首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
We have previously shown that nerve growth factor (NGF)-induced activation of nuclear factor-kappaB increased neuronal expression of Bcl-xL, an anti-apoptotic Bcl-2 family protein. In the present study we determined the role of the p75 neurotrophin receptor in constitutive and NGF-induced survival signalling. Treatment of rat pheochromocytoma (PC12) cells with a blocking anti-rat p75 antibody or inhibition of p75 expression by antisense oligonucleotides reduced constitutive and NGF-induced bcl-xL expression. Treatment with the blocking anti-p75 antibody also inhibited NGF-induced activation of the survival kinase Akt. Inhibition of phosphatidylinositol-3-kinase (PI3 kinase) activity or overexpression of a dominant-negative mutant of Akt kinase inhibited NGF-induced nuclear factor-kappaB activation. Activation of Akt kinase by NGF was also observed in PC12nnr5 cells and cultured rat hippocampal neurones which both lack significant TrkA expression. Treatment of hippocampal neurones with the blocking anti-p75 antibody inhibited constitutive and NGF-induced Bcl-xL expression, activation of Akt, and blocked the protective effect of NGF against excitotoxic and apoptotic injury. Our data suggest that the p75 neurotrophin receptor mediates constitutive and NGF-induced survival signalling in PC12 cells and hippocampal neurones, and that these effects are mediated via the PI3-kinase pathway.  相似文献   

3.
Kleijn M  Proud CG 《FEBS letters》2000,476(3):262-265
Epidermal and nerve growth factors (EGF and NGF) activate protein synthesis and initiation factor eIF2B in rat phaeochromocytoma (PC12) cells. The activation of protein synthesis by EGF or NGF depends upon extracellular regulated kinase kinase (MEK)/extracellular regulated kinase signalling. Here we show that PD98059, an inhibitor of MEK activation, blocks the activation of eIF2B by EGF or NGF. It is known that eIF2B activity can be inhibited by phosphorylation at Ser535 in its epsilon-subunit by glycogen synthase kinase (GSK)-3. We find that inactivation of GSK-3 by EGF or NGF is blocked by PD98059. However, neither EGF nor NGF caused a detectable change in phosphorylation of Ser535 of eIF2Bepsilon. Thus, the EGF- and NGF-induced activation of eIF2B in PC12 cells involves regulatory mechanisms distinct from dephosphorylation of the GSK-3 site.  相似文献   

4.
Cucurbitacin B (CuB) isolated from Cucumis melo by using a PC12 cell bioassay system exhibited significant nerve growth factor (NGF)‐mimic or NGF‐enhancing activity in PC12 and primary neuron cells. It was also demonstrated pro‐neurogenesis effects in ICR and APP/PS1 mice and improved memory deficit of APP/PS1 mice. Its possible mechanism includes significant induction of the phosphorylation of glucocorticoid receptor (GR), protein kinase C (PKC), phospholipase C (PLC) and inhibition of cofilin. ChemProteoBase profiling, binding assay and cellular thermal shift assay (CETSA) were used to determine the target protein. Results revealed that CuB could affect actin dynamics as an actin inhibitor but did not bind with GR. The protein level of cofilin in PC12 cells after treating 0.3 μM and different temperatures was significantly higher than that of control group. Other neurotrophic signalling pathways, such as TrkA/TrkB, were analysed with specific inhibitors and Western blot. The inhibitors of TrkA, PLC, PKC, Ras, Raf and ERK1/2 significantly decreased the percentage of PC12 cells with neurite outgrowth and shortened the length of neurite outgrowth induced by CuB. CuB significantly induced the phosphorylation of TrkA, ERK and CREB. The phosphorylation of these proteins was obviously decreased by their specific inhibitors. These results suggest that cofilin is a candidate target protein of CuB in PC12 cells and that the GR/PLC/PKC and TrkA/Ras/Raf/ERK signalling pathways play important roles in the neuroprotective effect of CuB.  相似文献   

