首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the known importance of long-chained polyunsaturated fatty acids (LC-PUFA) during development, very little is known about their utilization and biosynthesis during embryogenesis. Combining the advantages of the existence of a complete range of enzymes required for LC-PUFA biosynthesis and the well established developmental biology tools in zebrafish, we examined the expression patterns of three LC-PUFA biosynthesis genes, Elovl2-like elongase (elovl2), Elovl5-like elongase (elovl5) and fatty acyl desaturase (fad) in different zebrafish developmental stages. The presence of all three genes in the brain as early as 24 hours post fertilization (hpf) implies LC-PUFA synthesis activity in the embryonic brain. This expression eventually subsides from 72 hpf onwards, coinciding with the initiation of elovl2 and fad expression in the liver and intestine, 2 organs known to be involved in adult fish LC-PUFA biosynthesis. Collectively, these patterns strongly suggest the necessity for localized production of LC-PUFA in the brain during in early stage embryos prior to the maturation of the liver and intestine. Interestingly, we also showed a specific expression of elovl5 in the proximal convoluted tubule (PCT) of the zebrafish pronephros, suggesting a possible new role for LC-PUFA in kidney development and function.  相似文献   

2.
3.
4.
研究利用CRISPR/Cas9技术构建了斑马鱼elovl8a-/-、elovl8b-/-和DKO(elovl8a和elovl8b)敲除模型,通过组织学观察、实时荧光定量PCR和脂肪酸组成分析等实验方法,探究了脂肪酸延长酶8(elovl8)缺失对斑马鱼抗冷胁迫能力的影响.结果表明elovl8缺失导致斑马鱼在低温环境下的存...  相似文献   

5.
The Wilms tumor protein WT1 is an essential factor for kidney development. In humans, mutations in WT1 lead to Wilms tumor, a pediatric kidney cancer as well as to developmental anomalies concerning the urogenital tract. Inactivation of Wt1 in mice causes multiple organ defects most notably agenesis of the kidneys. In zebrafish, two paralogous wt1 genes exist, wt1a and wt1b. The wt1 genes are expressed in a similar and overlapping but not identical pattern. Here, we have examined the role of both wt1 genes in early kidney development employing a transgenic line with pronephros specific GFP expression and morpholino knockdown experiments. Inactivation of wt1a led to failure of glomerular differentiation and morphogenesis resulting in a rapidly expanding general body edema. In contrast, knockdown of wt1b was compatible with early glomerular development. After 48 h, however, wt1b morphant embryos developed cysts in the region of the glomeruli and tubules and subsequent pericardial edema at 4 days post-fertilization. Thus, our data suggest different functions for wt1a and wt1b in zebrafish nephrogenesis. While wt1a has a more fundamental and early role in pronephros development and is essential for the formation of glomerular structures, wt1b functions at later stages of nephrogenesis.  相似文献   

6.
7.
Slc25a17 is known as a peroxisomal solute carrier, but the in vivo role of the protein has not been demonstrated. We found that the zebrafish genome contains two slc25a17 genes that function redundantly, but additively. Notably, peroxisome function in slc25a17 knockdown embryos is severely compromised, resulting in an altered lipid composition. Along the defects found in peroxisome-associated phenotypic presentations, we highlighted that development of the swim bladder is also highly dependent on Slc25a17 function. As Slc25a17 showed substrate specificity towards coenzyme A (CoA), injecting CoA, but not NAD+, rescued the defective swim bladder induced by slc25a17 knockdown. These results indicated that Slc25a17 acts as a CoA transporter, involved in the maintenance of functional peroxisomes that are essential for the development of multiple organs during zebrafish embryogenesis. Given high homology in protein sequences, the role of zebrafish Slc25a17 may also be applicable to the mammalian system.  相似文献   

8.
The synthesis of the omega-3 long-chain polyunsaturated fatty acids (LCPUFA)  eicosapentaenoic acid (EPA; 20:5n− 3) and docosahexaenoic acid (DHA; 22:6n  3) from dietary α-linolenic acid (ALA; 18:3n  3) requires three desaturation and three elongation steps in vertebrates. The elongation of EPA to docosapentaenoic acid (DPA; 22:5n  3) can be catalysed by the elongase enzymes Elovl5 or Elovl2, but further elongation of DPA to 24:5n  3, the penultimate precursor of DHA, is limited to Elovl2, at least in mammals. Elovl5 enzymes have been characterised from seventeen fish species but Elovl2 enzymes have only been characterised in two of these fish. The essentiality of Elovl2 for DHA synthesis is unknown in fish. This study is the first to identify an Elovl2 in rainbow trout (Oncorhynchus mykiss) and functionally characterise the Elovl5 and Elovl2 using a yeast expression system. Elovl5 was active with C18–20 PUFA substrates and not C22 PUFA. In contrast, Elovl2 was active with C20–22 PUFA substrates and not C18 PUFA. Thus, rainbow trout is dependent on Elovl2 for DPA to 24:5n  3 synthesis and ultimately DHA synthesis. The expression of elovl5 was significantly higher than elovl2 in liver. Elucidating this dependence on Elovl2 to elongate DPA and the low elovl2 gene expression compared with elovl5 are critical findings in understanding the potential for rainbow trout to synthesize DHA.  相似文献   

