首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thromboxane A(2) is a positive feedback lipid mediator produced following platelet activation. The G(q)-coupled thromboxane A(2) receptor subtype, TPalpha, and G(i)-coupled TPbeta subtype have been shown in human platelets. ADP-induced platelet aggregation requires concomitant signaling from two P2 receptor subtypes, P2Y1 and P2T(AC), coupled to G(q) and G(i), respectively. We investigated whether the stable thromboxane A(2) mimetic, (15S)-hydroxy-9, 11-epoxymethanoprosta-5Z,13E-dienoic acid (U46619), also causes platelet aggregation by concomitant signaling through G(q) and G(i), through co-activation of TPalpha and TPbeta receptor subtypes. Here we report that secretion blockade with Ro 31-8220, a protein kinase C inhibitor, completely inhibited U46619-induced, but not ADP- or thrombin-induced, platelet aggregation. Ro 31-8220 had no effect on U46619-induced intracellular calcium mobilization or platelet shape change. Furthermore, U46619-induced intracellular calcium mobilization and shape change were unaffected by A3P5P, a P2Y1 receptor-selective antagonist, and/or cyproheptadine, a 5-hydroxytryptamine subtype 2A receptor antagonist. Either Ro 31-8220 or AR-C66096, a P2T(AC) receptor selective antagonist, abolished U46619-induced inhibition of adenylyl cyclase. In addition, AR-C66096 drastically inhibited U46619-mediated platelet aggregation, which was further inhibited by yohimbine, an alpha(2A)-adrenergic receptor antagonist. Furthermore, inhibition of U46619-induced platelet aggregation by Ro 31-8220 was relieved by activation of the G(i) pathway by selective activation of either the P2T(AC) receptor or the alpha(2A)-adrenergic receptor. We conclude that whereas thromboxane A(2) causes intracellular calcium mobilization and shape change independently, thromboxane A(2)-induced inhibition of adenylyl cyclase and platelet aggregation depends exclusively upon secretion of other agonists that stimulate G(i)-coupled receptors.  相似文献   

2.
In this study, we examined the effects the prostacyclin receptor (IP) agonist cicaprost exhibited on U46619-mediated thromboxane A(2) receptor (TP) signaling in platelets and compared it to that which occurs in human embryonic kidney (HEK) 293 cells stably overexpressing the individual TPalpha or TPbeta isoforms. Consistent with previous studies, cicaprost abrogated U46619-mediated platelet aggregation and mobilization of intracellular calcium ([Ca(2+)](i)). In HEK 293 cells, signaling by TPalpha, but not TPbeta, was subject to IP-mediated desensitization in a protein kinase A-dependent, protein kinase C-independent manner. Desensitization of TPalpha signaling was independent of the nature of the IP agonist used, the level of IP expression, or the subtype of G(q) protein. Signaling by TP(Delta)(328), a truncated variant of TP devoid of the divergent residues of the TPs, or by TPalpha(S329A), a site-directed mutant of TPalpha, were insensitive to IP agonist activation. Whole cell phosphorylations established that TPalpha, but not TPbeta or TPalpha(S329A), is subject to IP-mediated phosphorylation and that TPalpha phosphorylation is inhibited by H-89. Thus, we conclude that TPalpha, but not TPbeta, is subject to cross-desensitization by IP mediated through direct protein kinase A phosphorylation at Ser(329) and propose that TPalpha may be the isoform physiologically relevant to TP:IP-mediated vascular hemostasis.  相似文献   

3.
We measured the effects of stable thromboxane A2 (TXA2) analogues on signalling in cultured human myometrial cells. U46619 and/or IBOP stimulated total inositol phosphates (IPs) and cAMP production, RhoA-associated protein kinase (ROK) activity and elevated intracellular calcium [Ca2+]i. Pretreatment of the cells with pertussis toxin did not inhibit IPs or [Ca2+]i production but the thromboxane receptor (TP) antagonist SQ-29548 did inhibit IPs and cAMP production, the elevation of [Ca2+]i, and the increase in ROK activity. Pretreatment with thapsigargin inhibited [Ca2+]i elevation. TP receptor-stimulated ROK activity was inhibited by the ROK inhibitor Y27632 while ROK activity was enhanced by the caspase 3 inhibitor, Z-DEVD-FMK. TP receptor-stimulated IPs production is additive to prostaglandin F2alpha (FP) or prostaglandin E (EP) receptor-stimulated IPs production and neither FP nor EP receptor-stimulated IPs production is inhibited by SQ29548. Thus cultured human myometrial cells express at least two functional TP receptor subtypes; TPalpha-like (cAMP-stimulating) and TPbeta-like (IPs, [Ca2+] and ROK-stimulating).  相似文献   

