magnetized cultures, which correlated to the ethanol yield.  相似文献   

2.
Tang  Hengfang  Wang  Peng  Wang  Han  Fang  Zhiwei  Yang  Qiang  Ni  Wenfeng  Sun  Xiaowen  Liu  Hui  Wang  Li  Zhao  Genhai  Zheng  Zhiming 《Bioprocess and biosystems engineering》2019,42(12):1923-1933

Increasing evidence shows that static magnetic fields (SMFs) can affect microbial growth metabolism, but the specific mechanism is still unclear. In this study, we have investigated the effect of moderate-strength SMFs on growth and vitamin K2 biosynthesis of Flavobacterium sp. m1-14. First, we designed a series of different moderate-strength magnetic field intensities (0, 50, 100, 150, 190 mT) and exposure times (0, 24, 48, 72, 120 h). With the optimization of static magnetic field intensity and exposure time, biomass and vitamin K2 production significantly increased compared to control. The maximum vitamin K2 concentration and biomass were achieved when exposed to 100 mT SMF for 48 h; compared with the control group, they increased by 71.3% and 86.8%, respectively. Interestingly, it was found that both the cell viability and morphology changed significantly after SMF treatment. Second, the adenosine triphosphate (ATP) and glucose-6-phosphate dehydrogenase (G6PDH) metabolism is more vigorous after exposed to 100 mT SMF. This change affects the cell energy metabolism and fermentation behavior, and may partially explain the changes in bacterial biomass and vitamin K2 production. The results show that moderate-strength SMFs may be a promising method to promote bacterial growth and secondary metabolite synthesis.

