共查询到20条相似文献,搜索用时 15 毫秒
1.
JENNIFER K. BALCH DANIEL C. NEPSTAD PAULO M. BRANDO LISA M. CURRAN OSVALDO PORTELA OSWALDO De CARVALHO JR PAUL LEFEBVRE 《Global Change Biology》2008,14(10):2276-2287
Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed-canopy forest near the southeastern Amazon forest–savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha−1 yr−1), half that of other Amazon forests; and (ii) low fire-induced tree and liana mortality (5.5±0.5% yr−1, SE, in B3), the lowest measured in closed-canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short-lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability – which has important implications for carbon emissions and potential replacement by scrub vegetation. 相似文献
2.
Plínio B. De Camargo Susan E. Trumbore LuiZ. A. Martinelli EriC. A. Davidson Daniel C. Nepstad Reynaldo L. Victoria 《Global Change Biology》1999,5(6):693-702
The future flora of Amazonia will include significant areas of secondary forest as degraded pastures are abandoned and secondary succession proceeds. The rate at which secondary forests regain carbon (C) stocks and re-establish biogeochemical cycles that resemble those of primary forests will influence the biogeochemistry of the region. Most studies have focused on the effects of deforestation on biogeochemical cycles. In this study, we present data on the recuperation of carbon stocks and carbon fluxes within a secondary forest of the eastern Amazon, and we compare these measurements to those for primary forest, degraded pasture, and productive pasture. Along a transect from a 23-y-old degraded pasture, through a 7-y-old secondary forest, through a 16-year-old secondary forest, and to a primary forest, the δ13C values of soil organic matter (SOM) in the top 10 cm of soil were – 21.0, – 26.5, – 27.4, and – 27.9‰, respectively, indicating that the isotopic signature of SOM from C3 forest plants was rapidly re-established. The degraded pasture also had significant inputs of C from C3 plants. Radiocarbon data indicated that most of the C in the top 10 cm of soil had been fixed by plants during the last 30 years. Differences in soil C inventory among land use types were small compared to uncertainties in their measurement. Root inputs were nearly identical in primary and secondary forests, and litterfall in the secondary forest was 88% of the litterfall rate of the primary forest. In contrast, the secondary forest had only 17% of the above ground biomass. Because of rapid cycling rates of soil C and rapid recovery of C fluxes to and from the soil, the below ground C cycle in this secondary forest was nearly identical with those of the unaltered primary forest. 相似文献
3.
Selective logging is a dominant form of land use in the Amazon basin and throughout the humid tropics, yet little is known about the spatial variability of forest canopy gap formation and closure following timber harvests. We established chronosequences of large‐area (14–158 ha) selective logging sites spanning a 3.5‐year period of forest regeneration and two distinct harvest methods: conventional logging (CL) and reduced‐impact logging (RIL). Our goals were to: (1) determine the spatial characteristics of canopy gap fraction immediately following selective logging in the eastern Amazon; (2) determine the degree and rate of canopy closure in early years following harvest among the major landscape features associated with logging – tree falls, roads, skid trails and log decks; and (3) quantify spatial and temporal differences in canopy opening and closure in high‐ and low‐damage harvests (CL vs. RIL). Across a wide range of harvest intensities (2.6–6.4 felled trees ha?1), the majority of ground damage occurred as skid trails (4–12%), whereas log decks and roads were only a small contributor to the total ground damage (<2%). Despite similar timber harvest intensities, CL resulted in more ground damage than RIL. Neither the number of log decks nor their individual or total area was correlated with the number of trees removed or intensity of tree harvesting (trees ha?1). The area of skids was well correlated with the ground area damaged (m2) per tree felled. In recently logged forest (0.5 years postharvest), gap fractions were highest in log decks (mean RIL=0.83, CL=0.99) and lowest in tree‐fall areas (RIL: 0.26, CL: 0.41). However, the small surface area of log decks made their contribution to the total area‐integrated forest gap fraction minor. In contrast, tree falls accounted for more than two‐thirds of the area disturbed, but the canopy gaps associated with felled trees were much smaller than for log decks, roads and skids. Canopy openings decreased in size with distance from each felled tree crown. At 0.5 years postharvest, the area initially affected by the felling of each tree was approximately 100 m in radius for CL and 50 m for RIL. Initial decreases in gap fraction during the first 1.5 years of regrowth diminished in subsequent years. Throughout the 3.5‐year period of forest recovery, tree‐fall gap fractions remained higher in CL than in RIL treatments, but canopy gap closure rates were higher in CL than in RIL areas. During the observed recovery period, the canopy gap area affected by harvesting decreased in radius around each felled tree from 100 to 40 m in CL, and from 50 to 10 m in RIL. The results suggest that the full spatial and temporal dynamics of canopy gap fraction must be understood and monitored to predict the effects of selective logging on regional energy balance and climate regimes, biogeochemical processes including carbon cycling, and plant and faunal population dynamics. This paper also shows that remote sensing of log decks alone will not provide an accurate assessment of total forest area impacted by selective logging, nor will it be closely correlated to damage levels and canopy gap closure rates. 相似文献
4.
