首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The digestive organs possibly involved in food absorption in Loligo vulgaris and L. forbesi are the caecum, the intestine, the digestive gland, and the digestive duct appendages. The histology and the fine structure showed that the ciliated organ, the caecal sac, and the intestine are lined with a ciliated epithelium. The ciliary rootlets are particularly well developed in the ciliated organ, apparently in relation to its function of particle collection. Mucous cells are present in the ciliated organ and the intestine. Histologically, the digestive gland appears rather different from that of other cephalopods. However, the fine structure of individual types of squid digestive cell is actually similar to that of comparable organs in other species, and the squid cells undergo the same stages of activity. Digestive cells have a brush border of microvilli, and numerous vacuoles, which sometimes contain “brown bodies.” However, no “boules” (conspicuous protein inclusions of digestive cells in other species) could be identified in their cytoplasm; instead only secretory granules are present. In the digestive duct appendages, numerous membrane infoldings associated with mitochondria are characteristic features of the epithelial cells in all cephalopods. Two unusual features were observed in Loligo: first, the large size of the lipid inclusions in the digestive gland, in the caecal sac, and in the digestive duct appendages; and second, the large number of conspicuous mitochondria with well-developed tubular cristae. When injected into the caecal sac, ferritin molecules can reach the digestive gland and the digestive duct appendages via the digestive ducts, and they are taken up by endocytosis in the digestive cells. Thus, it appears that the digestive gland of Loligo can act as an absorptive organ as it does in other cephalopods.  相似文献   

2.
The cephalopod digestive gland plays an important role in the efficient assimilation of nutrients and therefore the fast growth of the animal. The histological and enzymatic structure of Euprymna tasmanica was studied and used in this experiment to determine the dynamics of the gland in response to feeding. The major roles of the digestive gland were secretion of digestive enzymes in spherical inclusions (boules) and excretion of metabolic wastes in brown body vacuoles. High levels of trypsin, chymotrypsin and α-amylase, low levels of α-glucosidase and negligible carboxypeptidase activity were produced by the gland. There was no evidence of secretion of digestive enzymes in other organs of the digestive tract. Within 60 min of a feeding event, the gland produced increasing numbers of boules to replace those lost from the stomach during the feeding event. Initially, small boules were seen in the digestive cells, they increased in size until they are released into the lumen of the gland where they are transported to the stomach. There was no evidence of an increase in activity of digestive enzymes following a feeding event, despite structural changes in the gland. However, there was large variation among individuals in the level of digestive enzyme activity. A negative correlation between boule and brown body vacuole density suggested that the large variation in enzyme activity may be due to the digestive gland alternating between enzyme production and excretion.  相似文献   

3.
Localization and morphology of NO-ergic elements in the digestive system of bivalve molluscs Mactra chinensis and Spisula sachalinensis were studied using histochemical technique [1] for detection of NADPH-diaphorase (EC 1.6.99.1) [1]. The NO-producing elements were revealed in all parts of the digestive system of the studied animals. NADPH-diaphorase was found in cells of several morphological types as well as in nerve plexuses. The most abundant in the digestive tract parts of the studied molluscs were intraepithelial nerve cells of the “open” type, whose thin apical process is directed towards the gut lumen. Subepithelial NO-ergic neurons were revealed in stomach and crystalline style sac of Mactra chinensis. Besides, diformazan granules are present in brush-border epitheliocytes of the major and secondary ducts of the digestive gland as well as in cells of digestive tubules of this gland. All studied parts were found to contain basiepithelial and subepithelial NO-ergic nerve fibers forming networks of various densities from, most commonly, loose to dense plexuses particularly developed in labia, esophagus, and gut of the studied molluscs.  相似文献   

