首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Jin P  Duan R  Luo F  Zhang G  Hong SN  Chen EH 《Developmental cell》2011,20(5):623-638
Dynamic rearrangements of the actin cytoskeleton play a key role in numerous cellular processes. In Drosophila, fusion between a muscle founder cell and a fusion competent myoblast (FCM) is mediated by an invasive, F-actin-enriched podosome-like structure (PLS). Here, we show that the dynamics of the PLS is controlled by Blown fuse (Blow), a cytoplasmic protein required for myoblast fusion but whose molecular function has been elusive. We demonstrate that Blow is an FCM-specific protein that colocalizes with WASP, WIP/Solitary, and the actin focus within the PLS. Biochemically, Blow modulates the stability of the WASP-WIP complex by competing with WASP for WIP binding, leading to a rapid exchange of WASP, WIP and G-actin within the PLS, which, in turn, actively invades the adjacent founder cell to promote fusion pore formation. These studies identify a regulatory protein that modulates the actin cytoskeletal dynamics by controlling the stability of the WASP-WIP complex.  相似文献   

2.
Chemotactic migration of macrophages is critical for the recruitment of leukocytes to inflamed tissues. Macrophages use a specialized adhesive structure called a podosome to migrate. Podosome formation requires the Wiskott-Aldrich syndrome protein (WASP), which is a product of the gene defective in an X-linked inherited immunodeficiency disorder, the Wiskott-Aldrich syndrome. Macrophages from WASP-deficient Wiskott-Aldrich syndrome patients lack podosomes, resulting in defective chemotactic migration. However, the molecular basis for podosome formation is not fully understood. I have shown that the WASP interacting protein (WIP), a binding partner of WASP, plays an important role in podosome formation in macrophages. I showed that WASP bound WIP to form a complex at podosomes and that the knockdown of WIP impairs podosome formation. When WASP binding to WIP was blocked, podosome formation was also impaired. When WASP expression was reduced by small interfering RNA transfection, the amount of the complex of WASP with WIP decreased, resulting in reduced podosome formation. Podosomes were restored by reconstitution of the WASP-WIP complex in WASP knockdown cells. These results indicate that the WASP-WIP complex is required for podosome formation in macrophages. When podosome formation was reduced by blocking WASP binding to WIP, transendothelial migration of macrophages, the most crucial process in macrophage trafficking, was impaired. These results suggest that a complex of WASP with WIP plays a critical role in podosome formation, thereby mediating efficient transendothelial migration of macrophages.  相似文献   

3.
The 24.5 kDa ribosomal protein L10 (RP-L10), which was encoded by QM gene, was known to interact with the SH3 domain of Yes kinase. Herein, we demonstrate that RP-L10 interacts with the SH3 domain of Src and activates the binding of the Nck1 adaptor protein with skeletal proteins such as the Wiskott-Aldrich Syndrome Protein (WASP) and WASP interacting protein (WIP) in neuroblastoma cell line, SH-SY-5y. The RP-L10 was associated with the SH3 domains of Src and Yes. It is shown that two different regions of RP-L10 are associated with the Src-SH3. The effect of ectopic RP-L10 expression on neuronal cell scaffolding was explored in cells transiently transfected with QM. SH-SY-5y human neuroblastoma cells transfected with QM were considerably more susceptible to neurite outgrowth induced by glial cell line-derived neurotrophic factor (GDNF). However, RP-L10 did not directly interact with actin assembly. Taken together, these results suggest that the RP-L10 may positively regulate the GDNF/Ret-mediated signaling of neurite outgrowth in the neuroblastoma cell line, SH-SY-5y.  相似文献   