5.
Abstract: The pheochromocytoma PC12 cell line was used as a model system to characterize the role of the p75 neurotrophin receptor (p75NTR) and tyrosine kinase (Trk) A nerve growth factor (NGF) receptors on amyloid precursor protein (APP) expression and processing. NGF increased in a dose-dependent fashion neurite outgrowth, APP mRNA expression, and APP secretion with maximal effects at concentrations known to saturate TrkA receptor binding. Displacement of NGF binding to p75NTR by addition of an excess of brain-derived neurotrophic factor abolished NGF's effects on neurite outgrowth and APP metabolism, whereas addition of brain-derived neurotrophic factor alone did not induce neurite outgrowth or affect APP mRNA or protein processing. However, treatment of PC12 cells with C2-ceramide, an analogue of ceramide, the endogenous product produced by the activity of p75NTR-activated sphingomyelinase, mimicked the effects of NGF on cell morphology and stimulation of both APP mRNA levels and APP secretion. Specific stimulation of TrkA receptors by receptor cross-linking, on the other hand, selectively stimulated neurite outgrowth and APP secretion but not APP mRNA levels, which were decreased. These findings demonstrate that in PC12 cells expressing p75NTR and TrkA receptors, binding of NGF to the p75NTR is required to mediate NGF effects on cell morphology and APP metabolism. Furthermore, our data are consistent with NGF having specific effects on p75NTR not shared with other neurotrophins. Lastly, we have shown that specific activation of TrkA receptors—in contrast to p75NTR-associated signaling—stimulates neurite outgrowth and increases nonamyloidogenic secretory APP processing without increases in APP mRNA levels.  相似文献   

6.
We reported previously that normal Huntingtin is associated with epidermal growth factor receptor (EGF) signaling complex (Liu, Y. F., Deth, C. R., and Devys, D. (1997) J. Biol. Chem. 272, 8121-8124). To investigate the potential role of normal and polyglutamine-expanded Huntingtin in the regulation of growth factor receptor-mediated cellular signaling and biological function, we stably transfected full-length Huntingtin containing 16, 48, or 89 polyglutamine repeats into PC12 cells where cellular signaling mechanisms, mediated by nerve growth factor (NGF) or EGF receptors, are well characterized. Expression of polyglutamine-expanded Huntingtin, but not normal Huntingtin, leads to a dramatic morphological change. In clones carrying the mutated Huntingtin, both NGF and EGF receptor-mediated activation of mitogen-activated protein kinase, c-Jun N-terminal kinase, and Akt are significantly attenuated, and NGF receptor-mediated neurite outgrowth is blocked. Co-immunoprecipitation studies show that the associations of NGF or EGF receptors with growth factor receptor-binding protein 2 (Grb2) and phosphoinositide 3-kinase are significantly inhibited. NGF-induced tyrosine phosphorylation of NGF receptors (TrkA) is also consistently suppressed. Our data demonstrate that polyglutamine-expanded Huntingtin disrupts cellular signaling mediated by both EGF and NGF receptors in PC12 cells. It is known that Huntington's disease patients exhibit an extremely low incidence of a variety of cancers and are deficient in glucose metabolism. Thus, our results may reflect an important molecular mechanism for the pathogenesis of the disease.  相似文献   

7.
We have used a permeabilized cell assay and a synthetic peptide substrate (KRTLRR) to specifically monitor the activity of protein kinase C in PC12 cells preincubated with nerve growth factor (NGF), epidermal growth factor (EGF), or phorbol esters. Pretreatment of PC12 cells with 1 microM 12-O-tetradecanoylphorbol 13-acetate or 1 microM phorbol dibutyrate stimulated the rate of KRTLRR peptide phosphorylation 4.8- and 2.6-fold, respectively. Furthermore, pretreatment of cells with NGF or EGF transiently increased the KRTLRR peptide kinase activity. Peak stimulations of KRTLRR peptide kinase (1.3-2-fold) were observed after 1-5 min of growth factor treatment and returned to control levels within 15-20 min. The KRTLRR peptide kinase activity fulfilled two criteria of protein kinase C. A synthetic peptide inhibitor of protein kinase C inhibited both growth factor- and phorbol ester-stimulated KRTLRR peptide kinase activity. In addition, growth factors and phorbol esters failed to stimulate KRTLRR peptide kinase activity in cells rendered protein kinase C-deficient by long-term treatment with 1 microM 12-O-tetradecanoylphorbol 13-acetate. In contrast to the transient activation of protein kinase C, ribosomal S6 kinase, assayed with the synthetic peptide RRLSSLRA, was persistently activated by NGF and EGF. The findings indicate that protein kinase C serves an early and transient role in the molecular actions of NGF and EGF in PC12 cells.  相似文献   

