首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NMR structure of the N-terminal, DnaJ-like domain of murine polyomavirus tumor antigens (PyJ) has been determined to high precision, with root mean square deviations to the mean structure of 0.38 A for backbone atoms and 0.94 A for all heavy atoms of ordered residues 5-41 and 50-69. PyJ possesses a three-helix fold, in which anti-parallel helices II and III are bridged by helix I, similar to the four-helix fold of the J domains of DnaJ and human DnaJ-1. PyJ differs significantly in the lengths of N terminus, helix I, and helix III. The universally conserved HPD motif appears to form a His-Pro C-cap of helix II. Helix I features a stabilizing Schellman C-cap that is probably conserved universally among J domains. On the helix II surface where positive charges of other J domains have been implicated in binding of hsp70s, PyJ contains glutamine residues. Nonetheless, chimeras that replace the J domain of DnaJ with PyJ function like wild-type DnaJ in promoting growth of Escherichia coli. This activity can be modulated by mutations of at least one of these glutamines. T antigen mutations reported to impair cellular transformation by the virus, presumably via interactions with PP2A, cluster in the hydrophobic folding core and at the extreme N terminus, remote from the HPD loop.  相似文献   

2.
The Hsp70 and Hsp40 chaperone machine plays critical roles in protein folding, membrane translocation, and protein degradation by binding and releasing protein substrates in a process that utilizes ATP. The activities of the Hsp70 family of chaperones are recruited and stimulated by the J domains of Hsp40 chaperones. However, structural information on the Hsp40–Hsp70 complex is lacking, and the molecular details of this interaction are yet to be elucidated. Here we used steered molecular dynamics (SMD) simulations to investigate the molecular interactions that occur during the dissociation of the auxilin J domain from the Hsc70 nucleotide-binding domain (NBD). The changes in energy observed during the SMD simulation suggest that electrostatic interactions are the dominant type of interaction. Additionally, we found that Hsp70 mainly interacts with auxilin through the surface residues Tyr866, Arg867, and Lys868 of helix II, His874, Asp876, Lys877, Thr879, and Gln881 of the HPD loop, and Phe891, Asn895, Asp896, and Asn903 of helix III. The conservative residues Tyr866, Arg867, Lys868, His874, Asp876, Lys877, and Phe891 were also found in a previous study to be indispensable to the catalytic activity of the DnaJ J domain and the binding of it with the NBD of DnaK. The in silico identification of the importance of auxilin residues Asn895, Asp896, and Asn903 agrees with previous mutagenesis and NMR data suggesting that helix III of the J domain of the T antigen interacts with Hsp70. Furthermore, our data indicate that Thr879 and Gln881 from the HPD loop are also important as they mediate the interaction between the bovine auxilin J domain and Hsc70.  相似文献   

3.
The backbone dynamics of the J domain from polyomavirus T antigens have been investigated using 15N NMR relaxation and molecular dynamics simulation. Model-free relaxation analysis revealed picosecond to nanosecond motions in the N terminus, the I-II loop, the C-terminal end of helix II through the HPD loop to the beginning of helix III, and the C-terminal end of helix III to the C terminus. The backbone dynamics of the HPD loop and termini are dominated by motions with moderately large amplitudes and correlation times of the order of a nanosecond or longer. Conformational exchange on the microsecond to millisecond timescale was identified in the HPD loop, the N and C termini, and the I-II loop. A 9.7ns MD trajectory manifested concerted swings of the HPD loop. Transitions between major and minor conformations of the HPD loop featured distinct patterns of change in backbone dihedral angles and hydrogen bonds. Fraying of the C-terminal end of helix II and the N-terminal end of helix III correlated with displacements of the HPD loop. Correlation of crankshaft motions of Gly46 and Gly47 with the collective motions of the HPD loop suggested an important role of the two glycine residues in the mobility of the loop. Fluctuations of the HPD loop correlated with relative reorientation of side-chains of Lys35 and Asp44 that interact with Hsc70.  相似文献   