Abstract In this study we have reported some results of the fungal colonization in the litter of different plants of the National Park of Tai (Ivory Coast). We have also examined the correlations between the fungal species and the vegetable matrix in order to detect a saprotrophic specialization. 相似文献
5.
William C. Clarke 《Human ecology: an interdisciplinary journal》1976,4(3):247-259
The tactics of shifting cultivation are reviewed with particular reference given to techniques of forest regeneration. The desirability of a forest-fallow system of agriculture is explained. Also discussed are the causes, indicators, and consequences of a breakdown of forest-fallow cultivation. In conclusion, the future of tropical forests for agriculture and habitats for man is considered.This article is a modified version of one originally prepared for a Man and the Biosphere Symposium entitled The Ecological Effects of Increasing Human Activities on Tropical Forest Ecosystems. The Symposium met in Port Moresby, Papua New Guinea, April 28–30, 1975. Proceedings are scheduled for publication in late 1976 and will include another version of the present article. 相似文献
6.
Litter manipulation and associated invertebrate fauna in secondary forest, central Amazonia, Brazil 总被引:1,自引:0,他引:1
Plant litter from selected tree species has been used for improving soil productivity in low-input systems of secondary vegetation in Central Amazon, leading to different conditions for invertebrates. Soil invertebrate assemblages were monitored to test the effects of adding litter types of contrasting nutritional quality and periods of exposure on the development of the community. We established four second growth plots with 80 subplots of 3 m2 from which the original litter was removed and replaced in 60 subplots. Twenty subplots received Hevea brasiliensis leaves, 20 others Carapa guianensis leaves, and another 20 an equal mixture of H. brasiliensis, C. guianensis and Vismia guianensis. Twenty subplots were left with the original litter. Litter and mineral soil (5 cm deep) sub-horizons were collected after 45, 100, 160, 240 and 300 days of exposure. The invertebrates were extracted using Kempson apparatus. At the day 210, the litter was replenished to match the surrounding litter. Regression analyses showed no significant effect of litter type, but the period of exposure did affect the community in both sub-horizons. Only after the litter replenishment, the type of litter and periods of exposure affected the community in the litter sub-horizon. Because we tried to isolate the effects of litter composition from other large-scale phenomena, several factors interfered in the experiment and potential problems were identified to optimize the investigation. The sampling design must be improved by using a larger number of subsamples for each kind of litter within each plot. Coarse parameters of Order and Family were suited to detect major environmental patterns on soil invertebrates, but taxonomic resolution to species and/or morphospecies is required to detect more subtle effects. Future manipulations should also be done on a longer time scale, and the replicates need to be spread over larger areas to capture the natural variations within the ecosystems. 相似文献
7.
8.
9.
