首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
ABSTRACT: BACKGROUND: While there is now a significant body of research correlating apple (Malus x domestica) fruit softening with the cell wall hydrolase ENDO-POLYGALACTURONASE1 (PG1), there is currently no direct evidence of its function. This study examined the effect of down regulation of PG1 expression in 'Royal Gala' apples, a cultivar that typically has high levels of PG1, and softens during fruit ripening. RESULTS: PG1-suppressed 'Royal Gala' apples harvested from multiple seasons were firmer than controls after ripening, and intercellular adhesion was higher. Cell wall analyses indicated changes in yield and composition of pectin, and a higher molecular weight distribution of CDTA-soluble pectin. Structural analyses revealed more ruptured cells and free juice in pulled apart sections, suggesting improved integrity of intercellular connections and consequent cell rupture due to failure of the primary cell walls under stress. PG1-suppression also had reduced expansion of cells in the hypodermis of ripe apples, resulting in more densely packed cells in this layer. This change in morphology appears to be linked with reduced transpirational water loss in the fruit. CONCLUSIONS: These findings confirm PG1's role in apple fruit softening and suggests that this is achieved in part by reducing cellular adhesion. This is consistent with previous studies in shown in strawberry but not in tomato. In apple PG1 also appears influence other fruit texture characters such as juiciness and water loss.  相似文献   

3.
Regulation of gene expression during water deficit stress   总被引:17,自引:0,他引:17  
  相似文献   

4.
5.
6.
Roche J  Hewezi T  Bouniols A  Gentzbittel L 《Planta》2007,226(3):601-617
A sunflower cDNA microarray containing about 800 clones covering major metabolic and signal transduction pathways was used to study gene expression profiles in leaves and embryos of drought-tolerant and -sensitive genotypes subjected to water-deficit stress under field conditions. Using two-step ANOVA normalization and analysis models, we identified 409 differentially expressed genes among genotypes, water treatment and organs. The majority of the cDNA clones differentially expressed under water stress was found to display opposite gene expression profiles in drought-tolerant genotype compared to drought-sensitive genotype. These dissimilarities suggest that the difference between tolerant and non-tolerant plants seems to be associated with changes in qualitative but not quantitative mRNA expression. Comparing leaves and embryos, 82 cDNA clones showing organ-specific variation in gene expression levels were identified in response to water stress across genotypes. Genes related to amino acids and carbohydrates metabolisms, and signal transduction were induced in embryos and repressed in leaves; suggesting that vegetative and reproductive organs respond differentially to water stress. Adaptive mechanisms controlling water deficit tolerance are proposed and discussed.  相似文献   

7.
Suppression subtraction hybridization (SSH) libraries were constructed from RNA isolated from leaves of control and cold stress-induced Lepidium latifolium, a cold-tolerant plant species from high altitudes for isolation of cold-responsive genes. A total of 500 clones were obtained from the cold stress library. Dot blot expression analysis identified 157 clones that were upregulated and 75 that were downregulated during cold stress. These clones selected on the basis of their expression patterns on dot blot were sequenced. As much as 27 and 17 genes were identified from the forward and reverse libraries, respectively. The genes identified revealed homology with genes involved in diverse processes such as gene regulation/signaling, photosynthesis, DNA damage repair protein, pathogenesis-related protein, senescence-associated proteins and proteins with unknown functions.  相似文献   