4.
Crypt cells—one of the three cell types composing Strombidae digestive tubules—are characterized by the presence of numerous metal-containing phosphate granules termed spherocrystals. We explored the bioaccumulation and detoxification of metals in Strombidae by exposing wild fighting conch Strombus pugilis for 9 days to waterborne CuSO4 and ZnSO4. The total amount of Cu and Zn was determined in the digestive gland and in the rest of the body by Inductively Coupled Plasma (ICP) analyses. The digestive gland spherocrystal metal content was investigated based on the semi-quantitative energy dispersive X-ray (EDX) elemental analysis. ICP analyses of unexposed individuals revealed that 87.0?±?5.9% of the Zn is contained in the digestive gland, where its concentration is 36 times higher than in the rest of the body. Regarding Cu, 25.8?±?16.4% of the metal was located in the digestive gland of the control individuals, increasing to 61.5?±?16.4% in exposed individuals. Both Cu and Zn concentrations in the digestive gland increased after exposures, pointing to a potential role of this organ in the detoxification of these metals. EDX analysis of spherocrystals revealed the presence of Ca, Cl, Fe, K, Mg, P, and Zn in unexposed individuals. No difference was found in the relative proportion of Zn in spherocrystals of exposed versus control individuals. Contrastingly, copper was never detected in the spherocrystals from controls and Zn-exposed individuals, but the relative proportion of Cu in spherocrystals of Cu-exposed individuals varied from 0.3 to 5.7%. Our results show the direct role of spherocrystals in Cu detoxification.  相似文献   

5.
The midgut of the females of Syringophilopsis fringilla (Fritsch) composed of anterior midgut and excretory organ (=posterior midgut) was investigated by means of light and transmission electron microscopy. The anterior midgut includes the ventriculus and two pairs of midgut caeca. These organs are lined by a similar epithelium except for the region adjacent to the coxal glands. Four cell subtypes were distinguished in the epithelium of the anterior midgut. All of them evidently represent physiological states of a single cell type. The digestive cells are most abundant. These cells are rich in rough endoplasmic reticulum and participate both in secretion and intracellular digestion. They form macropinocytotic vesicles in the apical region and a lot of secondary lysosomes in the central cytoplasm. After accumulating various residual bodies and spherites, the digestive cells transform into the excretory cells. The latter can be either extruded into the gut lumen or bud off their apical region and enter a new digestive cycle. The secretory cells were not found in all specimens examined. They are characterized by the presence of dense membrane-bounded granules, 2–4 μm in diameter, as well as by an extensive rough endoplasmic reticulum and Golgi bodies. The ventricular wall adjacent to the coxal glands demonstrates features of transporting epithelia. The cells are characterized by irregularly branched apical processes and a high concentration of mitochondria. The main function of the excretory organ (posterior midgut) is the elimination of nitrogenous waste. Formation of guanine-containing granules in the cytoplasm of the epithelial cells was shown to be associated with Golgi activity. The excretory granules are released into the gut lumen by means of eccrine or apocrine secretion. Evacuation of the fecal masses occurs periodically. Mitotic figures have been observed occasionally in the epithelial cells of the anterior midgut.  相似文献   

6.
M. Ludwig  G. Alberti 《Protoplasma》1988,143(1):43-50
Summary Spherites in the digestive and secretory cells of the midgut gland of the agelenid spiderCoelotes terrestris were studied by electron microscopy and histochemical methods. Spherites measured 1–6 m in diameter and were characterized by alternating layers of electron dense and electron lucent material. The main-components of spherites were calcium phosphates and calcium carbonates. Guanine and barium, as well as aminopeptidase and alkaline phosphatase were also present. The matrix consisted of proteins and carbohydrates. Numerous spherites were found together with excretory products within the excretory vacuoles of the digestive cells.Spiders fed with food containing lead, showed deposition of the metall in the spherites. It is then proposed that spherites, aside from their role in storing calcium and other ions, may function in detoxification of heavy metals.  相似文献   