Stem water storage and diurnal patterns of water use in tropical forest canopy trees 总被引:21,自引:5,他引:21
G. Goldstein J. L. Andrade F. C. Meinzer N. M. Holbrook J. Cavelier P. Jackson & A. Celis 《Plant, cell & environment》1998,21(4):397-406
Stem water storage capacity and diurnal patterns of water use were studied in five canopy trees of a seasonal tropical forest in Panama. Sap flow was measured simultaneously at the top and at the base of each tree using constant energy input thermal probes inserted in the sapwood. The daily stem storage capacity was calculated by comparing the diurnal patterns of basal and crown sap flow. The amount of water withdrawn from storage and subsequently replaced daily ranged from 4 kg d–1 in a 0·20-m-diameter individual of Cecropia longipes to 54 kg d–1 in a 1·02-m-diameter individual of Anacardium excelsum, representing 9–15% of the total daily water loss, respectively. Ficus insipida, Luehea seemannii and Spondias mombin had intermediate diurnal water storage capacities. Trees with greater storage capacity maintained maximum rates of transpiration for a substantially longer fraction of the day than trees with smaller water storage capacity. All five trees conformed to a common linear relationship between diurnal storage capacity and basal sapwood area, suggesting that this relationship was species-independent and size-specific for trees at the study site. According to this relationship there was an increment of 10 kg of diurnal water storage capacity for every 0·1 m2 increase in basal sapwood area. The diurnal withdrawal of water from, and refill of, internal stores was a dynamic process, tightly coupled to fluctuations in environmental conditions. The variations in basal and crown sap flow were more synchronized after 1100 h when internal reserves were mostly depleted. Stem water storage may partially compensate for increases in axial hydraulic resistance with tree size and thus play an important role in regulating the water status of leaves exposed to the large diurnal variations in evaporative demand that occur in the upper canopy of seasonal lowland tropical forests. 相似文献
10.
High rates of old growth (OG) forest destruction and difficult farming conditions result in increasing cover of secondary forests (SF) in the Amazon. In this setting, it is opportune to ask which animals use newly available SF and which stay restricted to OG. This study presents a comparison of SF and OG site occupancy by nocturnal birds in terra firme forests of the Amazon Guianan shield, north of Manaus, Brazil. We tested species-specific occupancy predictions for two owls ( Lophostrix cristata/Glaucidium hardyi ), two potoos ( Nyctibius leucopterus/Nyctibius griseus ) and two nightjars ( Caprimulgus nigrescens/Nyctidromus albicollis ). For each pair, we predicted that one species would have higher occupancy in OG while the other would either be indifferent to forest type or favor SF sites. Data were collected in 30 OG and 24 SF sites with monthly samples from December 2007 to December 2008. Our analytic approach accounts for the possibility of detection failure and for spatial autocorrelation in occupancy, thus leading to strong inferences about changes in occupancy between forest types and between species. Nocturnal bird richness and community composition were indistinguishable between OG and SF sites. Owls were relatively indifferent to forest type. Potoos followed the a priori predictions, and one of the nightjars ( C. nigrescens ) favored SF instead of OG as predicted. Only one species, Nyctib. leucopterus , clearly favored OG. The landscape context of our SF study sites, surrounded by a vast expanse of continuous OG forest, partially explains the resemblance between SF and OG fauna but leaves unexplained the higher occupancy for SF than OG sites for several study species. The causal explanation of high SF occupancy remains an open question, but the result itself motivates further comparisons for other groups, as well as recognition of the conservation potential of SF. 相似文献
11.
12.
TED R. FELDPAUSCH CASSIA da CONCEICAO PRATES-CLARK†‡ ERICK C.M. FERNANDES§ SUSAN J. RIHA 《Global Change Biology》2007,13(5):967-979
Nearly all published rates of secondary forest (SF) regrowth for Amazonia are inferred from chronosequences. We examined SF regrowth on abandoned pastures over a 4‐year period to determine if measured rates of forest recovery differ from chronosequence predictions. We studied the emergence, development and death of over 1300 stems in 10 SFs representing three age classes (<1–5, 6–10 and 11–14 years old). Mean tree biomass accumulation in both the <1–5 and 6–10 years old (4.4 and 5.7 Mg ha−1 yr−1, respectively) abandoned pastures was lower than predicted and deviated significantly (57% and 41%) from rates estimated from the chronosequence. The older SFs, with a mean growth rate of 9.9 Mg ha−1 yr−1 followed the rate predicted by the chronosequence. Understocking was the primary cause of low biomass recovery rates in the youngest forests; although the youngest stands had a diameter at breast height increment three times the oldest stands, the youngest stands lacked sufficient density to cumulatively produce high biomass accumulation rates. Four years of measurement indicated that the youngest stands had developed 59% of the stems measured in the older stands during the same time period. The 6–10‐year‐old stands were rapidly self‐thinning and approached stem density values measured in the same aged stands at the onset of the study. Mortality was high for all stands, with 54% of the original stems remaining after 4 years in intermediate‐aged stands. The forests were dominated by the tree Vismia, which represented 55–66% of the biomass in all stands. The Vismia share of the biomass was decreasing over time, with other genera replacing the pioneer. Our measured rates of regrowth indicate that generalized estimates of forest regrowth through chronosequence studies will overestimate forest regrowth for the youngest forests that were under land use for longer time‐periods before abandonment. Certified Emission Reductions under the Clean Development Mechanism of the Kyoto protocol should consider these results when predicting and compensating for carbon sequestered under natural forest management. 相似文献
13.