4.
5.
Thromboxane A(2) receptors (TP) were previously localized to discrete regions in the rat brain on myelinated fiber tracts and oligodendrocytes (OLGs). The present studies extended these findings and investigated the effects of TP signaling on cell proliferation, survival, and gene expression in OLG progenitor cells (OPCs) and OLGs. It was found that the TP agonist, U46619 stimulated the proliferation of OPCs and promoted the survival of mature OLGs. Examination of the early gene expression events involved in OPC proliferation, revealed that c-fos expression was substantially increased by U46619 stimulation. Treatment of OPCs or OLGs with U46619 caused activation of the mitogen-activated protein kinases (MAPK) ERK 1/2. In OPCs this activation was blocked by inhibition of src. However, in OLGs this phosphorylation was not only blocked by inhibition of src but also by inhibition of protein kinase C (PKC). Furthermore, U46619 was found to increase CREB phosphorylation in both OPCs and OLGs. Similar to ERK 1/2 activation, there was a divergence in the mechanism of the TP-mediated CREB response for each cell type. Specifically, U46619 activation was attenuated by src and protein kinase A (PKA) inhibition in OPCs, whereas in OLGs this effect was blocked by inhibition of src, PKA as well as by inhibition of PKC. Collectively, these results provide the first demonstration that TP-activated nuclear signaling events are involved in the proliferation of OPCs, the survival of mature OLGs, and the stimulation of gene expression.  相似文献   

6.
Hydrogen peroxide, which stimulates ERK phosphorylation and synaptic plasticity in hippocampal neurons, has also been shown to stimulate calcium release in muscle cells by promoting ryanodine receptor redox modification (S-glutathionylation). We report here that exposure of N2a cells or rat hippocampal neurons in culture to 200 microM H2O2 elicited calcium signals, increased ryanodine receptor S-glutathionylation, and enhanced both ERK and CREB phosphorylation. In mouse hippocampal slices, H2O2 (1 microM) also stimulated ERK and CREB phosphorylation. Preincubation with ryanodine (50 microM) largely prevented the effects of H2O2 on calcium signals and ERK/CREB phosphorylation. In N2a cells, the ERK kinase inhibitor U0126 suppressed ERK phosphorylation and abolished the stimulation of CREB phosphorylation produced by H2O2, suggesting that H2O2 enhanced CREB phosphorylation via ERK activation. In N2a cells in calcium-free media, 200 microM H2O2 stimulated ERK and CREB phosphorylation, while preincubation with thapsigargin prevented these enhancements. These combined results strongly suggest that H2O2 promotes ryanodine receptors redox modification; the resulting calcium release signals, by enhancing ERK activity, would increase CREB phosphorylation. We propose that ryanodine receptor stimulation by activity-generated redox species produces calcium release signals that may contribute significantly to hippocampal synaptic plasticity, including plasticity that requires long-lasting ERK-dependent CREB phosphorylation.  相似文献   

7.
In humans, thromboxane A2 signals through two thromboxane A2 receptor (TP) isoforms termed TP alpha and TP beta. Signaling by TP alpha, but not TP beta, is subject to prostacyclin-induced desensitization mediated by direct protein kinase (PK) A phosphorylation where Ser329 represents the phosphotarget (Walsh, M. T., Foley, J. F., and Kinsella, B. T. (2000) J. Biol. Chem. 275, 20412-20423). In the current study, the effect of the vasodilator nitric oxide (NO) on intracellular signaling by the TP isoforms was investigated. The NO donor 3-morpholinosydnonimine, HCl (SIN-1) and 8-bromo-guanosine 3',5'-cyclic monophosphate (8-Br-cGMP) functionally desensitized U46619-mediated calcium mobilization and inositol 1,4,5-trisphosphate generation by TP alpha whereas signaling by TP beta was unaffected by either agent. NO-mediated desensitization of TP alpha signaling occurred through a PKG-dependent, PKA- and PKC-independent mechanism. TP alpha, but not TP beta, was efficiently phosphorylated by PKG in vitro and underwent NO/PKG-mediated phosphorylation in whole cells. Deletion/site-directed mutagenesis and metabolic labeling studies identified Ser331 as the target residue of NO-induced PKG phosphorylation of TP alpha. Although TP alpha S331A was insensitive to NO/PKG-desensitization, similar to wild type TP alpha its signaling was fully desensitized by the prostacyclin receptor agonist cicaprost occurring through a PKA-dependent mechanism. Conversely, signaling by TP alpha S329A was insensitive to cicaprost stimulation whereas it was fully desensitized by NO/PKG signaling. In conclusion, TP alpha undergoes both NO- and prostacyclin-mediated desensitization that occur through entirely independent mechanisms involving direct PKG phosphorylation of Ser331, in response to NO, and PKA phosphorylation of Ser329, in response to prostacyclin, within the unique carboxyl-terminal tail domain of TP alpha. On the other hand, signaling by TP beta is unaffected by either NO or prostacyclin.  相似文献   

