首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Green CB  Takahashi JS  Bass J 《Cell》2008,134(5):728-742
The circadian system orchestrates the temporal organization of many aspects of physiology, including metabolism, in synchrony with the 24 hr rotation of the Earth. Like the metabolic system, the circadian system is a complex feedback network that involves interactions between the central nervous system and peripheral tissues. Emerging evidence suggests that circadian regulation is intimately linked to metabolic homeostasis and that dysregulation of circadian rhythms can contribute to disease. Conversely, metabolic signals also feed back into the circadian system, modulating circadian gene expression and behavior. Here, we review the relationship between the circadian and metabolic systems and the implications for cardiovascular disease, obesity, and diabetes.  相似文献   

4.
5.
6.
The metabolism of hydroxyproline   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
9.
10.
The metabolism of tetralin   总被引:2,自引:1,他引:1       下载免费PDF全文
1. [1-(14)C]Tetralin was synthesized and fed to rabbits. 2. Of the radioactivity, 87-90% was excreted in the urine within two days and 0.5-3.7% on the third day. The faeces contained 0.6-1.8%. No radioactivity was found in the breath and negligible amounts were retained in the tissues. About 90-99% of an administered dose was accounted for. 3. The main metabolite in the urine was the glucuronide of alpha-tetralol (52.4%). Other conjugated metabolites were beta-tetralol (25.3%), 4-hydroxy-alpha-tetralone (6.1%), cis-tetralin-1,2-diol (0.4%) and trans-tetralin-1,2-diol (0.6%). 4. beta-Tetralone, alpha-naphthol, 1,2-dihydronaphthalene and naphthalene, previously reported as metabolites, are artifacts, and tetralin, alpha-tetralone, beta-naphthol, 5-hydroxytetralin, and 6-hydroxytetralin are not metabolites. 5. The major metabolite of tetralin, alpha-tetralol and alpha-tetralone is the glucuronide of alpha-tetralol, which was isolated as methyl (1,2,3,4-tetrahydro-1-naphthyl tri-O-acetyl-beta-d-glucosid)uronate; the major metabolite of beta-tetralol and beta-tetralone is the glucuronide of beta-tetralol, which was characterized as methyl (1,2,3,4-tetrahydro-2-naphthyl tri-O-acetyl-beta-d-glucosid)uronate. 5-Hydroxytetralin is conjugated with glucuronic acid, and was characterized as methyl (5,6,7,8-tetrahydro-1-naphthyl tri-O-acetyl-beta-d-glucosid)uronate. 6-Hydroxytetralin is conjugated with glucuronic acid, and was characterized as methyl (5,6,7,8-tetrahydro-2-naphthyl tri-O-acetyl-beta-d-glucosid)uronate. 6. A metabolic sequence accounting for the observed biological transformation products is proposed.  相似文献   

11.
The metabolism of methylcyclohexane   总被引:2,自引:2,他引:0       下载免费PDF全文
1. When [U-14C]methylcyclohexane is fed to rabbits (dose 2–2·5m-moles/kg. body wt.), 65% of the radioactivity is excreted in the urine as metabolites, 0·5% appears in the faeces and about 15% in the expired air, some 4–5% remaining in the body in about 60hr. after dosing. The 15% of the dose appearing in the expired air consists of unchanged methylcyclohexane (10%) and 14CO2 (5%). The low output of 14CO2 shows that reactions leading to complete oxidation of methylcyclohexane are of minor importance. 2. The main metabolite found in the urine was the glucuronide of trans-4-methylcyclohexanol which was isolated. Seven methylcyclohexanols were found in the urine as conjugated glucuronides. The amounts of these were determined by isotope dilution to be as follows: cis-2-, 0·6%; trans-2-, 1·2%; cis-3-, 11·5%; trans-3-, 10·5%; cis-4-, 2·4%; trans-4-methylcyclohexanol, 14·7%, cyclohexylmethanol, 0·3%. No 1-methylcyclohexanol was found. There was evidence also that a small amount (approx. 1%) of the hydrocarbon aromatized to benzoic acid, probably via cyclohexylmethanol and cyclohexane-carboxylic acid. 3. The pattern of hydroxylation and the various amounts of the isomers found suggest that the hydroxylation in vivo of methylcyclohexane is dependent on steric factors in the molecule, hydroxylation occurring to the greatest extent at the carbon atom furthest away from the methyl group.  相似文献   