4.
Hsc70与auxilin蛋白组成的系统是Hsp70/Hsp40分子伴侣系统家族的一员,在热休克反应中发挥重要作用。本文为得出auxilin蛋白J结构域的关键氨基酸,首先采用由二硫键交联的Hsc70 R171C与auxilin D876C的复合物结晶结构作为初始模型,进行分子动力学模拟,通过比较平衡后的结合部位发现,将形成二硫键的氨基酸突变为原来的氨基酸结构在结合位点上与生化结果较为相近,之后利用此结构通过拉伸动力学模拟分析了auxilin蛋白J结构域与Hsc70的ATPase功能域的解离过程,并探讨了Hsc70与auxilin蛋白之间的相互作用力。结果表明位于HPD loop上的His874,Asp876,Thr879,螺旋Ⅲ上的Glu884,Asn895,Asp896,Ser899,Glu902,Asn903为关键氨基酸,这些数据符合之前核磁共振实验证实的T抗原J结构域的HPD基序和螺旋Ⅲ与Hsc70的ATPase功能域之间的相互作用。  相似文献   

5.
The simian virus 40 large T antigen (T antigen) inactivates tumor suppressor proteins and therefore has been used in numerous studies to probe the mechanisms that control cellular growth and to generate immortalized cell lines. Binding of T antigen to the Rb family of growth-regulatory proteins is necessary but not sufficient to cause transformation. The molecular mechanism underlying T-antigen inactivation of Rb function is poorly understood. In this study we show that T antigen associates with pRb and p130-E2F complexes in a stable manner. T antigen dissociates from a p130-E2F-4-DP-1 complex, coincident with the release of p130 from E2F-4-DP-1. The dissociation of this complex requires Hsc70, ATP, and a functional T-antigen J domain. We also report that the "released" E2F-DP-1 complex is competent to bind DNA containing an E2F consensus binding site. We propose that T antigen disrupts Rb-E2F family complexes through the action of its J domain and Hsc70. These findings indicate how Hsc70 supports T-antigen action and help to explain the cis requirement for a J domain and Rb binding motif in T-antigen-induced transformation. Furthermore, this is the first demonstration linking Hsc70 ATP hydrolysis to the release of E2F bound by Rb family members.  相似文献   

6.
Polyomavirus T antigens share a common N-terminal sequence that comprises a DnaJ domain. DnaJ domains activate DnaK molecular chaperones. The functions of J domains have primarily been tested by mutation of their conserved HPD residues. Here, we report detailed mutagenesis of the polyomavirus J domain in both large T (63 mutants) and middle T (51 mutants) backgrounds. As expected, some J mutants were defective in binding DnaK (Hsc70); other mutants retained the ability to bind Hsc70 but were defective in stimulating its ATPase activity. Moreover, the J domain behaves differently in large T and middle T. A given mutation was twice as likely to render large T unstable as it was to affect middle T stability. This apparently arose from middle T's ability to bind stabilizing proteins such as protein phosphatase 2A (PP2A), since introduction of a second mutation preventing PP2A binding rendered some middle T J-domain mutants unstable. In large T, the HPD residues are critical for Rb-dependent effects on the host cell. Residues Q32, A33, Y34, H49, M52, and N56 within helix 2 and helix 3 of the large T J domain were also found to be required for Rb-dependent transactivation. Cyclin A promoter assays showed that J domain function also contributes to large T transactivation that is independent of Rb. Single point mutations in middle T were generally without effect. However, residue Q37 is critical for middle T's ability to form active signaling complexes. The Q37A middle T mutant was defective in association with pp60(c-src) and in transformation.  相似文献   