9.
The regulatory control mechanisms of lipid and fatty acid metabolism were investigated in Atlantic salmon. We identified sterol regulatory element binding protein (SREBP) genes in salmon and characterised their response, and the response of potential target and other regulatory genes including liver X receptor (LXR), to cholesterol and long-chain polyunsaturated fatty acids (LC-PUFA) in the salmon established cell line, SHK-1. Two cDNAs for SREBPs homologous to mammalian SREBP-1 and SREBP-2 were characterised. We identified three groups of genes whose expression responded differently to the treatments. One group of genes, including cholesterol biosynthetic genes, showed increased expression in response to lipid depletion but supplementary cholesterol or LC-PUFA had no further effect. The expression of a second group of genes belonging to fatty acid biosynthetic pathways, included fatty acid synthase, Δ6 and Δ5 fatty acyl desaturases, also increased after lipid depletion but this was negated by cholesterol or by LC-PUFA supplementation. The expression of a third group of genes including acyl-CoA oxidase, HMG-CoA reductase and Elovl5 elongase was increased by cholesterol treatment but was not affected by lipid depletion or by LC-PUFA. This same pattern of expression was also shown by liver X receptor (LXR), indicating that acyl-CoA oxidase, HMG-CoA reductase and Elovl5 are possible direct targets of LXR. This suggests that salmon Elovl5 may be regulated differently from mammalian Elovl5, which is an indirect target of LXR, responding to LXR-dependent increases in SREBP-1.  相似文献   

10.
Elongase of very long chain fatty acids-4 (ELOVL4) is the only mammalian enzyme known to synthesize C28-C36 fatty acids. In humans, ELOVL4 mutations cause Stargardt disease-3 (STGD3), a juvenile dominant macular degeneration. Heterozygous Stgd3 mice that carry a pathogenic mutation in the mouse Elovl4 gene demonstrate reduced levels of retinal C28-C36 acyl phosphatidylcholines (PC) and epidermal C28-C36 acylceramides. Homozygous Stgd3 mice die shortly after birth with signs of disrupted skin barrier function. In this study, we report generation of transgenic (Tg) mice with targeted Elovl4 expression driven by an epidermal-specific involucrin promoter. In homozygous Stgd3 mice, this transgene reinstates both epidermal Elovl4 expression and synthesis of two missing epidermal lipid groups: C28-C36 acylceramides and (O-linoleoyl)-omega-hydroxy C28-C36 fatty acids. Transgene expression also restores skin barrier function and rescues the neonatal lethality of homozygous Stgd3 mice. These studies establish the critical requirement for epidermal C28-C36 fatty acid synthesis for animal viability. In addition to the skin, Elovl4 is also expressed in other tissues, including the retina, brain, and testes. Thus, these mice will facilitate future studies to define the roles of C28-C36 fatty acids in the Elovl4-expressing tissues.  相似文献   

11.
12.
13.
Metastatic breast cancer cannot be cured, and alteration of fatty acid metabolism contributes to tumor progression and metastasis. Here, we were interested in the elongation of very long-chain fatty acids protein 5 (Elovl5) in breast cancer. We observed that breast cancer tumors had a lower expression of Elovl5 than normal breast tissues. Furthermore, low expression of Elovl5 is associated with a worse prognosis in ER+ breast cancer patients. In accordance with this finding, decrease of Elovl5 expression was more pronounced in ER+ breast tumors from patients with metastases in lymph nodes. Although downregulation of Elovl5 expression limited breast cancer cell proliferation and cancer progression, suppression of Elovl5 promoted EMT, cell invasion and lung metastases in murine breast cancer models. The loss of Elovl5 expression induced upregulation of TGF-β receptors mediated by a lipid-droplet accumulation-dependent Smad2 acetylation. As expected, inhibition of TGF-β receptors restored proliferation and dampened invasion in low Elovl5 expressing cancer cells. Interestingly, the abolition of lipid-droplet formation by inhibition of diacylglycerol acyltransferase activity reversed induction of TGF-β receptors, cell invasion, and lung metastasis triggered by Elovl5 knockdown. Altogether, we showed that Elovl5 is involved in metastasis through lipid droplets-regulated TGF-β receptor expression and is a predictive biomarker of metastatic ER+ breast cancer.Subject terms: Breast cancer, Cancer metabolism, Mechanisms of disease  相似文献   