  相似文献   

3.
The effects of a static magnetic field (SMF) on the proliferation of various types of human cells were determined. All cultures were maintained at 37 °C throughout the experiment. SMF was generated by placing two magnets oppositely oriented on either side of a T25 flask. The flux density in the flask ranged from 35 to 120 mT. Growth curves were constructed by plotting cell number at 18 h and 4, 7, 11, and 14 days after seeding, with the 18‐h point being a measure of attachment efficiency. Exposure to SMF significantly decreased initial attachment of fibroblasts and decreased subsequent growth compared to sham‐exposed control. Significant effects were observed in both fetal lung (WI‐38) and adult skin fibroblasts, but they were generally larger in the fetal lung fibroblast line. SMF did not affect attachment of human melanoma cells, but inhibited their growth by 20% on day 7. SMF produced no effects in a human adult stem cell line. Oxidant production increased 37% in WI‐38 cells exposed to SMF (230–250 mT) during the first 18 h after seeding, when cell attachment occurs. Conversely, no elevation in oxidant levels was observed after a prolonged 5‐day exposure. These results indicate that exposure to SMF has significant biological effects in some, but not all types of human cells. Bioelectromagnetics 32:140–147, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
This study describes the effects of a static magnetic field (SMF) on cell growth and DNA integrity of human umbilical vein endothelial cells (HUVECs). Fast halo assay was used to investigate nuclear damage; quantitative polymerase chain reaction (QPCR), standard PCR, and real‐time PCR were used to evaluate mitochondrial DNA integrity, content, and gene expression. HUVECs were continually exposed to a 300 mT SMF for 4, 24, 48, and 72 h. Compared to control samples (unexposed cultures) the SMF‐exposed cells did not show a statistically significant change in their viability. Conversely, the static field was shown to be significant after 4 h of exposure, inducing damage on both the nuclear and mitochondrial levels, reducing mitochondrial content and increasing reactive oxygen species. Twenty‐four hours of exposure increased mitochondrial DNA content as well as expression of one of the main genes related to mitochondrial biogenesis. No significant differences between exposed and sham cultures were found after 48 and 72 h of exposure. The results suggest that a 300 mT SMF does not cause permanent DNA damage in HUVECs and stimulates a transient mitochondrial biogenesis. Bioelectromagnetics 31:630–639, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
The aim of this study was to investigate whether a moderate‐intensity static magnetic field (SMF) can enhance the killing effect of adriamycin (ADM) on K562 cells, and to explore the effects of SMF combined with ADM on K562 cells. We analyzed the metabolic activity of cells, cell cycle distribution, DNA damage, change in cell ultrastructure, and P‐glycoprotein (P‐gp) expression after K562 cells were exposed continuously to a uniform 8.8 mT SMF for 12 h, with or without ADM. Our results showed that the SMF combined with ADM (25 ng/ml) significantly inhibited the metabolic activity of K562 cells (P < 0.05), while neither ADM nor the SMF alone affected the metabolic activity of these cells. Cell ultrastructure was altered in the SMF + ADM group. For example, cell membrane was depressed, some protuberances were observable, and vacuoles in the cytoplasm became larger. Cells were arrested at the G2/M phase and DNA damage increased after cells were treated with the SMF plus ADM. ADM also induced the P‐gp expression. In contrast, in the SMF group and SMF + ADM group, the P‐gp expression was decreased compared with the ADM group. Taken together, our results showed that the 8.8 mT SMF enhanced the cytotoxity potency of ADM on K562 cells, and the decrease in P‐gp expression may be one reason underlying this effect. Bioelectromagnetics 32:191–199, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
It is believed that static magnetic fields (SMF) cannot affect the pattern formation of the Belousov-Zhabotinsky (BZ) reaction, which has been frequently studied as a simplified experimental model of a nonequilibrium open system, because SMF produces no induced current and the magnetic force of SMF far below 1 T is too low to expect the effects on electrons in the BZ reaction. In the present study, we examined whether the velocity of chemical waves in the unstirred BZ reaction can be affected by a moderate-intensity SMF exposure depending on the spatial magnetic gradient. The SMF was generated by a parallel pair of attracting rectangular NdFeB magnets positioned opposite each other. The respective maximum values of magnetic flux density (B(max)), magnetic flux gradient (G(max)), and the magnetic force product of the magnetic flux density its gradient (a magnetic force parameter) were 206 mT, 37 mT/mm, and 3,000 mT(2)/mm. The ferroin-catalyzed BZ medium was exposed to the SMF for up to 16 min at 25 degrees C. The experiments demonstrated that the wave velocity was significantly accelerated primarily by the magnetic gradient. The propagation of the fastest wave front indicated a sigmoid increase along the peak magnetic gradient line, but not along the peak magnetic force product line. The underlying mechanisms of the SMF effects on the anomalous wave propagation could be attributed primarily to the increased concentration gradient of the paramagnetic iron ion complexes at the chemical wave fronts induced by the magnetic gradient.  相似文献   

7.
The aim of this study was to determine the effect of gradient static magnetic field (SMF) on reactive oxygen species (ROS) production in human neutrophils in peripheral blood in vitro. Blood samples collected from healthy individuals were incubated in an inhomogeneous SMF (in a south or north pole of the field) for 15, 30 or 45 minutes. The maximum value of induction (B max) amounted to ≈ 60 mT. To determine the strength of the ROS production, dihydrorhodamine (123DHR) as fluorophore and phorbol 12-myristate 13-acetate (PMA) as respiratory burst stimulator were used. 123DHR oxidation by ROS was measured by flow cytometry. The exposure of blood samples to SMF induced statistically significant changes in ROS production in unstimulated and PMA-stimulated neutrophils. The observed effects were highly correlated with the exposure time and depended on the orientation of the field. Although intracellular mechanisms underlying such interactions are not thoroughly understood, it could be presumed that SMF affects ROS metabolic oscillations and their formation and inactivation. This study emphasizes the importance of proper adjustment of exposure time to SMF for any potential therapeutic applications.  相似文献   