7.
8.
A model structure of the Hsc70/auxilin complex has been constructed to gain insight into interprotein substrate transfer and ATP hydrolysis induced conformational changes in the multidomain Hsc70 structure. The Hsc70/auxilin system, which is a member of the Hsp70/Hsp40 chaperone system family, uncoats clathrin-coated vesicles in an ATP hydrolysis-driven process. Incorporating previous results from NMR and mutant binding studies, the auxilin J-domain was docked into the Hsc70 ATPase domain lower cleft using rigid backbone/flexible side chain molecular dynamics, and the Hsc70 substrate binding domain was docked by a similar procedure. For comparison, J-domain and substrate binding domain docking sites were obtained by the rigid-body docking programs DOT and ZDOCK, filtered and ranked by the program ClusPro, and relaxed using the same rigid backbone/flexible side chain dynamics. The substrate binding domain sites were assessed in terms of conserved surface complementarity and feasibility in the context of substrate transfer, both for auxilin and another Hsp40 protein, Hsc20. This assessment favors placement of the substrate binding domain near D152 on the ATPase domain surface adjacent to the J-domain invariant HPD segment, with the Hsc70 interdomain linker in the lower cleft. Examining Hsc70 interdomain energetics, we propose that long-range electrostatic interactions, perhaps due to a difference in the pKa values of bound ATP and ADP, could play a major role in the structural change induced by ATP hydrolysis. Interdomain electrostatic interactions also appear to play a role in stimulation of ATPase activity due to J-domain binding and substrate binding by Hsc70.  相似文献   

9.
The three-dimensional structure of the C-terminal 20 kDa portion of auxilin, which consists of the clathrin binding region and the C-terminal J-domain, has been determined by NMR. Auxilin is an Hsp40 family protein that catalytically supports the uncoating of clathrin-coated vesicles through recruitment of Hsc70 in an ATP hydrolysis-driven process. This 20 kDa auxilin construct contains the minimal sequential region required to uncoat clathrin-coated vesicles catalytically. The tertiary structure consists of six helices, where the first three are unique to auxilin and believed to be important in the catalytic uncoating of clathrin. The last three helices correspond to the canonical J-domain of Hsp40 proteins. The first helix, helix 1, which contains a conserved FEDLL motif believed to be necessary for clathrin binding, is transient and not packed against the rest of the structure. Helix 1 is joined to helix 2 by a flexible linker. Helix 2 packs loosely against the J-domain surface, whereas helix 3 packs tightly and makes critical contributions to the J-domain core. A long insert loop, also unique to the auxilin J-domain, is seen between helix 4 and helix 5. Comparison with a previously reported structure of auxilin containing only helices 3-6 shows a significant difference in the invariant HPD segment of the J-domain. The region where helix 1 is located corresponds to the expected region of the unstructured G/F-rich domain seen in DnaJ, i.e., the canonical N-terminal J-domain protein. In contrast, the location of helix 1 differs from the substrate binding regions of two other Hsp40 proteins, Escherichia coli Hsc20 and viral large T antigen. The variety of biological functions performed by Hsp40 proteins such as auxilin, as well as the observed differences in the structure and function of their substrate binding regions, supports the notion that Hsp40 proteins act as target-specific adaptors that recruit their more general Hsp70 partners to specific biological roles.  相似文献   

10.
Walsh P  Bursać D  Law YC  Cyr D  Lithgow T 《EMBO reports》2004,5(6):567-571
DnaJ is a molecular chaperone and the prototypical member of the J-protein family. J proteins are defined by the presence of a J domain that can regulate the activity of 70-kDa heat-shock proteins. Sequence analysis on the genome of Saccharomyces cerevisiae has revealed 22 proteins that establish four distinguishing structural features of the J domain: predicted helicity in segments I-IV, precisely placed interhelical contact residues, a lysine-rich surface on helix II and placement of the diagnostic sequence HPD between the predicted helices II and III. We suggest that this definition of the J-protein family could be used for other genome-wide studies. In addition, three J-like proteins were identified in yeast that contain regions closely resembling a J domain, but in which the HPD motif is non-conservatively replaced. We suggest that J-like proteins might function to regulate the activity of bona fide J proteins during protein translocation, assembly and disassembly.  相似文献   