14.
15.
Very little is known about the in vivo regulation of mammalian fatty acid chain elongation enzymes as well as the role of specific fatty acid chain length in cellular responses and developmental processes. Here, we report that the Elovl3 gene product, which belongs to a highly conserved family of microsomal enzymes involved in the formation of very long chain fatty acids, revealed a distinct expression in the skin that was restricted to the sebaceous glands and the epithelial cells of the hair follicles. By disruption of the Elovl3 gene by homologous recombination in mouse, we show that ELOVL3 participates in the formation of specific neutral lipids that are necessary for the function of the skin. The Elovl3-ablated mice displayed a sparse hair coat, the pilosebaceous system was hyperplastic, and the hair lipid content was disturbed with exceptionally high levels of eicosenoic acid (20:1). This was most prominent within the triglyceride fraction where fatty acids longer than 20 carbon atoms were almost undetectable. A functional consequence of this is that Elovl3-ablated mice exhibited a severe defect in water repulsion and increased trans-epidermal water loss.  相似文献   

16.
17.
We have investigated the role of Na,K-ATPase genes in zebrafish ear development. Six Na,K-ATPase genes are differentially expressed in the developing zebrafish inner ear. Antisense morpholino knockdown of Na,K-ATPase alpha1a.1 expression blocked formation of otoliths. This effect was phenocopied by treatment of embryos with ouabain, an inhibitor of Na,K-ATPase activity. The otolith defect produced by morpholinos was rescued by microinjection of zebrafish alpha1a.1 or rat alpha1 mRNA, while the ouabain-induced defect was rescued by expression of ouabain-resistant zebrafish alpha1a.1 or rat alpha1 mRNA. Knockdown of a second zebrafish alpha subunit, alpha1a.2, disrupted development of the semicircular canals. Knockdown of Na,K-ATPase beta2b expression also caused an otolith defect, suggesting that the beta2b subunit partners with the alpha1a.1 subunit to form a Na,K-ATPase required for otolith formation. These results reveal novel roles for Na,K-ATPase genes in vestibular system development and indicate that different isoforms play distinct functional roles in formation of inner ear structures. Our results highlight zebrafish gene knockdown-mRNA rescue as an approach that can be used to dissect the functional properties of zebrafish and mammalian Na,K-ATPase genes.  相似文献   

18.
NF-E2-related factor 2 (NRF2; also called NFE2L2) and related NRF family members regulate antioxidant defenses by activating gene expression via antioxidant response elements (AREs), but their roles in embryonic development are not well understood. We report here that zebrafish (Danio rerio), an important developmental model species, possesses six nrf genes, including duplicated nrf1 and nrf2 genes. We cloned a novel zebrafish nrf2 paralog, nrf2b. The predicted Nrf2b protein sequence shares several domains with the original Nrf2 (now Nrf2a) but lacks the Neh4 transactivation domain. Zebrafish-human comparisons demonstrate conserved synteny involving nrf2 and hox genes, indicating that nrf2a and nrf2b are co-orthologs of human NRF2. nrf2a and nrf2b displayed distinct patterns of expression during embryonic development; nrf2b was more highly expressed at all stages. Embryos in which Nrf2a expression had been knocked down with morpholino oligonucleotides were more sensitive to tert-butylhydroperoxide but not tert-butylhydroquinone, whereas knockdown of Nrf2b did not affect sensitivity of embryos to either chemical. Gene expression profiling by microarray identified a specific role for Nrf2b as a negative regulator of several genes, including p53, cyclin G1, and heme oxygenase 1, in embryos. Nrf2a and Nrf2b exhibited different mechanisms of cross-talk with the Ahr2 signaling pathway. Together, these results demonstrate distinct roles for nrf2a and nrf2b, consistent with subfunction partitioning, and identify a novel negative regulatory role for Nrf2b during development. The identification of zebrafish nrf2 co-orthologs will facilitate new understanding of the multiple roles of NRF2 in protecting vertebrate embryos from oxidative damage.  相似文献   

19.
作为一个胞内蛋白激酶,PKA在中枢神经系统、眼睛和肢体等形态发生中担任了重要角色,并参与多种细胞行为,但其在肾脏发育中的作用却不十分清楚.以斑马鱼为模式动物,采用原位杂交和冰冻切片技术检测PKA在斑马鱼中的表达情况;通过显微注射反义吗啉环寡核苷酸的方式,抑制内源性PKA的表达;通过免疫荧光技术,检测斑马鱼前肾的微观结构.结果显示:编码斑马鱼PKA催化亚基的prkaa1和编码调节亚基的prkab1b 均为母源基因,并且在肾管上皮细胞中有特异性表达;分别抑制内源性prkaa1或prkab1b 的表达,胚胎于第3天呈现高比例的心脏水肿(分别为54.4%和77.3%)和体轴弯曲(分别为48.5%和72.6%)以及极低比例的多囊肾表型(<5%);进一步检测发现,抑制PKA会导致肾管上皮细胞迁移缺陷,尤其是阻碍肾管多纤毛细胞迁移,继而引起肾管前中部不同程度肿大,并最终导致胚胎死亡.该研究表明,PKA可能通过调控斑马鱼肾管上皮细胞迁移从而在肾脏发育中发挥作用.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号