8.
Previously, we found that whole body exposure to static magnetic fields (SMF) at 10 mT (B(max)) and 25 mT (B(max)) for 2-9 weeks suppressed and delayed blood pressure (BP) elevation in young, stroke resistant, spontaneously hypertensive rats (SHR). In this study, we investigated the interrelated antipressor effects of lower field strengths and nitric oxide (NO) metabolites (NO(x) = NO(2)(-) + NO(3)(-)) in SHR. Seven-week-old male rats were exposed to two different ranges of SMF intensity, 0.3-1.0 mT or 1.5-5.0 mT, for 12 weeks. Three experimental groups of 20 animals each were examined: (1) no exposure with intraperitoneal (ip) saline injection (sham-exposed control); (2) 1 mT SMF exposure with ip saline injection (1 mT); (3) 5 mT SMF exposure with ip saline injection (5 mT). Arterial BP, heart rate (HR), skin blood flow (SBF), plasma NO metabolites (NO(x)), and plasma catecholamine levels were monitored. SMF at 5 mT, but not 1 mT, significantly suppressed and retarded the early stage development of hypertension for several weeks, compared with the age matched, unexposed (sham exposed) control. Exposure to 5 mT resulted in reduced plasma NO(x) concentrations together with lower levels of angiotensin II and aldosterone in SHR. These results suggest that SMF may suppress and delay BP elevation via the NO pathways and hormonal regulatory systems.  相似文献   

9.
We investigated the interrelated antihypotensive effects of static magnetic fields (SMF) and plasma catecholamine levels in reserpine-induced hypotensive Wistar-Kyoto rats. Seven-week-old male rats were exposed to two different ranges of SMF intensities, 3.0-10 mT (Bmax) or 7.5-25 mT (Bmax) for 12 weeks. Six experimental groups of 10 animals each were examined: (1) no exposure with intraperitoneal (ip) saline injection (sham exposed control); (2) 10 mT SMF exposure with ip saline injection (10 mT); (3) 25 mT SMF exposure with ip saline injection (25 mT); (4) no exposure with ip reserpine injection (RES); (5) 10 mT SMF exposure with ip reserpine injection (10 mT + RES); (6) 25 mT SMF exposure with ip reserpine injection (25 mT + RES). Reserpine (5 mg/kg) was administered three times a week for 12 weeks, and 18 h after each injection, arterial blood pressure (BP), heart rate, skin blood flow, plasma nitric oxide metabolites, plasma catecholamine levels, and behavioral parameters of a functional observational battery (FOB) were monitored. The action of reserpine significantly decreased BP, reduced plasma norepinephrine (NE), increased the FOB hunched posture score and decreased the number of rearing events in the RES group, compared with the respective age-matched control group. Exposure to 25 mT, but not 10 mT, for 2-12 weeks significantly prevented the reserpine-induced decrease of BP in the 25 mT + RES group compared with the respective RES group. Moreover, exposure to 25 mT for 5 weeks partially suppressed the reserpine-induced NE reduction, but did not bring about a complete reversal of reserpine effects. NE levels for the 25 mT + RES group for 5 weeks were significantly higher compared with the RES group, but still lower compared with the control group. In addition, the FOB hunched posture score for the 25 mT + RES group was significantly lower and the number of rearing events was higher compared with the RES group, but these behavioral parameters did not revert to control levels. There were no significant differences in any of the physiological or behavioral parameters measured between the 10 mT + RES and RES groups, nor between the two different SMF groups and the control group. These results indicate that 25 mT SMF with spatial gradients significantly suppressed the reserpine-induced hypotension and bradykinesia. The antihypotensive effects of SMF on the reserpine-treated group might be at least partially related to the inhibition of NE depletion.  相似文献   