The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest 总被引:17,自引:0,他引:17
Recent research suggests that increases in growing-season length (GSL) in mid-northern latitudes may be partially responsible
for increased forest growth and carbon sequestration. We used the BIOME-BGC ecosystem model to investigate the impacts of
including a dynamically regulated GSL on simulated carbon and water balance over a historical 88-year record (1900–1987) for
12 sites in the eastern USA deciduous broadleaf forest. For individual sites, the predicted GSL regularly varied by more than
15 days. When grouped into three climatic zones, GSL variability was still large and rapid. There is a recent trend in colder,
northern sites toward a longer GSL, but not in moderate and warm climates. The results show that, for all sites, prediction
of a long GSL versus using the mean GSL increased net ecosystem production (NEP), gross primary production (GPP), and evapotranspiration
(ET); conversely a short GSL is predicted to decrease these parameters. On an absolute basis, differences in GPP between the
dynamic and mean GSL simulations were larger than the differences in NEP. As a percentage difference, though, NEP was much
more sensitive to changes in GSL than were either GPP or ET. On average, a 1-day change in GSL changed NEP by 1.6%, GPP by
0.5%, and ET by 0.2%. Predictions of NEP and GPP in cold climates were more sensitive to changes in GSL than were predictions
in warm climates. ET was not similarly sensitive. First, our results strongly agree with field measurements showing a high
correlation between NEP and dates of spring growth, and second they suggest that persistent increases in GSL may lead to long-term
increases in carbon storage.
Received: 26 May 1998 / Accepted: 6 July 1998 相似文献
14.
Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon 总被引:8,自引:0,他引:8
Michael Keller † Michael Palace Gregory P. Asner‡ Rodrigo Pereira Jr. § José Natalino M. Silva¶ 《Global Change Biology》2004,10(5):784-795
Coarse woody debris (CWD) is an important component of the carbon cycle in tropical forests. We measured the volume and density of fallen CWD at two sites, Cauaxi and Tapajós in the Eastern Amazon. At both sites we studied undisturbed forests (UFs) and logged forests 1 year after harvest. Conventional logging (CL) and reduced impact logging (RIL) were used for management on areas where the geometric volumes of logs harvested was about 25–30 m3 ha?1. Density for five classes of fallen CWD for large material (>10 cm diameter) ranged from 0.71 to 0.28 Mg m?3 depending upon the degree of decomposition. Density of wood within large fallen logs varied with position relative to the ground and with distance from the center of the log. Densities for materials with diameters from 2 to 5 and 5 to 10 cm were 0.36 and 0.45 Mg m?3, respectively. The average mass (±SE) of fallen CWD at Cauaxi was 55.2 (4.7), 74.7 (0.6), and 107.8 (10.5) Mg ha?1 for duplicate UF, RIL, and CL sites, respectively. At Tapajós, the average mass of fallen CWD was 50.7 (1.1) Mg ha?1 for UF and 76.2 (10.2) Mg ha?1 for RIL for duplicate sites compared with 282 Mg ha?1 for live aboveground biomass. Small‐ and medium‐sized material (<10 cm dia.) accounted for 8–18% of the total fallen CWD mass. The large amount of fallen CWD at these UF sites relative to standing aboveground biomass suggests either that the forests have recently been subjected to a pulse of high mortality or that they normally suffer a high mortality rate in the range of 0.03 per year. Accounting for background CWD in UF, CL management produced 2.7 times as much CWD as RIL management. Excess CWD at logging sites would generate a substantial CO2 emission given the high rates of decay in moist tropical forests. 相似文献
15.