11.
Hsc20 is a 20 kDa J-protein that regulates the ATPase activity and peptide-binding specificity of Hsc66, an hsp70-class molecular chaperone. We report herein the crystal structure of Hsc20 from Escherichia coli determined to a resolution of 1.8 A using a combination of single isomorphous replacement (SIR) and multi-wavelength anomalous diffraction (MAD). The overall structure of Hsc20 consists of two distinct domains, an N-terminal J-domain containing residues 1-75 connected by a short loop to a C-terminal domain containing residues 84-171. The structure of the J-domain, involved in interactions with Hsc66, resembles the alpha-topology of J-domain fragments of Escherichia coli DnaJ and human Hdj1 previously determined by solution NMR methods. The C-terminal domain, implicated in binding and targeting proteins to Hsc66, consists of a three-helix bundle in which two helices comprise an anti-parallel coiled-coil. The two domains make contact through an extensive hydrophobic interface ( approximately 650 A(2)) suggesting that their relative orientations are fixed. Thus, Hsc20, in addition to its role in the regulation of the ATPase activity of Hsc66, may also function as a rigid scaffold to facilitate positioning of the protein substrates targeted to Hsc66.  相似文献   

12.
Tutar Y  Song Y  Masison DC 《Genetics》2006,174(2):851-861
Hsp70's are highly conserved essential protein chaperones that assist protein folding and prevent protein aggregation. They have modular structures consisting of ATPase, substrate-binding, and C-terminal domains. Substrate binding and release is regulated by ATP hydrolysis and nucleotide exchange, which in turn are regulated by cochaperones. Eukaryotes have constitutive (Hsc70) and stress-inducible (iHsp70) isoforms, but their functions have not been systematically compared. Using a yeast system to evaluate heterologous Hsp70's we find that primate Hsc70 supported growth but iHsp70 did not. Plant Hsc70 and iHsp70 counterparts behaved similarly, implying evolutionary conservation of this distinction. Swapping yeast and primate Hsp70 domains showed that (i) the Hsc70-iHsp70 distinction resided in the ATPase domain, (ii) substrate-binding domains of Hsp70's within and across species functioned similarly regarding growth, (iii) C-terminal domain function was important for growth, and (iv) Hsp70 functions important for cell growth and prion propagation were separable. Enzymatic analysis uncovered a correlation between substrate affinity and prion phenotype and showed that ATPase and protein-folding activities were generally similar. Our data support a view that intrinsic activities of Hsp70 isoforms are comparable, and functional differences in vivo lie mainly in complex interactions of Hsp70 with cochaperones.  相似文献   

13.
ATP-dependent simian virus 40 T-antigen-Hsc70 complex formation   总被引:3,自引:0,他引:3       下载免费PDF全文
Simian virus 40 large T antigen is a multifunctional oncoprotein that is required for numerous viral functions and the induction of cellular transformation. T antigen contains a J domain that is required for many of its activities including viral DNA replication, transformation, and virion assembly. J-domain-containing proteins interact with Hsc70 (a cellular chaperone) to perform multiple biological activities, usually involving a change in the conformation of target substrates. It is thought that Hsc70 associates with T antigen to assist in performing its numerous activities. However, it is not clear if T antigen binds to Hsc70 directly or induces the binding of Hsc70 to other T-antigen binding proteins such as pRb or p53. In this report, we show that T antigen binds Hsc70 directly with a stoichiometry of 1:1 (dissociation constant = 310 nM Hsc70). Furthermore, the T-antigen--Hsc70 complex formation is dependent upon ATP hydrolysis at the active site of Hsc70 (ATP dissociation constant = 0.16 microM), but T-antigen--Hsc70 complex formation does not require nucleotide hydrolysis at the T-antigen ATP binding site. N136, a J domain-containing fragment of T antigen, does not stably associate with Hsc70 but can form a transient complex as assayed by centrifugation analysis. Finally, T antigen does not associate stably with either of two yeast Hsc70 homologues or an amino-terminal fragment of Hsc70 containing the ATPase domain. These results provide direct evidence that the T-antigen--Hsc70 interaction is specific and that this association requires multiple domains of both T antigen and Hsc70. This is the first demonstration of a nucleotide requirement for the association of T antigen and Hsc70 and lays the foundation for future reconstitution studies of chaperone-dependent tumorigenesis induced by T antigen.  相似文献   