10.
This study investigated the spatial magnetic gradient effects of static magnetic fields (SMF) on endothelial tubular formation by applying the maximum spatial gradient to a target site of culture wells for cell growth. The respective maximum values of magnetic flux density (B(max)), magnetic flux gradient (G(max)) and the magnetic force product of the magnetic flux density and its gradient (a parameter of magnetic force) were 120 mT, 28 mT/mm and 1428 mT(2)/mm. The effects of gradient SMF on tubular formation were compared with those of uniform SMF that has no spatial gradients on the entire bottom area of culture wells. Five experimental groups of 25 samples each were examined: (1) sham exposure (control); (2) peak gradient exposure in the peripheral part; (3) peak gradient exposure in the central part; (4) uniform exposure to 20 mT; (5) uniform exposure to 120 mT. The SMF or sham exposure was carried out for 10 days. Photomicrographs of tubular cells, immunostained with an anti-platelet-endothelial cell adhesion molecule-1 (PECAM-1 [CD31]) antibody as a pan-endothelial marker, were analyzed after the 10-day culture. Gradient SMF in the peripheral or central part was found to significantly promote tubular formation in terms of the area density and length of tubules in each peak gradient/force part of the wells, compared with the sham exposure. In contrast, uniform SMF did not induce any significant change in the tubular formation. These findings suggest that tubule formation can be promoted by applying the peak gradient/force to a target site of culture wells.  相似文献   

11.
Microalgal biotechnology could generate substantial amounts of biofuels with minimal environmental impact if the economics can be improved by increasing the rate of biomass production. Chlorella kessleri was grown in a small‐scale raceway pond and in flask cultures with the entire volume, 1% (v/v) at any instant, periodically exposed to static magnetic fields to demonstrate increased biomass production and investigate physiological changes, respectively. The growth rate in flasks was maximal at a field strength of 10 mT, increasing from 0.39 ± 0.06 per day for the control to 0.88 ± 0.06 per day. In the raceway pond the 10 mT field increased the growth rate from 0.24 ± 0.03 to 0.45 ± 0.05 per day, final biomass from 0.88 ± 0.11 to 1.56 ± 0.18 g/L per day, and maximum biomass production from 0.11 ± 0.02 to 0.38 ± 0.04 g/L per day. Increased pigment, protein, Ca, and Zn content made the biomass produced with magnetic stimulation nutritionally superior. An increase in oxidative stress was measured indirectly as a decrease in antioxidant capacity from 26 ± 2 to 17 ± 1 µmol antioxidant/g biomass. Net photosynthetic capacity (NPC) and respiratory rate were increased by factors of 2.1 and 3.1, respectively. Loss of NPC enhancement after the removal of magnetic field fit a first‐order model well (R2 = 0.99) with a half‐life of 3.3 days. Transmission electron microscopy showed enlarged chloroplasts and decreased thylakoid order with 10 mT treatment. By increasing daily biomass production about fourfold, 10 mT magnetic field exposure could make algal oil cost competitive with other biodiesel feedstocks. Bioelectromagnetics 33:298–308, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
Summary The influence of a life-long exposure to static magnetic fields (SMF) on the lifespan of female AKR mice which develop spontaneous lymphoblastic leukaemia was investigated. Exposure all day long to a circular SMF, 4.6 mT maximal intensity or 2 h a day, 5 consecutive days a week to a uniform SMF of 400 mT did not modify the lifespan of mice. Exposure 2 h a day, 5 consecutive days a week to a uniform SMF of 600 or 800 mT modified the lifespan: about 50% of the population had a longer survival than the controls. Mice exposed 30 min a day 5 consecutive days a week to a non-uniform SMF presented the same trend.  相似文献   