7.
The terrestrial snail Helix aspersa was exposed to food containing elevated levels of aluminium for up to 33 days and the digestive gland examined by light and electron microscopy and X-ray microanalysis. Four types of cell are found in the digestive gland, (digestive, excretory, calcium and thin) although aluminium was only found in the excretory cells. The aluminium was localised in the 'yellow' or excretory granules that are a characteristic feature of the excretory cells. Aluminium was only found in the granules of snails fed aluminium but there was no difference in the appearance of granules from control or aluminium-fed snails. The granules were large (up to 20 mum in diameter), irregularly shaped and electron-dense. Sulphur, phosphorus and calcium were detected in granules from all snails. The presence of sulphur may indicate protein residues. The amount of aluminium and phosphorus in the granules increased over the experimental period but the number of granules did not change. Levels of aluminium in the granules decreased when the snails were given control food. The role of the excretory granules in the localisation, detoxification and excretion of aluminium is discussed.  相似文献   

8.
The purpose of this study was to investigate the long-term bioaccumulation and elimination of Cd, Pb, Mn, Zn and Fe by Pinna nobilis tissues after their 90 day-transplantation period at Téboulba fishing harbor. During the transplantation period, the Cd, Pb, Mn, Zn and Fe concentrations in the different tissues of the mussels were measured before and after exposure period. Metal (Cd, Pb, Mn, Zn and Fe) accumulation in P. nobilis mussels varied depending on the analyzed tissue and the caging times. Notable differences in Cd, Pb, Mn, Zn and Fe accumulation patterns within the digestive gland, gills and muscle were found and may be due to the ability of each tissue to accumulate metals. During the depuration phase, the elimination of Cd, Pb, Mn, Zn and Fe depended on the target tissue and the metal speciation. Cd, Pb, Mn and Fe were eliminated rapidly from one organ and increased in other when compared to those of 90 day transplanted mussels. The increase of metal loads during the elimination phase is not clear and particularly what kind of processes is responsible for such response. However, it is reasonable to assume that metals increase is related to the existence of an accumulation/detoxification mechanism, which involves the transport of metals from an organ to another. The data obtained indicate that because of the significantly high quantities of Cd, Pb, Mn, Zn and Fe accumulated during the exposure phase, the transplanted mussels are suitable bioindicators for monitoring trace metals in marine ecosystem.  相似文献   

9.
10.
  • 1.1. Phosphatase acid (PhA) activity in the digestive gland (hepatopancreas) of the common garden snail Helix aspersa has been investigated using cytochemical methods.
  • 2.2. All the cells composing this gland show PhA activity, the distribution pattern differing according to the cell type.
  • 3.3. The digestive cells show the most widely distributed reaction product (brush border, phagolysosomes, multivesicular bodies and autophagic vacuoles).
  • 4.4. In the excretory cells this activity appears in large sacs, while in the calcium cells the reaction product is abundant in the calcium granules.
  • 5.5. Cellular digestion processes performed by each of these cell types is discussed together with their role in the detoxification of heavy elements derived from the environment.
  相似文献   

11.
Changes associated with feeding in the histological and cytological structure of the digestive gland of the loliginid squid Sepioteuthis lessoniana were examined, along with the nature of both the intracellular and extracellular enzymes produced by the gland. The timing of the release of the extracellular enzymes during the digestive cycle was also determined using a quantitative experimental program. Like that of all coleoid cephalopods, the digestive gland was characterised by one type of cell with several functional stages. As is the case for other loliginid squids, however, the digestive cells did not contain the large enzyme-carrying boules that characterise the digestive glands of most cephalopods. Instead, smaller secretory granules were found in the digestive cells and these may be the enzyme carriers. The prominent rough endoplasmic reticulum, large mitochondria and active Golgi complexes present in the digestive cells are characteristic of cephalopods and indicate a high metabolic activity. Like that of other cephalopods, endocytotic absorption of nutrients and intracellular digestion occurs in the digestive gland of this squid. From quantitative and qualitative examinations of structural changes in the digestive gland of S. lessoniana after feeding, a schedule of its function during the course of digestion was proposed. This indicated that digestion was very rapid, being completed in as little as 4 h in S. lessoniana. Extracellular digestive enzymes were only released after the first hour following feeding, which implies that they are stored in the stomach between meals to increase digestive efficiency.  相似文献   