12.
This literature review presents available data on the metabolism of diethylstilbestrol (DES) to shed light on the fate and the mechanism of toxicity of this compound. Biotransformation effects reviewed include conjugation reactions of DES such as glucuronide formation in vivo and in vitro, enterohepatic circulation of DES and its glucuronide, and formation of steroid sulfatases and sulfates; oxidative metabolism of DES (aromatic hydroxylation followed by methylation); and species differences in DES metabolism. Excretion curves for 12 animal species show vast differences; whereas urinary excretion predominates in humans, chimps, rhesus monkeys, and guinea pigs; rats, hamsters, and mice show predominately fecal elimination. The difference among species seems due to capability of biliary excretion. A molecular weight threshold seems to exist, and this may account for the varying remnants of DES housed in different species' organs. Placental transfer is another major problem. Fetuses of many species seem capable of glucurondizing DES. The formation of reactive metabolites (i.e., affinity for estradiol 17-beta receptor attachment and affinity for other proteins bound by estrogen) through oxidative biotransformation suggests that DES metabolites affect hepatic systems and may activate or transform cells to malignancy. Theories of the organotropism of DES carcinogenicity are presented, as well as a discussion of the fate of DES in the environment.  相似文献   

13.
14.
15.
The metabolism of S-methyl-l-cysteine   总被引:1,自引:1,他引:0  
1. Methylsulphinylacetic acid, 2-hydroxy-3-methylsulphinylpropionic acid and methylmercapturic acid sulphoxide (N-acetyl-S-methyl-l-cysteine S-oxide) were isolated as their dicyclohexylammonium salts from the urine of rats after they had been dosed with S-methyl-l-cysteine. 2. A fourth sulphoxide was isolated but not identified. 3. The excretion of sulphate in the urine of rats dosed with S-methyl-l-cysteine was measured. 4. The metabolism of S-methyl-l-cysteine by the hamster and guinea pig was examined chromatographically. 5. The preparation of the following compounds is reported: (−)-dicyclohexylammonium methyl-mercapturate sulphoxide; the dicyclohexylammonium salts of the optically inactive forms of 2-hydroxy-3-methylthiopropionic acid, 2-hydroxy-3-methyl-sulphinylpropionic acid and methylsulphinylacetic acid.  相似文献   

16.
17.
18.
The benzimidazole carbamates are important broad-spectrum drugs for the control of helminth parasites in mammals. David Gottschall, Vassilios Theodorides and Richard Wang explain that the metabolism of these compounds depends heavily on the substituent present on carbon-5 of the benzimidazole nucleus and involves a wide variety of reactions. Work in vitro has shown that two major enzyme systems, the cytochrome P-450 family and the microsomal flavin monooxygenases are primarily responsible for these biotransformations. The parent compound is generally short-lived and its metabolites predominate in the tissues and excreta of treated animals. The metabolic pathways can be exploited therapeutically to overcome the problems of poor water solubility and adsorbtion of benzimidazoles by the development and use of more soluble prodrugs.  相似文献   

19.
The metabolism of methoxyethylmercury salts   总被引:3,自引:3,他引:0       下载免费PDF全文
The metabolism of methoxy[(14)C]ethylmercury chloride in the rat has been investigated. After a single subcutaneous dose a small proportion is excreted unchanged in urine and a larger amount in bile with some resorption from the gut. The greater part of the dose is rapidly broken down in the tissues with a half-time of about 1 day to yield ethylene and inorganic mercury. Ethylene is exhaled in the breath and the mercury migrates to the kidney and is excreted in urine. A small proportion of the dose appears as carbon dioxide in the breath and about 12% in urine as a mercury-free metabolite. It is possible that the breakdown of methoxyethylmercurychloride to ethylene and inorganic mercury is not catalysed by an enzyme system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号