8.
An increased synthesis of thromboxane (TX) A(2) is associated with a number of cardiovascular diseases including atherosclerosis, unstable angina and hypertension. We previously identified a subgroup of NZW rabbits in which isolated arteries failed to contract to the TX agonists, U46619 or I-BOP. In vascular smooth muscle membranes, there was a significant decrease in TX receptors, termed TP. These rabbits are referred to as vTP- and those with the TP receptor are called vTP+. Because TP receptors are expressed in some types of endothelial cells, the present study was designed to determine whether functional TP receptors are present in endothelial cells cultured from aortas of vTP+ and vTP- rabbits. Radioligand binding studies were performed with (125)I-BOP. Aortic endothelial cells from vTP+ rabbits exhibited specific and saturable binding. In contrast, in endothelial preparations from vTP- rabbit aortas, no measurable binding to (125)I-BOP was detected. Using an anti-TP receptor antibody, we compared the amount of receptor expressed in endothelial cell lysates obtained from vTP+ and vTP- rabbits. Consistent with the results observed radioligand binding assays, the expression of TP receptor protein was decreased in vTP- compared to vTP+ endothelial cells. An in vitro wound healing assay was used on confluent monolayers of endothelial cells. In the untreated vTP+ cells, the area of the scratch was completely closed by 30 h. In the vTP+ cells treated with U46619 (3 microM), the rate of closure of the scratch area was reduced with approximately 12% of the scratch area remaining at 30 h. Pretreatment with the TP receptor antagonist, SQ 29548 (10 microM) prevented the inhibitory effect of U46619. The rate of closure of the scratch in the vTP- was not altered by U46619. In a separate study, U46619 (3 microM) increased the release of 6-keto PGF(1alpha), the stable metabolite of prostacyclin, in vTP+ but not vTP- endothelial cells. Pretreatment with SQ29548 (10 microM) or the cyclooxygenase inhibitor, indomethacin (10 microM) blocked the increase in vTP+ endothelial cells. In vascular reactivity studies in aortas from vTP+ rabbits, removal of the endothelium enhanced the vasoconstrictor response to U46619 indicating that activation of endothelial TP receptors may modulate vascular tone via the release of the vasodilator, prostacyclin. The results of this study suggest an important role for endothelial TP receptors in modulating vascular function.  相似文献   

9.
Both thromboxane (TX) A(2) and 8-epi prostaglandin (PG) F(2alpha) have been reported to stimulate mitogenesis of vascular smooth muscle (SM) in a number of species. However, TXA(2) and 8-epiPGF(2alpha) mediated mitogenic signalling has not been studied in detail in human vascular SM. Thus, using the human uterine ULTR cell line as a model, we investigated TXA(2) receptor (TP) mediated mitogenic signalling in cultured human vascular SMCs. Both the TP agonist U46619 and 8-epiPGF(2alpha) elicited time and concentration dependent activation of the extracellular signal regulated kinase (ERK)s and c-Jun N-terminal kinase (JNK)s in ULTR cells. Whereas the TP antagonist SQ29548 abolished U46619 mediated signalling, it only partially inhibited 8-epiPGF(2alpha) mediated ERK and JNK activation in ULTR cells. Both U46619 and 8-epiPGF(2alpha) induced ERK activations were inhibited by the protein kinase (PK) C, PKA and phosphoinositide 3-kinase inhibitors GF109203X, H-89 and wortmannin, respectively, but were unaffected by pertussis toxin. In addition, U46619 mediated ERK activation in ULTR cells involves transactivation of the epidermal growth factor (EGF) receptor. In humans, TXA(2) signals through two distinct TP isoforms. In investigating the involvement of the TP isoforms in mitogenic signalling, both TPalpha and TPbeta independently directed U46619 and 8-epiPGF(2alpha) mediated ERK and JNK activation in human embryonic kidney (HEK) 293 cells over-expressing the individual TP isoforms. However, in contrast to that which occurred in ULTR cells, SQ29548 abolished 8-epiPGF(2alpha) mediated ERK and JNK activation through both TPalpha and TPbeta in HEK 293 cells providing further evidence that 8-epiPGF(2alpha) may signal through alternative receptors, in addition to the TPs, in human uterine ULTR cells.  相似文献   