4.
The Wiskott-Aldrich syndrome protein (WASP) is a product of the gene defective in an Xid disorder, Wiskott-Aldrich syndrome. WASP expression is limited to hemopoietic cells, and WASP regulates the actin cytoskeleton. It has been reported that monocytes/macrophages from WASP-deficient Wiskott-Aldrich syndrome patients are severely defective in chemotaxis, resulting in recurrent infection. However, the molecular basis of such chemotactic defects is not understood. Recently, the WASP N-terminal region was found to bind to the three mammalian verprolin homologs: WASP interacting protein (WIP); WIP and CR16 homologous protein (WICH)/WIP-related protein (WIRE); and CR16. Verprolin was originally found to play an important role in the regulation of actin cytoskeleton in yeast. We have shown that WASP, WIP, and WICH/WIRE are expressed predominantly in the human monocyte cell line THP-1 and that WIP and WICH/WIRE are involved in monocyte chemotaxis. When WASP binding to verprolins was blocked, chemotactic migration of monocytes was impaired in both THP-1 cells and primary human monocytes. Increased expression of WASP and WIP enhanced monocyte chemotaxis. Blocking WASP binding to verprolins impaired cell polarization but not actin polymerization. These results indicate that a complex of WASP with mammalian verprolins plays an important role in chemotaxis of monocytes. Our results suggest that WASP and mammalian verprolins function as a unit in monocyte chemotaxis and that the activity of this unit is critical to establish cell polarization. In addition, our results also indicate that the WASP-verprolin complex is involved in other functions such as podosome formation and phagocytosis.  相似文献   

5.
6.
The WH2 (WASP homology domain-2) is a small actin monomer-binding motif and is found in many proteins that regulate the actin cytoskeleton, including the beta-thymosins, ciboulot, WASP, and verprolin/WIP (WASP-interacting protein). In sequence database searches we identified a novel mouse protein containing a WH2 domain in its C-terminal region. This mouse gene also shows strong sequence homology to human MIM (Missing in Metastasis), a cDNA fragment that is present in non-metastatic but absent in metastatic bladder cancer cell lines. Northern blot and in situ hybridizations show that MIM is strongly expressed in the developing neurons and skeletal and cardiac muscles in mouse embryos. In adult mice, the strongest expression of MIM mRNA is in liver, outer layers of the kidney, and in the Purkinje cells of the brain. Recombinant MIM protein interacts with actin monomers and inhibits actin filament nucleation in vitro. However, the MIM/ATP-G-actin complex can participate in actin filament assembly at the barbed end. MIM binds ATP-G-actin with a higher affinity (K(D) = 0.06 microm) than ADP-G-actin (K(D) = 0.3 microm) and inhibits the nucleotide exchange on actin monomers. Site-directed mutagenesis demonstrates that the actin monomer-binding site resides in the C-terminal WH2 domain of MIM. Overexpression of mouse MIM in NIH 3T3 cells results in the disappearance of actin stress fibers and appearance of abnormal actin filament structures. These data show that MIM is an ATP-G-actin binding protein that regulates cytoskeletal dynamics in specialized mammalian cell-types.  相似文献   

7.
Zettl M  Way M 《Current biology : CB》2002,12(18):1617-1622
A complex of N-WASP and WASP-interacting protein (WIP) plays an important role in actin-based motility of vaccinia virus and the formation of filopodia. WIP is also required to maintain the integrity of the actin cytoskeleton in T and B lymphocytes and is essential for T cell activation. However, in contrast to many other N-WASP binding proteins, WIP does not stimulate the ability of N-WASP to activate the Arp2/3 complex. Although the WASP homology 1 (WH1) domain of N-WASP interacts directly with WIP, we still lack the exact nature of its binding site. We have now identified and characterized the N-WASP WH1 binding motif in WIP in vitro and in vivo using Shigella and vaccinia systems. The WH1 domain, which is predicted to have a similar structural fold to the Ena/VASP homology 1 (EVH1) domain, binds to a sequence motif in WIP (ESRFYFHPISD) that is very different from the EVH1 proline-rich DL/FPPPP ligand. Interaction of the WH1 domain of N-WASP with WIP is dependent on the two highly conserved phenylalanine residues in the motif. The WH1 binding motif we have identified is conserved in WIP, CR16, WICH, and yeast verprolin.  相似文献   

8.
The Wiskott-Aldrich Syndrome protein (WASP) is an adaptor protein that is essential for podosome formation in hematopoietic cells. Given that 80% of identified Wiskott-Aldrich Syndrome patients result from mutations in the binding site for WASP-interacting-protein (WIP), we examined the possible role of WIP in the regulation of podosome architecture and cell motility in dendritic cells (DCs). Our results show that WIP is essential both for the formation of actin cores containing WASP and cortactin and for the organization of integrin and integrin-associated proteins in circular arrays, specific characteristics of podosome structure. We also found that WIP is essential for the maintenance of the high turnover of adhesions and polarity in DCs. WIP exerts these functions by regulating calpain-mediated cleavage of WASP and by facilitating the localization of WASP to sites of actin polymerization at podosomes. Taken together, our results indicate that WIP is critical for the regulation of both the stability and localization of WASP in migrating DCs and suggest that WASP and WIP operate as a functional unit to control DC motility in response to changes in the extracellular environment.  相似文献   