Felicity A. Edwards Mike R. Massam Cindy C.P. Cosset Patrick G. Cannon Torbjørn Haugaasen James J. Gilroy David P. Edwards 《Current biology : CB》2021,31(6):1284-1293.e4
- Download : Download high-res image (92KB)
- Download : Download full-size image
16.
17.
Manoel Cardoso Carlos Nobre Gilvan Sampaio Marina Hirota Dalton Valeriano Gilberto Câmara 《Biologia》2009,64(3):433-437
Biome models of the global climate-vegetation relationships indicate that most of the Brazilian Amazon has potential for being covered by tropical forests. From current land-use processes observed in the region, however, substantial deforestation and fire activity have been verified in large portions of the region, particularly along the Arc of Deforestation. In a first attempt to evaluate the long-term potential for tropical-forest degradation due to deforestation and fires in the Brazilian Amazon, we analysed large-scale data on fire activity and climate factors that drive the distribution of tropical forests in the region. The initial analyses and results from this study lead to important details on the relations between these quantities and have important implications for building future parameterizations of the vulnerability of tropical forests in the region. 相似文献
18.
Aim To model long‐term trends in plant species distributions in response to predicted changes in global climate. Location Amazonia. Methods The impacts of expected global climate change on the potential and realized distributions of a representative sample of 69 individual Angiosperm species in Amazonia were simulated from 1990 to 2095. The climate trend followed the HADCM2GSa1 scenario, which assumes an annual 1% increase of atmospheric CO2 content with effects mitigated by sulphate forcing. Potential distributions of species in one‐degree grid cells were modelled using a suitability index and rectilinear envelope based on bioclimate variables. Realized distributions were additionally limited by spatial contiguity with, and proximity to, known record sites. A size‐structured population model was simulated for each cell in the realized distributions to allow for lags in response to climate change, but dispersal was not included. Results In the resulting simulations, 43% of all species became non‐viable by 2095 because their potential distributions had changed drastically, but there was little change in the realized distributions of most species, owing to delays in population responses. Widely distributed species with high tolerance to environmental variation exhibited the least response to climate change, and species with narrow ranges and short generation times the greatest. Climate changed most in north‐east Amazonia while the best remaining conditions for lowland moist forest species were in western Amazonia. Main conclusions To maintain the greatest resilience of Amazonian biodiversity to climate change as modelled by HADCM2GSa1, highest priority should be given to strengthening and extending protected areas in western Amazonia that encompass lowland and montane forests. 相似文献
19.
We used a comparative phylogeographical approach to investigate the origins of the disjunct wet forest biota of the Golfo Dulce region along the Pacific slope of Costa Rica. This region is isolated by Pacific dry forests north and south and isolated from Caribbean wet forests by mountains. We studied three sympatric lowland frog species in the Craugastor fitzingeri species group that prefer wet forest but differ in their response to dry habitats. In dry forest, C. fitzingeri can survive along streams while C. crassidigitus and C. talamancae are entirely absent. We collected samples from across the ranges of all three species, and obtained mitochondrial DNA sequence data from the COI and cytochrome b genes. We observed significant phylogeographical structure in C. crassidigitus and C. talamancae, but much less in C. fitzingeri, demonstrating that mountain barriers and dry forest habitat have reduced mitochondrial gene flow in the strictly wet-forest species. Additionally, we discovered that the Golfo Dulce and Central Panama populations of C. crassidigitus appear to have diverged in the Pliocene or earlier, suggesting that the dry forest separating these populations is old. Our phylogenetic analysis of 12 of approximately 16 species of the C. fitzingeri species group suggests that the three lowland species are each other's closest relatives. Because of this shared phylogenetic history, we attribute the striking differences in phylogeographical structure to the different ecologies of the frogs. In summary, we find that what appear to be minor differences in the natural history of these three closely related species may profoundly impact the potential for dispersal, range size, and cladogenesis. 相似文献