10.
We have cloned a rat kidney thromboxane A2 receptor (TP) cDNA. This receptor was shown to be functional in that the thromboxane A2 mimetics, U46619 and 1-BOP, elicited calcium transients in Xenopus oocytes and HEK293 cells expressing the TP receptor, respectively. Comparison of the affinities of the rat and human TP sites for the agonist radioligand [125I]BOP showed that the rat TP site has about a ten-fold higher affinity for this drug (KD = 0.5 vs. 4.4 nM) while the affinities of the two sites for other compound (U46619, I-PTH-OH) were the same. Our results are significant in that they identify a cloned TP as having a picomolar affinity for [125I]BOP.  相似文献   

11.
Thromboxane (TX) A(2) plays a central role in hemostasis, regulating platelet activation status and vascular tone. We have recently established that the TP beta isoform of the human TXA(2) receptor (TP) undergoes rapid, agonist-induced homologous desensitization of signalling largely through a G protein-coupled receptor kinase (GRK) 2/3-dependent mechanism with a lesser role for protein kinase (PK) C. Herein, we investigated the mechanism of desensitization of signalling by the TP alpha isoform. TP alpha undergoes profound agonist-induced desensitization of signalling (intracellular calcium mobilization and inositol 1,4,5 trisphosphate generation) in response to the TXA(2) mimetic U46619 but, unlike that of TP beta, this is independent of GRKs. Similar to TP beta, TP alpha undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, PKC mechanism where Ser(145) within intracellular domain (IC)(2) represents the key phospho-target. TP alpha also undergoes more profound sustained PKC- and PKG-dependent desensitization where Thr(337) and Ser(331), respectively, within its unique C-tail domain were identified as the phospho-targets. Desensitization was impaired by the nitric oxide synthase (NOS), soluble guanylyl cyclase (sGC) and PKG inhibitors L-NAME, LY 83583 and KT5823, respectively, indicating that homologous desensitization of TP alpha involves nitric oxide generation and signalling. Consistent with this, U46619 led to rapid phosphorylation/activation of endogenous eNOS. Collectively, data herein suggest a mechanism whereby agonist-induced PKC phosphorylation of Ser(145) partially and transiently impairs TP alpha signalling while PKG- and PKC-phosphorylation at both Ser(331) and Thr(337), respectively, within its C-tail domain profoundly desensitizes TP alpha, effectively terminating its signalling. Hence, in addition to the agonist-mediated PKC feedback mechanism, U46619-activation of the NOS/sGC/PKG pathway plays a significant role in inducing homologous desensitization of TP alpha.  相似文献   

12.
Tsai MH  Jiang MJ 《Life sciences》2005,76(8):877-888
Smooth muscle contractility is regulated by both intracellular Ca2+ concentration ([Ca2+]i) and Ca2+ sensitivity of the contractile apparatus. Extracellular signal-regulated kinases1/2 (ERK1/2) have been implicated in modulating Ca2+ sensitivity of smooth muscle contraction but mechanisms of action remain elusive. This study investigated the roles of ERK1/2 in modulating [Ca2+]i, calcium sensitivity and the 20-kDa myosin light chain (MLC20) phosphorylation during contraction activated by alpha1-adrenoceptor agonist phenylephrine and thromboxane A2 mimetic U46619 in rat tail artery strips. A specific inhibitor for ERK1/2 activation, U0126, inhibited phenylephrine- and U46619-induced contraction, shifting both concentration-response curves rightward. During phenylephrine-stimulated contraction, U0126 exhibited concentration-dependent inhibition towards force but significant decreases in [Ca2+]i were detected only at higher concentration. Both phenylephrine and U46619 induced a transient activation of ERK1/2 which was abolished by U0126 but unaffected by a general tyrosine kinase inhibitor genistein or Rho kinase inhibitor Y27632 at concentrations inhibiting more than 50% force. Interestingly, U0126 had no effect on steady-state MLC20 phosphorylation levels stimulated by both receptor agonists. These results indicated that during contraction of rat tail artery smooth muscle activated by alpha1-adrenoceptor agonist or thromboxane A2 analogue, ERK1/2 increase Ca2+ sensitivity that does not involve the modulation of MLC20 phosphorylation.  相似文献   