9.
Induction of filopodia is dependent on activation of the small GTPase Cdc42 and on neural Wiskott-Aldrich-syndrome protein (N-WASP). Here we show that WASP-interacting protein (WIP) interacts directly with N-WASP and actin. WIP retards N-WASP/Cdc42-activated actin polymerization mediated by the Arp2/3 complex, and stabilizes actin filaments. Microinjection of WIP into NIH 3T3 fibroblasts induces filopodia; this is inhibited by microinjection of anti-N-WASP antibody. Microinjection of anti-WIP antibody inhibits induction of filopodia by bradykinin, by an active Cdc42 mutant (Cdc42(V12)) and by N-WASP. Our results indicate that WIP and N-WASP may act as a functional unit in filopodium formation, which is consistent with their role in actin-tail formation in cells infected with vaccinia virus or Shigella.  相似文献   

10.
Wiskott-Aldrich syndrome is caused by alterations in the Wiskott-Aldrich syndrome protein (WASP) and several of these mutations affect WASP's interaction with WIP (WASP-interacting protein), suggesting that loss of interaction between WASP and WIP is causal to the disease. Las17p is the yeast homologue of WASP and las17Delta strain is unable to grow at 37 degrees C. We show that Human WASP suppresses the growth defect of Saccharomyces cerevisiae las17Delta strain, only in the presence of WIP. WIP mediates cortical localisation of WASP as well as stabilise WASP in yeast cells. Mutations which affected WASP-WIP interaction abolished WASP's ability to suppress the growth defect of las17Delta strain. We have demonstrated that WASP-WIP is an active complex and WASP's ability to suppress the growth defect of las17Delta strain is dependent on the presence of a functional Arp2/3 activating domain of WASP and also the Verprolin domain (V) of WIP.  相似文献   

11.
Wiskott-Aldrich syndrome (WAS) is an X-linked disorder characterized by eczema, thrombocytopenia and increased susceptibility of infections, with mutations of the WAS gene being responsible for WAS and X-linked thrombocytopenia. Herein, two novel mutations of WAS at T336C on exon 3, and at 1326-1329, a G deletion on exon 10, resulting in L101P missense mutation and frameshift mutation 444 stop, respectively, are reported. The affected patients with either mutation showed severe suppression of WAS protein (WASP) levels, T cell proliferation, and CFSE-labeled T cells division. Because WASP L101 have not shown direct nuclear Overhauser effect (NOE) contact with the WASP-interacting protein (WIP) in NMR spectroscopy, molecular modeling was performed to evaluate the molecular effect of WASP P101 to WIP peptide. It is presumed that P101 induced a conformational change in the Q99 residue of WASP and made the side chain of Q99 move away from the WIP peptide, resulting in disruption of the hydrogen bond between Q99 WASP and Y475 WIP. A possible model for the molecular pathogenesis of WAS has been proposed by analyzing the interactions of WASP and WIP using a molecular modeling study.  相似文献   

12.
Volkman BF  Prehoda KE  Scott JA  Peterson FC  Lim WA 《Cell》2002,111(4):565-576
Missense mutants that cause the immune disorder Wiskott-Aldrich Syndrome (WAS) map primarily to the Enabled/VASP homology 1 (EVH1) domain of the actin regulatory protein WASP. This domain has been implicated in both peptide and phospholipid binding. We show here that the N-WASP EVH1 domain does not bind phosphatidyl inositol-(4,5)-bisphosphate, as previously reported, but does specifically bind a 25 residue motif from the WASP Interacting Protein (WIP). The NMR structure of the complex reveals a novel recognition mechanism-the WIP ligand, which is far longer than canonical EVH1 ligands, wraps around the domain, contacting a narrow but extended surface. This recognition mechanism provides a basis for understanding the effects of mutations that cause WAS.  相似文献   