13.
In this study, we evaluated the ability of 8.8 mT static magnetic fields (SMF) to enhance the in vitro action of a chemotherapeutic agent, paclitaxel, against K562 human leukemia cells. We analyzed the cell proliferation, cell cycle distribution, DNA damage and alteration of cell surface and cell organelle ultrastructure after K562 cells were exposed to paclitaxel in the presence or absence of 8.8 mT SMF. The results showed that in the presence of SMF, the efficient concentration of paclitaxel on K562 cells was decreased from 50 to 10 ng/ml. Cell cycle analysis indicated that K562 cells treated with SMF plus paclitaxel were arrested at the G2 phase, which was mainly induced by paclitaxel. Through comet assay, we found that the cell cycle arrest effect of paclitaxel with or without SMF on K562 cells was correlated with DNA damage. The results of atomic force microscopy and transmission electron microscopy observation showed that the cell ultrastructure was altered in the group treated with the combination of SMF and paclitaxel, holes and protuberances were observed, and vacuoles in cytoplasm were augmented. Our data indicated that the potency of the combination of SMF and paclitaxel was greater than that of SMF or paclitaxel alone on K562 cells, and these effects were correlated with DNA damage induced by SMF and paclitaxel. Therefore, the alteration of cell membrane permeability may be one important mechanism underlying the effects of SMF and paclitaxel on K562 cells.  相似文献   

14.
Modulatory effects of static magnetic fields on blood pressure in rabbits   总被引:7,自引:0,他引:7  
Acute effects of locally applied static magnetic fields (SMF) on pharmacologically altered blood pressure (BP) in a central artery of the ear lobe of a conscious rabbit were evaluated. Hypotensive and vasodilator actions were induced by a Ca(2+) channel blocker, nicardipine (NIC). Hypertensive and vasoconstrictive actions were induced by a nitric oxide synthase (NOS) inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME). The hemodynamic changes in the artery exposed to SMF were measured continuously and analyzed by penetrating microphotoelectric plethysmography (MPPG). Concurrently, BP changes in a central artery contralateral to that of the exposed ear lobe were monitored. SMF intensity was 1 mT and the duration of exposure was 30 min. A total of 180 experimental trials were carried out in 34 healthy adult male rabbits weighing 2.6-3.8 kg. Six experimental procedures were chosen at random: (1) sham exposure without pharmacological treatment; (2) SMF exposure alone; (3) decreased BP induced by a single intravenous (iv) bolus injection of NIC (100 microM/kg) without SMF exposure; (4) decreased BP induced by injection of NIC with SMF exposure; (5) increased BP induced by a constant iv infusion of L-NAME (10 mM/kg/h) without SMF exposure; (6) increased BP induced by infusion of L-NAME with SMF exposure. The results demonstrated that SMF significantly reduced the vasodilatation with enhanced vasomotion and antagonized the reduction of BP via NIC-blocked Ca(2+) channels in vascular smooth muscle cells. In addition, SMF significantly attenuated the vasoconstriction and suppressed the elevation of BP via NOS inhibition in vascular endothelial cells and/or central nervous system neurons. These results suggest that these modulatory effects of SMF on BP might, in part, involve a feedback control system for alteration in NOS activity in conjunction with modulation of Ca(2+) dynamics.  相似文献   