12.
13.
The digestive gland of the freshwater snail Lymnaea stagnalis, exposed to water containing an elevated concentration of aluminium at neutral pH for up to 30 days, followed by a 20 day recovery period, was examined by light and electron microscopy and X-ray microanalysis. Aluminium was localized in the yellow granules present in the digestive and excretory cells and in the green and small granules present in the digestive cells. More aluminium, silicon, phosphorus and sulphur were present in all three granule types from aluminium exposed snails. The number of yellow and green granules from the digestive gland of aluminium exposed snails showed a progressive increase over the experimental period compared to controls. The number and aluminium content of the granules is likely to reflect the role of the digestive gland as a 'sink' for accumulated aluminium. We propose that intracellular monomeric silica is involved in the detoxification of aqueous aluminium which at neutral pH is largely in the form of an insoluble polyhydroxide. The increased amounts of sulphur and phosphorus in the granules are likely to be part of a broad response to metal loading but probably do not play a significant role in the storage and detoxification of aluminium.  相似文献   

14.
15.
The morphology and fine structure of the labial gland reservoirs in the subterranean termite Reticulitermes santonensis (Isoptera: Rhinotermitidae) was studied by light and transmission electron microscopy. The reservoir wall consists of a single epithelial cell layer and a cuticular intima. The reservoir ducts are formed by a flat epithelial matrix with cuticular ridges lining the duct lumen. Measurements of the ionic concentrations of reservoir fluids and haemolymph show that the osmolality of reservoir fluid ranges from 7 to 28 mosmol kg−1; the haemolymph osmotic pressure was 201 ± 31 mosmol kg. The reservoir lumen is effectively separated from the haemolymph compartment; a net water flow through the reservoir wall could not be induced in physiological experiments. Moreover, typical epithelial structures associated with a fluid transport against an osmotic gradient are lacking. Thus, our fine structural and physiological data support the view that a water transfer from the haemolymph through the reservoir wall into the reservoir lumen does not occur.  相似文献   

16.
The structure and functioning of the gut of Pomacea canaliculata (D'Orb.) has been investigated using living and preserved material. Anatomical studies were also carried out on preserved specimens of Pila globosa, Turbinicola saxea and Lanistes ovum bangweolicus .
The gut of pilids is specialised for a macrophagous diet, usually of aquatic angiosperms. The mid-oesophagus is a crop for storage, and the stomach has a large triturating gizzard developed from the gastric shield area. This is the site of extra-cellular digestion; there is no intra-cellular digestion in any part of the gut. The ducts of the digestive gland open into a special region of the stomach, the vestibule, which is histologically similar to them. The style sac begins the compacting of the faeces, which is completed in tho intestine. There is no evidence that absorption ocrurs in the epithelium of tho stomach or intestine; soluble products of digestion are carried into the digestive gland, which is the main site of absorption. Its activity is supplemented by amoebocytes entering the lumen of the style sac and intestine. Two types of cell occur in the gland, one type producing digestive enzymes and absorbing soluble products of digestion, the other type being excretory in function. There is no sign of phagocytosis in either. The excretory activity of the kidney is further supplemented by an anal gland.  相似文献   