13.
Phagocytosis is a vital first-line host defense mechanism against infection involving the ingestion and digestion of foreign materials such as bacteria by specialized cells, phagocytes. For phagocytes to ingest the foreign materials, they form an actin-based membrane structure called phagocytic cup at the plasma membranes. Formation of the phagocytic cup is impaired in phagocytes from patients with a genetic immunodeficiency disorder, Wiskott-Aldrich syndrome (WAS). The gene defective in WAS encodes Wiskott-Aldrich syndrome protein (WASP). Mutation or deletion of WASP causes impaired formation of the phagocytic cup, suggesting that WASP plays an important role in the phagocytic cup formation. However, the molecular details of its formation remain unknown. We have shown that the WASP C-terminal activity is critical for the phagocytic cup formation in macrophages. We demonstrated that WASP is phosphorylated on tyrosine 291 in macrophages, and the WASP phosphorylation is important for the phagocytic cup formation. In addition, we showed that WASP and WASP-interacting protein (WIP) form a complex at the phagocytic cup and that the WASP.WIP complex plays a critical role in the phagocytic cup formation. Our results indicate that the phosphorylation of WASP and the complex formation of WASP with WIP are the essential molecular steps for the efficient formation of the phagocytic cup in macrophages, suggesting a possible disease mechanism underlying phagocytic defects and recurrent infections in WAS patients.  相似文献   

14.
Wiskott–Aldrich syndrome (WAS) is caused by alterations in the WAS protein (WASP), and 80% of the missense mutations are located in the WH1 domain, the region essential for interaction with the WASP-interacting protein (WIP). It has been suggested that loss of WASP–WIP interaction is causal to the disease. Las17p (yeast WASP) is essential for growth at 37 °C. The growth defect of the las17 Δ strain can be suppressed by the expression of human WASP together with WIP. Using the las17 Δ strain, we have analyzed 52 missense mutations in the gene encoding WASP and found that 13 of these mutant proteins were unable to suppress the growth defect of the las17 Δ strain. The majority of these 13 mutations cause the classic WAS in humans and are located within the WH1 domain, while none of the 12 mutations outside the WH1 domain abolished the activity of WASP in Saccharomyces cerevisiae cells. This suggests that some of the mutations (13 out of 40) in the WH1 domain cause the syndrome in humans by perturbing the WASP–WIP complex formation, while the rest of the mutations cause the syndrome without affecting the WASP–WIP complex formation, but may affect the activity of the complex.  相似文献   

15.
F-actin polymerization following engagement of the T cell receptor (TCR) is dependent on WASP and is critical for T cell activation. The link between TCR and WASP is not fully understood. In resting cells, WASP exists in a complex with WIP, which inhibits its activation by Cdc42. We show that the adaptor protein CrkL binds directly to WIP. Further, TCR ligation results in the formation of a ZAP-70-CrkL-WIP-WASP complex, which is recruited to lipid rafts and the immunological synapse. TCR engagement also causes PKCtheta-dependent phosphorylation of WIP, causing the disengagement of WASP from the WIP-WASP complex, thereby releasing it from WIP inhibition. These results suggest that the ZAP-70-CrkL-WIP pathway and PKCtheta link TCR to WASP activation.  相似文献   

16.
The WASP-interacting protein (WIP) targets WASP/WAVE proteins through a constitutive interaction with an amino-terminal enabled/VASP homology (EVH1) domain. Parallel investigations had previously identified two distinct N-WASP binding motifs corresponding to WIP residues 451-461 and 461-485, and we determined the structure of a complex between WIP-(461-485) and the N-WASP EVH1 domain (Volkman, B. F., Prehoda, K. E., Scott, J. A., Peterson, F. C., and Lim, W. A. (2002) Cell 111, 565-576). The present results show that, when combined, the WIP-(451-485) sequence wraps further around the EVH1 domain, extending the interface observed previously. Specific contacts with three WIP epitopes corresponded to regions of high sequence conservation in the verprolin family. A central polyproline motif occupied the canonical binding site but in a reversed orientation relative to other EVH1 complexes. This interaction was augmented in the amino- and carboxyl-terminal directions by additional hydrophobic contacts involving WIP residues 454-459 and 475-478, respectively. Disruption of any of the three WIP epitopes reduced N-WASP binding in cells, demonstrating a functional requirement for the entire binding domain, which is significantly longer than the polyproline motifs recognized by other EVH1 domains.  相似文献   