8.
9.
10.
We found that a monokine induced by interferon-gamma (Mig, CXCL9), which belongs to the CXC chemokine subfamily, acts as a neurotrophic factor on PC12 cells and rat primary sympathetic neurons. PC12 cells were shown to express a single class of high affinity binding sites for Mig (670 receptors/cell, Kd = 2.9 nm). Mig induced neurite outgrowth in PC12 cells in a dose-dependent manner. Comparison of extracellular signal-regulated kinase signaling pathways between Mig and nerve growth factor (NGF) revealed that these pathways are crucial for Mig action as well as NGF. K252a, an inhibitor of tyrosine autophosphorylation of tyrosine kinase receptors (Trks) did not inhibit the action of Mig, suggesting that Mig action occurs via a different receptor from that of NGF. Furthermore, Mig as well as NGF promoted PC12 survival under serum-free conditions and activated Akt/protein kinase B downstream from phosphatidylinositol 3-kinase (PI3K). Because the PI3K inhibitor LY294002 prevented the Mig- and NGF-induced survival effect, this effect is probably mediated by the PI3K signaling pathway. Mig also promoted survival of rat primary sympathetic neurons that die when deprived of NGF. These results suggest that chemokines, including Mig (CXCL9) have neurotrophic effects on the nervous system.  相似文献   

11.
The initial event in the neuronal differentiation of PC12 cells is the binding of the neurotrophin nerve growth factor (NGF) to the Trk receptor. This interaction stimulates the intrinsic tyrosine kinase activity of TRk, initiating a signalling cascade involving the phosphorylation of intracellular proteins on tyrosine, serine, and threonine residues. These signals are then in turn propagated to other messengers, ultimately leading to differentiation, neurotrophin-dependent survival and the loss of proliferative capacity. To transmit NGF signals, NGF-activated Trk rapidly associated with the cytoplasmic proteins, SHC, PI-3 kinase, and PLC-γ1. These proteins are involved in stimulating the formation of various second messenger molecules and activating the Ras signal transduction pathway. Studies with Trk mutants indicate that the acivation of the Ras pathway is necessary for complete differentiation of PC12-derived cells and for the maintenance of the differentiated phenotype. Trk also induces the tyrosine phosphorylation of SNT, a specific target of neurotrophic factor activity in neuronal cells. This review will discuss the potential roles of Trk and the proteins of the Trk signalling pathways in NGF function, and summarize our attempts to understand the mechanisms used by Trk to generate dthe many phenotypic responses of PC12 cells to NGF. 1994 John Wiley & Sons, Inc.  相似文献   

12.
13.
14.
We have established a subline of PC12 cells (PC12D) that extend neurites very quickly in response not only to nerve growth factor (NGF) but also to cyclic AMP (cAMP) in the same way as primed PC12 cells (NGF-pretreated cells). When phosphorylation of brain microtubule proteins by extracts of these cells was monitored, two distinct kinase activities were found to be increased [from three- to eightfold in terms of phosphorylation of microtubule-associated protein (MAP) 2] by a brief exposure of cells to NGF or to dibutyryl cAMP(dbcAMP). The effect of the combined stimulation with both NGF and dbcAMP was additive in terms of the phosphorylation of MAP2. The apparent molecular mass of the kinase activated by dbcAMP was 40 kDa, and this kinase appears to be cAMP-dependent protein kinase. The molecular mass of the kinase activated by NGF was 50 kDa. The latter was activated to a measurable extent after 5 min of exposure of cells to NGF; it required Mg2+ for activity but not Mn2+ or Ca2+. This kinase appears to be distinct from previously reported kinases in PC12 cells, and it has been designated as NGF-dependent MAP kinase, although its physiological substrates are not known at present. An inhibitor of protein kinases, K-252a, selectively inhibited the outgrowth of neurites from PC12D cells in response to NGF but not to dbcAMP. When this inhibitor was added to the incubation medium of cells exposed simultaneously to NGF or dbcAMP, the increase in activity of the NGF-dependent MAP kinase was selectively abolished. We isolated several mutant clones of PC12D cells that were deficient in the ability to induce neurites in response to either of the two stimulators. In these variant cells, the activity of the relevant protein kinase was decreased, in parallel with the deficiency in the neurite response to NGF or dbcAMP. These observations suggest that the NGF-dependent MAP kinase may play an important role in the outgrowth of neurites from PC12 cells in response to NGF.  相似文献   