15.
The aim of this study was to investigate the effect of static magnetic fields (SMF) on reactive oxygen species induced by X‐ray radiation. The experiments were performed on lymphocytes from male albino Wistar rats. After exposure to 3 Gy X‐ray radiation (with a dose rate of 560 mGy/min) the measurement of intracellular reactive oxygen species in lymphocytes, using a fluorescent probe, was done before exposure to the SMF, and after 15 min, 1 and 2 h of exposure to the SMF or a corresponding incubation time. For SMF exposure, 0 mT (50 µT magnetic field induction opposite to the geomagnetic field) and 5 mT fields were chosen. The trend of SMF effects for 0 mT was always opposite that of 5 mT. The first one decreased the rate of fluorescence change, while the latter one increased it. Bioelectromagnetics 34:333–336, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Beneficial or adverse effects of Static Magnetic Fields (SMFs) are a large concern for the scientific community. In particular, the effect of SMF exposure during anticancer therapies still needs to be fully elucidated. Here, we evaluate the effects of SMF at induction levels that cisPt-treated cancer patients experience during the imaging process conducted in Low field (200–500 mT), Open field (300–700 mT) and/or inhomogeneous High field (1.5–3 T) Magnetic Resonance Imaging (MRI) machines. Human adrenergic neuroblastoma SH-SY5Y cells treated with 0.1 µM cisPt (i.e. the lowest concentration capable of inducing apoptosis) were exposed to SMF and their response was studied in vitro. Exposure of 0.1 µM cisPt-treated cells to SMF for 2 h decreased cell viability (30%) and caused overexpression of the apoptosis-related cleaved caspase-3 protein (46%). Furthermore, increase in ROS (Reactive Oxygen Species) production (23%) and reduction in the number of mitochondria vs controls were seen. The sole exposure of SMF for up to 24 h had no effect on cell viability but increased ROS production and modified cellular shape. On the other hand, the toxicity of cisPt was significantly prevented during 24 h exposure to SMF as shown by the levels of cell viability, cleaved caspase-3 and ROS production. In conclusion, due to the cytoprotective effect of 31.7–232.0 mT SMF on low-cisPt-concentration-treated SH-SY5Y cells, our data suggest that exposure to various sources of SMF in cancer patients under a cisPt regimen should be strictly controlled.  相似文献   

17.
Plant cell cultures could be used as an important tool for biochemical production, ranging from natural coloring (pigments) to pharmaceutical products. Anthocyanins are becoming a very important alternative to synthetic dyes because of increased public concern over the safety of artificial food coloring agents. Several factors are responsible for the production of anthocyanin in cell cultures. In the present study, we investigate the effects of different environmental factors, such as light intensity, irradiance (continuous irradiance or continuous darkness), temperature and medium pH on cell biomass yield and anthocyanin production in cultures of Melastoma malabathricum. Moderate light intensity (301 - 600 lux) induced higher accumulation of anthocyanins in the cells. The cultures exposed to 10-d continuous darkness showed the lowest pigment content, while the cultures exposed to 10-d continuous irradiance showed the highest pigment content. The cell cultures incubated at a lower temperature range (20 ± 2 oC) grew better and had higher pigment content than those grown at 26 ± 2 oC and 29 ± 2 oC. Different medium pH did not affect the yield of cell biomass but anthocyanin accumulation was highest at pH 5.25 - 6.25.  相似文献   

18.
Due to widespread exposure of human being to various sources of static magnetic fields (SMF), their effect on the spatial and temporal status of structure, arrangement, and polymerization of tubulin was studied at the molecular level. The intrinsic fluorescence intensity of tubulin was increased by SMF, indicating the repositioning of tryptophan and tyrosine residues. Circular Dichroism spectroscopy revealed variations in the ratios of alpha helix, beta, and random coil structures of tubulin as a result of exposure to SMF at 100, 200, and 300 mT. Transmission Electron microscopy of microtubules showed breaches and curvatures whose risk of occurrence increased as a function of field strength. Dynamic light scattering revealed an increase in the surface potential of tubulin aggregates exposed to SMF. The rate and extent of polymerization increased by 9.8 and 33.8%, at 100 and 300 mT, respectively, but decreased by 36.16% at 200 mT. The conductivity of polymerized tubulin increased in the presence of 100 and 300 mT SMF but remained the same as the control at 200 mT. The analysis of flexible amino acids along the sequence of tubulin revealed higher SMF susceptibility in the helical electron conduction pathway set through histidines rather than the vertical electron conduction pathway formed by tryptophan residues. The results reveal structural and functional effects of SMF on tubulin assemblies and microtubules that can be considered as a potential means to address the safety issues and for manipulation of bioelectrical characteristics of cytosol, intracellular trafficking and thus, the living status of cells, remotely.  相似文献   