8.
9.
10.
11.
12.
13.
Some organisms are able to survive the loss of almost all their body water content, entering a latent state known as anhydrobiosis. The sleeping chironomid (Polypedilum vanderplanki) lives in the semi-arid regions of Africa, and its larvae can survive desiccation in an anhydrobiotic form during the dry season. To unveil the molecular mechanisms of this resistance to desiccation, an anhydrobiosis-related Expressed Sequence Tag (EST) database was obtained from the sequences of three cDNA libraries constructed from P. vanderplanki larvae after 0, 12, and 36 h of desiccation. The database contained 15,056 ESTs distributed into 4,807 UniGene clusters. ESTs were classified according to gene ontology categories, and putative expression patterns were deduced for all clusters on the basis of the number of clones in each library; expression patterns were confirmed by real-time PCR for selected genes. Among up-regulated genes, antioxidants, late embryogenesis abundant (LEA) proteins, and heat shock proteins (Hsps) were identified as important groups for anhydrobiosis. Genes related to trehalose metabolism and various transporters were also strongly induced by desiccation. Those results suggest that the oxidative stress response plays a central role in successful anhydrobiosis. Similarly, protein denaturation and aggregation may be prevented by marked up-regulation of Hsps and the anhydrobiosis-specific LEA proteins. A third major feature is the predicted increase in trehalose synthesis and in the expression of various transporter proteins allowing the distribution of trehalose and other solutes to all tissues.  相似文献   

14.
We constructed a high-efficiency expression library from Arabidopsis cDNA clones by introducing a poly (dC) stretch at the 5' end of the clones. This library enables the synthesis of proteins from all the cDNA clones present. We have screened the high-efficiency expression library with antibodies raised against total proteins from Arabidopsis plasmalemma and tonoplast. With the positive clones, we have constructed two cDNA ordered libraries enriched in genes encoding plasmalemma (522 clones) and tonoplast proteins (594 clones). Partial sequencing of both libraries shows that a high proportion (47%) of the clones encoded putative membrane proteins, or membrane-associated proteins. When sequenced, 55% of the cDNAs were new EST sequences for Arabidopsis, 26% were similar to genes present in other plants or organisms, and 29% were not referenced in any databank. Immunoscreening of the two cDNA ordered libraries with antibodies raised against proteins from Arabidopsis cells submitted to osmotic stress allows the selection of genes over- and under-expressed in stress conditions.  相似文献   

15.
A collection of cDNA libraries from white spruce (Picea glauca) and interior spruce (P. glauca × engelmanii) vascular tissue were analyzed to identify a set of genes that could serve as tissue-related markers within the coniferous vascular system. Multivariate exploratory methods identified up to 128 genes co-expressed similarly among three xylem libraries. The majority (87) of these genes formed three distinctive meta-clusters, denoting putative gene cliques in xylem tissue. Of the selected genes, 33 (25%) exhibited no significant sequence homology in queries against any public databases, indicating the possibility of their unique expression in the xylem tissue of conifers. Another 38 genes (30%) had ambiguous annotation. Validation of the annotated genes with analog data, obtained from a wet-lab study utilizing microarray slides with 18,881 spots, resulted in a screened list of 29 genes as xylem-related markers. Response to stress was the predominant category to which the screened genes corresponded. Among the screened genes, elements of the phenolics biosynthesis, cinnamyl alcohol dehydrogenase and laccase, together with the fundamental enzyme of the cell wall biosynthesis, cellulose synthase, prominently delineated characteristics of the wood-forming tissue, xylem.  相似文献   

16.
17.
18.
19.
Jojoba (Simmondsia chinensis (Link) Schnieder) was used to identify genes regulated by wound–water stress. Suppression subtractive hybridization (SSH) was performed using cDNAs prepared from wounded parts of leaves under drying stress as a tester and cDNAs from unstressed parts of leaves as a driver. A forward-subtracted cDNA library was constructed and positive clones were confirmed by differential screening, resulting in 1344 clones as wound–water stress induced. After sequencing and trimming, 838 sequences were further analyzed. Sequence assembly analysis generated 385 unique ESTs. By referring to NCBI database and the functional categories of Arabidopsis thaliana proteins, 139 ESTs in 13 main categories were annotated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to evaluate the functions of the ESTs and the pathways in which they are involved. Ninety-six genes were identified by KEGG Orthology (KO) identifier. These genes are involved in 63 pathways. Some pathways, such as energy metabolism, lipid metabolism, amino acid metabolism, translation, and MAPK signaling pathway, are associated with wound–water stress. The results from this study are useful in understanding the genetic regulation process under wound–water stress in jojoba.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号