13.
Losartan has been reported to have inhibitory effects on thromboxane (TP) receptor-mediated responses. In the present study, the effects of 2 nonpeptide angiotensin II (AT1) receptor antagonists, losartan and candesartan, on responses to angiotensin II, the thromboxane A2 mimic, U46619, and norepinephrine were investigated and compared in the pulmonary and systemic vascular beds of the intact-chest rat. In this study, intravenous injections of angiotensin II, U46619, and norepinephrine produced dose-related increases in pulmonary and systemic arterial pressure. Losartan and candesartan, in the doses studied, decreased or abolished responses to angiotensin II. Losartan, but not candesartan, and only in a higher dose, produced small, but statistically significant, reductions in pressor responses to U46619 and to norepinephrine in the pulmonary and systemic vascular beds. Furthermore, losartan significantly reduced arachidonic acid-induced platelet aggregation, whereas candesartan had no effect. Pressor responses to angiotensin II were not changed by thromboxane and alpha-adrenergic receptor antagonists, or by cyclooxygenase and NO synthase inhibitors. These results show that losartan and candesartan are potent selective AT1 receptor antagonists in the pulmonary and systemic vascular beds and that losartan can attenuate thromboxane and alpha-adrenergic responses when administered at a high dose, whereas candesartan in the highest dose studied had no effect on responses to U46619 or to norepinephrine. The present data show that the effects of losartan and candesartan on vasoconstrictor responses are different and that pulmonary and systemic pressor responses to angiotensin II are not modulated or mediated by the release of cyclooxygenase products, activation of TP receptors, or the release of NO in the anesthetized rat.  相似文献   

14.
An increased synthesis of thromboxane (TX) A2 is associated with a number of cardiovascular diseases including atherosclerosis, unstable angina and hypertension. We previously identified a subgroup of NZW rabbits in which isolated arteries failed to contract to the TX agonists, U46619 or I-BOP. In vascular smooth muscle membranes, there was a significant decrease in TX receptors, termed TP. These rabbits are referred to as vTP− and those with the TP receptor are called vTP+. Because TP receptors are expressed in some types of endothelial cells, the present study was designed to determine whether functional TP receptors are present in endothelial cells cultured from aortas of vTP+ and vTP− rabbits. Radioligand binding studies were performed with 125I-BOP. Aortic endothelial cells from vTP+ rabbits exhibited specific and saturable binding. In contrast, in endothelial preparations from vTP− rabbit aortas, no measurable binding to 125I-BOP was detected. Using an anti-TP receptor antibody, we compared the amount of receptor expressed in endothelial cell lysates obtained from vTP+ and vTP− rabbits. Consistent with the results observed radioligand binding assays, the expression of TP receptor protein was decreased in vTP− compared to vTP+ endothelial cells. An in vitro wound healing assay was used on confluent monolayers of endothelial cells. In the untreated vTP+ cells, the area of the scratch was completely closed by 30 h. In the vTP+ cells treated with U46619 (3 μM), the rate of closure of the scratch area was reduced with approximately 12% of the scratch area remaining at 30 h. Pretreatment with the TP receptor antagonist, SQ 29548 (10 μM) prevented the inhibitory effect of U46619. The rate of closure of the scratch in the vTP− was not altered by U46619. In a separate study, U46619 (3 μM) increased the release of 6-keto PGF, the stable metabolite of prostacyclin, in vTP+ but not vTP− endothelial cells. Pretreatment with SQ29548 (10 μM) or the cyclooxygenase inhibitor, indomethacin (10 μM) blocked the increase in vTP+ endothelial cells. In vascular reactivity studies in aortas from vTP+ rabbits, removal of the endothelium enhanced the vasoconstrictor response to U46619 indicating that activation of endothelial TP receptors may modulate vascular tone via the release of the vasodilator, prostacyclin. The results of this study suggest an important role for endothelial TP receptors in modulating vascular function.  相似文献   

