首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lac+ recombinant plasmids encoding a β-galactosidase fused protein and lactose permease of Escherichia coli were introduced Zymomonas mobilis. The fused protein was expressed with 450 to 5,860 Miller units of β-galactosidase activity, and functioned as lactase. Raffinose uptake by Z. mobilis CP4 was enhanced in the plasmid-carrying strain over the plasmid-free strain, suggesting that the lactose permease was functioning in the organism. Z. mobilis carrying the plasmid could produce ethanol from lactose and whey, but could not grow on lactose as the sole carbon source. It was found that the growth of the organism was inhibited by either galactose of the galactose liberated from lactose.  相似文献   

2.
《Process Biochemistry》2014,49(12):2122-2133
A gene encoding a novel β-d-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. 32cB was isolated, cloned and expressed in Escherichia coli. The active form of recombinant β-d-galactosidase consists of two subunits with a combined molecular weight of approximately 257 kDa. The enzyme's maximum activity towards o-nitrophenyl-β-d-galactopyranoside was determined as occurring at 28 °C and pH 8.0. However, it exhibited 42% of maximum activity at 10 °C and was capable of hydrolyzing both lactose and o-nitrophenyl-β-d-galactopyranoside at that temperature, with Km values of 1.52 and 16.56 mM, and kcat values 30.55 and 31.84 s−1, respectively. Two units of the enzyme hydrolyzed 90% of the lactose in 1 mL of milk at 10 °C in 24 h. The transglycosylation activity of Arthrobacter sp. 32cB β-d-galactosidase was also examined. It synthesized galactooligosaccharides in a temperature range from 10 to 30 °C. Moreover, it catalyzed the synthesis of heterooligosaccharides such as lactulose, galactosyl-xylose and galactosyl-arabinose, alkyl glycosides, and glycosylated salicin from lactose and the appropriate acceptor at 30 °C. The properties of Arthrobacter sp. 32cB β-d-galactosidase make it a candidate for use in the industrial removal of lactose from milk and a promising tool for the glycosylation of various acceptors, especially those which are thermosensitive.  相似文献   

3.
Bacillus amyloliquefaciens harboring recombinant plasmid pHG5, which encodes B. stearothermophilus β-galactosidase, was cultured in a jar fermentor. By feeding lactose a considerable concentration of the enzyme was produced, but the cells stopped growing at an OD660 of about 30. On the other hand, the microorganism grew to a very high cell concentration with an OD660 of around 110 with glucose as a carbon source, but the enzyme specific activity was a half of the maximum value with lactose. Based on these facts, B. amyloliquefaciens was first grown using glucose, and the carbon source was then switched to lactose to induce β-galactosidase production. By this two-step culture method, both good cell growth and high enzyme productivity were obtained.  相似文献   

4.
Partially purified β-d-galactosidase (β-d-galactoside galactohydrolase, EC 3.2.1.23) from Bacillus circulans showed high activity towards both pure lactose and lactose in skim milk, and a better thermal stability than the enzyme from yeast or Escherichia coli. During the course of hydrolysis of lactose catalysed by the enzyme, considerable amounts of oligosaccharides were produced. β-d-Galactosidase from B. circulans was immobilized onto Duolite ES-762, Dowex MWA-1 and sintered alumina by adsorption with glutaraldehyde treatment. The highest activity for hydrolysis of lactose was obtained with immobilization onto Duolite ES-762. During a continuous hydrolysis of lactose, the immobilized enzyme was reversibly inactivated, probably due to oligosaccharides accumulating in the gel. The inactivation was reduced when a continuous reaction was operated at a high percent conversion of lactose in a continuous stirred tank reactor (CSTR). The half-life of the immobilized enzyme was estimated to be 50 and 15 days at 50 and 55°C, respectively, when the reaction was carried out in a CSTR with a percent conversion of lactose >70%.  相似文献   