17.
The interrenal gland of anurans synthesizes the steroids aldosterone and corticosterone, but it is unknown whether these hormones are synthesized by the same cell type. In this work, we aim to elucidate whether there are different steroidogenic cell types and whether they have specific regionalization in the interrenal gland of the male toad Rhinella arenarum. We characterized all cell types using histological, immuhistochemical, and histochemical methods as well as transmission electron microscopy. Furthermore, we evaluated the organization of the cell types in the gland and anteroposterior variations in the synthesis of the steroids. We found evidence of five cell types: two morphologically different steroidogenic cells, type 1: polyhedral cells tightly attached to each other that have spherical euchromatic nuclei and type 2: retracted cells loosely attached to each other that have oval heterochromatic nuclei. Cell type 2 is mainly observed in the inner zone of the gland. In addition, we observed two types of chromaffin cells, called type 3 and 4 cells, randomly distributed throughout the interrenal gland, as well as type 5 cells, recognized as summer cells. Morphometric analyses of the cell types in the anterior and posterior zones of the interrenal showed that the ratio “area of type 2 cells/total interrenal area” is significantly lower in the posterior zone. In vitro incubations showed that the posterior portion of the gland produces significantly higher amounts of both corticosterone and aldosterone. Overall, our results suggest that the type 2 cells are less active to synthesize both aldosterone and corticosterone, compared to type 1 cells. Unlike most previous reports on the interrenal gland of anurans, in R. arenarum there is a zonation of the steroidogenic cell types, which implies that the organ is not anteroposterior or dorsoventrally homogeneous. © J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The venom system of Nasonia vitripennis is well-developed and composed of an unbranched acid gland and associated reservoir. Fine-structural, histochemical and electrophoretic studies indicate that the venom is produced by two protein-secreting epithelia. The bulk of the venom is synthesised in the columnar cells of the acid gland and discharged via “vesicular organelles” and the efferent ductular system into the lumen of the reservoir. The acid gland also contains squamous chitogenous cells, situated either around the central lumen or interposed between the bases of the columnar cells. Once within the reservoir, the venom is probably activated by enzymatic secretions from the reservoir secretory cells. Each of these cells has a “vesicular organelle” but, in contrast to the columnar cells of the acid gland, the cytoplasm contains a preponderance of free ribosomes, and protein segregation apparently occurs outside the Golgi complexes. The venom is expelled through the efferent discharge duct by muscular contractions, which open the duct lumen and bring it into contact with the funnel of the ovipositor. Excessive distortion of the duct is prevented by a massive ventral ligament.  相似文献   

19.
The venom gland of Crotalus viridis oreganus is composed of two discrete secretory regions: a small anterior portion, the accessory gland, and a much larger main gland. These two glands are joined by a short primary duct consisting of simple columnar secretory cells and basal horizontal cells. The main gland has at least four morphologically distinct cell types: secretory cells, the dominant cell of the gland, mitochondria-rich cells, horizontal cells, and “dark” cells. Scanning electron microscopy shows that the mitochondria-rich cells are recessed into pits of varying depth; these cells do not secrete. Horizontal cells may serve as secretory stem cells, and “dark” cells may be myoepithelial cells. The accessory gland contains at least six distinct cell types: mucosecretory cells with large mucous granules, mitochondria-rich cells with apical vesicles, mitochondria-rich cells with electron-dense secretory granules, mitochondria-rich cells with numerous cilia, horizontal cells, and “dark” cells. Mitochondria-rich cells with apical vesicles or cilia cover much of the apical surface of mucosecretory cells and these three cell types are found in the anterior distal tubules of the accessory gland. The posterior regions of the accessory gland lack mucosecretory cells and do not appear to secrete. Ciliated cells have not been noted previously in snake venom glands. Release of secretory products (venom) into the lumen of the main gland is by exocytosis of granules and by release of intact membrane-bound vesicles. Following venom extraction, main gland secretory and mitochondria-rich cells increase in height, and protein synthesis (as suggested by rough endoplasmic reticulum proliferation) increases dramatically. No new cell types or alterations in morphology were noted among glands taken from either adult or juvenile snakes, even though the venom of each is quite distinct. In general, the glands of C. v. oreganus share structural similarities with those of crotalids and viperids previously described.  相似文献   

20.
Smith J. M. 1976. Comparative ultrastructure of the oesophageal glands of third stage larval hookworms. International Journal for Parasitology6: 9–13. The oesophageal glands of the third stage larvae of Necator americanus and Ancylostoma tubaeforme are compared, both before and after penetration through skin. The glands of “infective” larvae of N. americanus are densely packed with secretory granules, contrasting with a reduced gland size in the “penetrated” larvae coupled with the presence of gland secretions in the oesophageal lumen.No difference was observed between the glands of “infective” and “penetrated” larvae of A. tubaeforme. The role of oesophageal gland secretions for penetration of host skin is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号