15.
We measured inositol 1,4,5-trisphosphate (IP3) production, intracellular calcium concentration ([Ca2+]i) and force of contraction induced by a thromboxane A2 analogue U46619 in porcine coronary artery to elucidate the relaxant effect of a K+ channel opener cromakalim. Cromakalim (10 microM) significantly inhibited the production of IP3, Ca2+ release from intracellular stores and contraction induced by 300 nM U46619. The inhibitory effect of cromakalim on IP3 was blocked by a K+ channel blocker tetrabutylammonium (TBA, 3 mM) and counteracted by 20 mM KCl-induced depolarization. These results suggest that the hyperpolarization of the plasma membrane by cromakalim inhibits the activation of phospholipase via the stimulation of the thromboxane A2 receptor to result in vasodilation.  相似文献   

16.
17.
18.
We have investigated the functional coupling of alpha and beta isoforms of the human thromboxane A(2) receptor (TP) to Galpha(16) and Galpha(12) members of the G(q) and G(12) families of heterotrimeric G proteins in human embryonic kidney (HEK) 293 cell lines HEK.alpha10 or HEK.beta3, stably over-expressing TPalpha and TPbeta, respectively. Moreover, using HEK.TP(Delta328) cells which over-express a variant of TP truncated at the point of divergence of TPalpha and TPbeta, we investigated the requirement of the C-tail per se in mediating G protein coupling and effector activation. Both TPalpha and TPbeta couple similarly to Galpha(16) to affect increases in inositol 1,4,5-trisphosphate (IP(3)) and mobilisation of intracellular calcium ([Ca(2+)](i)) in response to the TP agonist U46619. Whilst both TP isoforms mediated [Ca(2+)](i) mobilisation in cells co-transfected with Galpha(12), neither receptor generated corresponding increases in IP(3), indicating that the Galpha(12)-mediated increases in [Ca(2+)](i) do not involve PLC activation. Verapamil, an inhibitor of voltage dependent Ca(2+) channels, reduced [Ca(2+)](i) mobilisation in TPalpha and TPbeta cells co-transfected with Galpha(12) to approximately 40% of that mobilised in its absence, whereas [8-(N,N-diethylamino)-octyl-3,4, 5-trimethoxybenzoate, hydrochloride] (TMB-8), an antagonist of intracellular Ca(2+) release, had no effect on [Ca(2+)](i) mobilisation by either receptor isoform co-transfected with Galpha(12). Despite the lack of differential coupling specificity by TPalpha and TPbeta, TP(Delta328) signalled more efficiently in the absence of a co-transfected G protein compared to the wild type receptors but, on the other hand, displayed an impaired ability to couple to co-transfected Galpha(11), Galpha(12) or Galpha(16) subunits. In studies investigating the role of the C-tail in influencing coupling to the effector adenylyl cyclase, similar to TPalpha but not TPbeta, TP(Delta328) coupled to Galpha(s), leading to increased adenosine 3',5'-cyclic monophosphate (cAMP), rather than to Galpha(i). Whereas TP(Delta328) signalled more efficiently in the absence of co-transfected G protein compared to the wild type TPalpha, co-transfection of Galpha(s) did not augment cAMP generation by TP(Delta328). Hence, from these studies involving the wild type TPalpha, TPbeta and TP(Delta328), we conclude that the C-tail sequences of TP are not a major determinant of G protein coupling specificity to Galpha(11) and Galpha(16) members of the G(q) family or to Galpha(12); it may play a role in determining G(s) versus G(i) coupling and may act as a determinant of coupling efficiency.  相似文献   

19.
20.
The signal transduction pathways involved in NMDA receptor modulation by other receptors remain unclear. cAMP could be involved in this modulation. The aim of this work was to analyse the contribution of cAMP to NMDA receptor modulation in cerebellar neurones in culture. Forskolin increases cAMP and results in increased intracellular calcium and cGMP that are prevented by blocking NMDA receptors. Similar effects were induced by two cAMP analogues, indicating that cAMP leads to NMDA receptor activation. It has been reported that phosphorylation of Ser897 of the NR1 subunit of NMDA receptors by cAMP-dependent protein kinase (PKA) activates the receptors. Forskolin increases Ser897 phosphorylation. Neither Ser897 phosphorylation nor cGMP increase induced by forskolin are prevented by four inhibitors of PKA, suggesting that NMDA receptor activation is dependent on cAMP but not on PKA. Inhibition of Akt prevents forskolin-induced phosphorylation of Ser897, suggesting a role for Akt in the mediation of the modulation of NMDA receptors by cAMP. Pituitary adenylate cyclase-activating polypeptide (PACAP) activates its receptors, increasing cAMP and also leading to phosphorylation of Ser897 of NR1 and activation of NMDA receptors. These results indicate that cAMP modulates NMDA receptor in cerebellar neurones and may play a role in NMDA receptor modulation by other receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号