19.
Static magnetic field (SMF) interacts with mammal skeletal muscle; however, SMF effects on skeletal muscle cells are poorly investigated. The myogenic cell line L6, an in vitro model of muscle development, was used to investigate the effect of a 80 +/- mT SMF generated by a custom-made magnet. SMF promoted myogenic cell differentiation and hypertrophy, i.e., increased accumulation of actin and myosin and formation of large multinucleated myotubes. The elevated number of nuclei per myotube was derived from increased cell fusion efficiency, with no changes in cell proliferation upon SMF exposure. No alterations in myogenin expression, a modulator of myogenesis, occurred upon SMF exposure. SMF induced cells to align in parallel bundles, an orientation conserved throughout differentiation. SMF stimulated formation of actin stress-fiber like structures. SMF rescued muscle differentiation in the presence of TNF, a muscle differentiation inhibitor. We believe this is the first report showing that SMF promotes myogenic differentiation and cell alignment, in the absence of any invasive manipulation. SMF-enhanced parallel orientation of myotubes is relevant to tissue engineering of a highly organized tissue such as skeletal muscle. SMF rescue of muscle differentiation in the presence of TNF may have important therapeutic implications.  相似文献   

20.
We investigated the combined effects of a moderate intensity static magnetic field (SMF) and an L-type voltage-gated Ca(2+) channel blocker, nicardipine in stroke-resistant spontaneously hypertensive rats during the development of hypertension. Five-week-old male rats were exposed to SMF intensity up to 180 mT (B(max)) with a peak spatial gradient of 133 mT/mm for 14 weeks. Four experimental groups of 14 animals each were examined: (1) sham exposure with intraperitoneal (ip) saline injection (control); (2) SMF exposure with ip saline injection (SMF); (3) sham exposure with ip nicardipine injection (NIC); (4) SMF exposure with ip nicardipine injection (SMF + NIC). A disc-shaped permanent magnet or a dummy magnet was implanted in the vicinity adjacent to the left carotid sinus baroreceptor region in the neck of each rat. Nicardipine (2 mg/kg ip) was administered three times a week for 14 weeks, and then 15 min after each injection, arterial blood pressure (BP), heart rate (HR), baroreflex sensitivity (BRS), skin blood flow (SBF), skin blood velocity (SBV), plasma nitric oxide (NO) metabolites (NO(x) = NO(2) (-) + NO(3) (-)), plasma catecholamine levels and behavioral parameters of a functional observational battery were monitored. The action of nicardipine significantly decreased BP, and increased HR, SBF, SBV, plasma epinephrine and norepinephrine in the NIC group compared with the control respective age-matched group without changing plasma NO(x) levels. Neck exposure to SMF alone for 5-8 weeks significantly suppressed or retarded the development of hypertension together with increased BRS in SMF group. Furthermore, the exposure to SMF for 1-8 weeks significantly promoted the nicardipine-induced BP decrease in the SMF + NIC group compared with the respective NIC group. Moreover, the SMF induced a significant increase in plasma NO(x) in the nicardipine-induced hypotension. There were no significant differences in any of the physiological or behavioral parameters measured between the SMF + NIC and the NIC groups, nor between the SMF and the control groups. These results suggest that the SMF may enhance nicardipine-induced hypotension by more effectively antagonizing the Ca(2+) influx through the Ca(2+) channels compared with the NIC treatment alone. Furthermore, the enhanced antihypertensive effects of the SMF on the nicardipine-treated group appear to be partially related to the increased NO(x). Theoretical considerations suggest that the applied SMF (B(max) 40 mT, 0 Hz) can be converted into a changing magnetic field (B(max) 30-40 mT, 5.7-6.5 Hz or 7.5-8.3 Hz) in the baroreceptor region by means of the carotid artery pulsation. Therefore, we propose that the moderate intensity changing magnetic field, i.e., the magnetic field modulated by the pulse rate, may influence the activity of baroreceptor and baroreflex function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号