15.
Translation initiation factor eIF-4E, which binds to the 5' cap structure of eukaryotic mRNAs, is believed to play an important role in the control of cell growth. Consistent with this, overexpression of eIF-4E in fibroblasts results in their malignant transformation. The activity of eIF-4E is thought to be regulated by phosphorylation on a single serine residue (Ser-53). Treatment of rat pheochromocytoma (PC12) cells with nerve growth factor (NGF) strongly curtails their growth and causes their differentiation into cells that resemble sympathetic neurons. The present study shows that eIF-4E is rapidly phosphorylated in PC12 cells upon NGF treatment, resulting in a significant increase in the steady-state levels of the phosphorylated protein. In contrast, epidermal growth factor, a factor which elicits a weak mitogenic response in PC12 cells, did not significantly enhance eIF-4E phosphorylation. We also show that although the mitogen and tumor promoter, phorbol 12-myristate-13-acetate, is able to induce phosphorylation of eIF-4E in PC12 cells, the NGF-mediated increase is primarily a protein kinase C-independent response. The NGF-induced enhancement of eIF-4E phosphorylation is abrogated in PC12 cells expressing a dominant inhibitory ras mutant (Ser-17 replaced by Asn), indicating that eIF-4E phosphorylation is dependent on a ras signalling pathway. As phosphorylation of eIF-4E effects translation initiation, these results suggest that NGF-mediated and ras-dependent eIF-4E phosphorylation may play a role in switching the pattern of gene expression during the differentiation of PC12 cells.  相似文献   

16.
Brightman FA  Fell DA 《FEBS letters》2000,482(3):169-174
Although epidermal growth factor (EGF) induces transient activation of Ras and the mitogen-activated protein kinase (MAPK) cascade in PC12 cells, whereas nerve growth factor (NGF) stimulates sustained activation, the basis for these contrasting responses is not known. We have developed a computer simulation of EGF-induced MAPK cascade activation, which provides quantitative evidence that feedback inhibition of the MAPK cascade is the most important factor in determining the duration of cascade activation. Hence, we propose that the observed quantitative differences in EGF and NGF signalling can be accounted for by differential feedback regulation of the MAPK cascade.  相似文献   

17.
18.
Treatment of PC12 pheochromocytoma cells with nerve growth factor (NGF) or bradykinin leads to the activation of extracellular signal-regulated kinases ERK1 and ERK2, two isozymes of microtubule-associated protein 2 (MAP) kinase that are present in numerous cell lines and regulated by diverse extracellular signals. The activation of MAP kinase is associated with its phosphorylation on tyrosine and threonine residues, both of which are required for activity. In the present studies, we have identified a factor in extracts of PC12 cells treated with NGF or bradykinin, named MAP kinase activator, that, when reconstituted with inactive MAP kinase from untreated cells, dramatically increased MAP kinase activity. Activation of MAP kinase in vitro by this factor required MgATP and was associated with the phosphorylation of a 42- (ERK1) and 44-kDa (ERK2) polypeptide. Incorporation of 32P into ERK1 and ERK2 occurred primarily on tyrosine and threonine residues and was associated with a single tryptic peptide, which is identical to one whose phosphorylation is increased by treatment of intact PC12 cells with NGF. Thus, the MAP kinase activator identified in PC12 cells is likely to be a physiologically important intermediate in the signaling pathways activated by NGF and bradykinin. Moreover, stimulation of the activator by NGF and bradykinin suggests that tyrosine kinase receptors and guanine nucleotide-binding protein-coupled receptors are both capable of regulating these pathways.  相似文献   

19.
Treatment of PC12 cells with nerve growth factor (NGF), epidermal growth factor (EGF), or agents that raise intracellular cyclic AMP (cAMP) levels (e.g., forskolin) reduces the activity of calmodulin-dependent protein kinase III (CaM-PK III) over a period of 8 h. The mechanism of this effect of NGF has now been examined in more detail, making use of a mutant PC12 cell line (A126-1B2) that is deficient in cAMP-dependent protein kinase activity. Control experiments showed that A126-1B2 cells retain other NGF-mediated responses (e.g., the induction of ornithine decarboxylase, a cAMP-independent event) and contain a complement of CaM-PK III and its substrate, elongation factor-2, comparable to that of wild-type cells. The ability of NGF or forskolin, but not of EGF, to down-regulate CaM-PK III was markedly attenuated in A126-1B2 compared to wild-type cells. Treatment of wild-type cells with the cAMP phosphodiesterase inhibitor, isobutylmethylxanthine, enhanced the effects of NGF, but not of EGF. The possibility that NGF led to a stimulation of cAMP-dependent protein kinase activity in wild-type cells was assessed by measurement of the "activation ratio" (-cAMP/+cAMP) of this enzyme before and at various times after NGF addition. A small, but significant, increase in the activation ratio from 0.3 to 0.48 was observed, reaching a peak 5 min after NGF treatment. EGF had no effect on the activation ratio in wild-type cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号