14.
The molecular co-chaperone BAG1 and other members of the BAG family bind to Hsp70/Hsc70 heat shock proteins through a conserved BAG domain that interacts with the ATPase domain of the chaperone. BAG1 and other accessory proteins stimulate ATP hydrolysis and regulate the ATP-driven activity of the chaperone complexes. Contacts are made through residues in helices alpha2 and alpha3 of the BAG domain and predominantly residues in the C-terminal lobe of the bi-lobed Hsc70 ATPase domain. Within the C-terminal lobe, a subdomain exists that contains all the contacts shown by mutagenesis to be required for BAG1 recognition. In this study, the subdomain, representing Hsc70 residues 229-309, was cloned and expressed as a separately folded unit. The results of in vitro binding assays demonstrate that this subdomain is sufficient for binding to BAG1. Binding analyses with surface plasmon resonance indicated that the subdomain binds to BAG1 with a 10-fold decrease in equilibrium dissociation constant (K(D) = 22 nM) relative to the intact ATPase domain. This result suggests that the stabilizing contacts for docking of BAG1 to Hsc70 are located in the C-terminal lobe of the ATPase domain. These findings provide new insights into the role of co-chaperones as nucleotide exchange factors.  相似文献   

15.
16.
Landry SJ 《Biochemistry》2003,42(17):4926-4936
The molecular chaperone machine composed of Escherichia coli Hsp70/DnaK and Hsp40/DnaJ binds and releases client proteins in cycles of ATP-dependent protein folding, membrane translocation, disassembly, and degradation. The J-domain of DnaJ simultaneously stimulates ATP hydrolysis in the ATPase domain and capture of the client protein in the peptide-binding domain of DnaK. ATP-dependent binding of DnaJ to DnaK mimics DnaJ-dependent capture of a client protein. The dnaJ mutation that replaces aspartate-35 with asparagine (D35N) in the J-domain causes a defect in binding of DnaJ to DnaK. The dnaK mutation that replaces arginine-167 with alanine (R167A) in the ATPase domain of DnaK(R167A) restores binding of DnaJ(D35N). This genetic interaction was said to be allele-specific because wild-type DnaJ does not bind to DnaK(R167A). The J-domain of DnaJ binds to the ATPase domain of DnaK in its capacity as modulator of DnaK ATPase activity and conformational behavior. Surprisingly, the mutations affect the domainwise interaction in an almost opposite manner. D35N increases the affinity of the J-domain for the ATPase domain. R167A has no affect on the affinity of the ATPase domain for the D35N mutant J-domain, but it reduces the affinity for the wild-type J-domain. Previous amide ((1)H, (15)N) NMR chemical shift perturbation mapping in the J-domain suggested that the ATPase domain binds to J-domain helix II and the flanking loops. In the D35N mutant J-domain, chemical shift perturbations include additional effects at amides in the flexible loop II-III and helix III, which have been proposed to undergo an induced fit conformational change upon binding to DnaK. The integrated magnitudes of chemical shift perturbations for the various J-domain and ATPase domain pairs correlate with the free energies of binding. Thus, the J-domain structure can be described as a dynamic ensemble of conformations that is constrained by binding to the ATPase domain. J-domain helix II bends upon binding to the ATPase domain. D35N increases helix II bending, but less so in combination with R167A in the ATPase domain. Taken together, the results suggest that D35N overstabilizes an induced fit conformational change in loop II-III and helix III that is necessary for the J-domain to couple ATP hydrolysis with a conformational change in DnaK, and R167A destabilizes the induced conformation. Conclusions from this work have implications for understanding mechanisms of protein-protein interaction that are involved in allosteric regulation and genetic suppression.  相似文献   