17.
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterized by thrombocytopenia, eczema, immune deficiency, and a proclivity toward lymphoid malignancy. Lymphocytes of affected individuals show defects of activation, motility, and cytoskeletal structure. The disease gene encodes a 502-amino acid protein named the WAS protein (WASP). Studies have identified a number of important interactions that place WASP in a role of integrating signaling pathways with cytoskeletal function. We performed a two-hybrid screen to identify proteins interacting with WASP and cloned a proline-rich protein as a specific WASP interactor. Our clone of this protein, termed WASP interacting protein (WIP) by others, shows a difference in seven amino acid residues, compared with the previously published sequence revealing an additional profilin binding motif. Deletion mutant analysis reveals that WASP residues 101-151 are necessary for WASP-WIP interaction. Point mutant analyses in the two-hybrid system and in vitro show impairment of WASP-WIP interaction with three WASP missense mutants known to cause WAS. We conclude that impaired WASP-WIP interaction may contribute to WAS.  相似文献   

18.
ActA is a bacterially encoded protein that enables Listeria monocytogenes to hijack the host cell actin cytoskeleton. It promotes Arp2/3-dependent actin nucleation, but its interactions with cellular components of the nucleation machinery are not well understood. Here we show that two domains of ActA (residues 85-104 and 121-138) with sequence similarity to WASP homology 2 domains bind two actin monomers with submicromolar affinity. ActA binds Arp2/3 with a K(d) of 0.6 microm and competes for binding with the WASP family proteins N-WASP and Scar1. By chemical cross-linking, ActA, N-WASP, and Scar1 contact the same three subunits of the Arp2/3 complex, p40, Arp2, and Arp3. Interestingly, profilin competes with ActA for binding of Arp2/3, but actophorin (cofilin) does not. The minimal Arp2/3-binding site of ActA (residues 144-170) is C-terminal to both actin-binding sites and shares sequence homology with Arp2/3-binding regions of WASP family proteins. The maximal activity at saturating concentrations of ActA is identical to the most active domains of the WASP family proteins. We propose that ActA and endogenous WASP family proteins promote Arp2/3-dependent nucleation by similar mechanisms and require simultaneous binding of Arp2 and Arp3.  相似文献   

19.
We describe a novel protein that contains a verprolin-homology (V) region, through which several actin-regulating proteins, including Wiskott-Aldrich syndrome protein (WASP) family members, bind directly to actin. The amino acid sequence is homologous to the sequences of WASP-interacting protein (WIP) and CR16, both of which associate with WASP and/or N-WASP, and thus these three proteins constitute a new protein family. We named the protein WICH (WIP- and CR16-homologous protein). WICH associates strongly with N-WASP but only weakly with WASP via its C-terminal WASP-interacting (W) region. Ectopic expression of WICH induces actin-microspike formation through cooperation with N-WASP. In addition, expression of the W fragment of WICH suppresses microspike formation induced by N-WASP, indicating an essential role for WICH in N-WASP-induced microspike formation.  相似文献   

20.
The actin cytoskeleton plays a central role in many cell biological processes. The structure and dynamics of the actin cytoskeleton are regulated by numerous actin-binding proteins that usually contain one of the few known actin-binding motifs. WH2 domain (WASP homology domain-2) is a approximately 35 residue actin monomer-binding motif, that is found in many different regulators of the actin cytoskeleton, including the beta-thymosins, ciboulot, WASP (Wiskott Aldrich syndrome protein), verprolin/WIP (WASP-interacting protein), Srv2/CAP (adenylyl cyclase-associated protein) and several uncharacterized proteins. The most highly conserved residues in the WH2 domain are important in beta-thymosin's interactions with actin monomers, suggesting that all WH2 domains may interact with actin monomers through similar interfaces. Our sequence database searches did not reveal any WH2 domain-containing proteins in plants. However, we found three classes of these proteins: WASP, Srv2/CAP and verprolin/WIP in yeast and animals. This suggests that the WH2 domain is an ancient actin monomer-binding motif that existed before the divergence of fungal and animal lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号