17.
18.
J Hhfeld  S Jentsch 《The EMBO journal》1997,16(20):6209-6216
The BAG-1 protein appears to inhibit cell death by binding to Bcl-2, the Raf-1 protein kinase, and certain growth factor receptors, but the mechanism of inhibition remains enigmatic. BAG-1 also interacts with several steroid hormone receptors which require the molecular chaperones Hsc70 and Hsp90 for activation. Here we show that BAG-1 is a regulator of the Hsc70 chaperone. BAG-1 binds to the ATPase domain of Hsc70 and, in cooperation with Hsp40, stimulates Hsc70's steady-state ATP hydrolysis activity approximately 40-fold. Similar to the action of the GrpE protein on bacterial Hsp70, BAG-1 accelerates the release of ADP from Hsc70. Thus, BAG-1 regulates the Hsc70 ATPase in a manner contrary to the Hsc70-interacting protein Hip, which stabilizes the ADP-bound state. Intriguingly, BAG-1 and Hip compete in binding to the ATPase domain of Hsc70. Our results reveal an unexpected diversity in the regulation of Hsc70 and raise the possibility that the observed anti-apoptotic function of BAG-1 may be exerted through a modulation of the chaperone activity of Hsc70 on specific protein folding and maturation pathways.  相似文献   

19.
The troponin I peptide N alpha-acetyl TnI (104-115) amide (TnIp) represents the minimum sequence necessary for inhibition of actomyosin ATPase activity of skeletal muscle (Talbot, J.A. & Hodges, R.S. 1981, J. Biol. Chem. 256, 2798-3802; Van Eyk, J.E. & Hodges, R.S., 1988, J. Biol. Chem. 263, 1726-1732; Van Eyk, J.E., Kay, C.M., & Hodges, R.S., 1991, Biochemistry 30, 9974-9981). In this study, we have used 1H NMR spectroscopy to compare the binding of this inhibitory TnI peptide to a synthetic peptide heterodimer representing site III and site IV of the C-terminal domain of troponin C (TnC) and to calcium-saturated skeletal TnC. The residues whose 1H NMR chemical shifts are perturbed upon TnIp binding are the same in both the site III/site IV heterodimer and TnC. These residues include F102, I104, F112, I113, I121, I149, D150, F151, and F154, which are all found in the C-terminal domain hydrophobic pocket and antiparallel beta-sheet region of the synthetic site III/site IV heterodimer and of TnC. Further, the affinity of TnIp binding to the heterodimer (Kd = 192 +/- 37 microM) was found to be similar to TnIp binding to TnC (48 +/- 18 microM [Campbell, A.P., Cachia, P.J., & Sykes, B.D., 1991, Biochem. Cell Biol. 69, 674-681]). The results indicate that binding of the inhibitory region of TnI is primarily to the C-terminal domain of TnC. The results also indicate how well the synthetic peptide heterodimer mimics the C-terminal domain of TnC in structure and functional interactions.  相似文献   

20.
Tumor suppressors of the retinoblastoma susceptibility gene family regulate cell growth and differentiation. Polyomavirus large T antigens (large T) bind Rb family members and block their function. Mutations of large T sequences conserved with the DnaJ family affect large T binding to a cellular DnaK, heat shock protein 70. The same mutations abolish large T activation of E2F-containing promoters and Rb binding-dependent large T activation of cell cycle progression. Cotransfection of a cellular DnaJ domain blocks wild-type large T action, showing that the connection between the chaperone system and tumor suppressors is direct. Although they are inactive in assays dependent on Rb family binding, mutants in the J region retain the ability to associate with pRb, p107, and p130. This suggests that binding of Rb family members by large T is not sufficient for their inactivation and that a functional J domain is required as well. This work connects the DnaJ and DnaK molecular chaperones to regulation of tumor suppressors by polyomavirus large T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号