5.
Two anomalies of the lac-operon of E. coli can hardly be understood if this operon had evolved in order to utilize lactose as a carbon source: (i) lactose has to be modified before the repressor can be inactivated and the operon becomes induced; (ii) one of the induced enzymes (the “transacetylase”) has no function whatever in the degradation of lactose. These oddities can more easily be explained, if other galactosides were the natural substrates to which the lac-operon had been adapted first. Galactosylglycerols, which are readily obtained from galactolipids (widespread in most plant materials), are appropriate candidates both in terms of structure and abundance.  相似文献   

6.
A novel and efficient immobilization of β-d-galactosidase from Aspergillus oryzae has been developed by using magnetic Fe3O4–chitosan (Fe3O4–CS) nanoparticles as support. The magnetic Fe3O4–CS nanoparticles were prepared by electrostatic adsorption of chitosan onto the surface of Fe3O4 nanoparticles made through co-precipitation of Fe2+ and Fe3+. The resultant material was characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry and thermogravimetric analysis. β-d-Galactosidase was covalently immobilized onto the nanocomposites using glutaraldehyde as activating agent. The immobilization process was optimized by examining immobilized time, cross-linking time, enzyme concentration, glutaraldehyde concentration, the initial pH values of glutaraldehyde and the enzyme solution. As a result, the immobilized enzyme presented a higher storage, pH and thermal stability than the soluble enzyme. Galactooligosaccharide was formed with lactose as substrate by using the immobilized enzyme as biocatalyst, and a maximum yield of 15.5% (w/v) was achieved when about 50% lactose was hydrolyzed. Hence, the magnetic Fe3O4–chitosan nanoparticles are proved to be an effective support for the immobilization of β-d-galactosidase.  相似文献   

7.
2-(Benzothiazol-2-yl)-phenyl-β-d-galactopyranoside derivatives were synthesized as novel artificial fluorescent pigment dyeing substrates for β-d-galactosidase. The substrates, which exhibited non-fluorescence or weak fluorescence in solution phase, were smoothly hydrolyzed by β-d-galactosidase from Aspergillus oryzae and yielded a water-insoluble strong fluorescent pigment. The difference of fluorescent intensity exhibited a linear relationship with the amount of enzyme.  相似文献   

8.
Lactose is shown to be an effective anti-inducer of the lac operon both in vivo and in vitro. When lactose is used as a carbon source, the synthesis of β-galaetosidase in Escheriahia coli is not fully induced. Moreover, lactose is able to partially inhibit induction by isopropyl-(β-d-thiogalactoside in strains synthesizing inactive as well as active β-galactosidase. These effects in vivo are not due to catabolite repression by the glucose derived from lactose. These in vivo results suggest that lactose is acting as an anti-inducer. This is confirmed in vitro by showing that lactose binds to the lac represser and stabilizes the represser-operator complex.  相似文献   

9.
Unlike dairy lactic acid bacteria, Lactobacillus brevis cannot ferment milk. We characterized the lactose utilization by L. brevis KB290. In a carbohydrate fermentation assay using API 50 CHL, we showed during 7?days L. brevis did not ferment lactose. L. brevis grew to the stationary phase in 2?weeks in MRS broth containing lactose as the carbon source. L. brevis slowly consumed the lactose in the medium. L. brevis hydrolyzed lactose and a lactose analog, o-nitrophenyl-β-d-galactopyranoside (ONPGal). This β-galactosidase activity for ONPGal was not repressed by glucose, galactose, fructose, xylose, or maltose showing the microorganism may not have carbon catabolite repression. We purified the L. brevis β-galactosidase using ammonium sulfate precipitation and several chromatographies. The enzyme’s molecular weight is estimated at 72 and 37?kDa using SDS-PAGE analysis. The N-terminal amino acid sequence of the larger protein was 90?% similar to the sequence of the putative β-galactosidase (YP_796339) and the smaller protein was identical to the sequence of the putative β-galactosidase (YP_796338) in L. brevis ATCC367. This suggests the enzyme is a heterodimeric β-galactosidase. The specific activity of the purified enzyme for lactose is 55?U/mg. We speculate inhibition of lactose transport delays the lactose utilization in L. brevis KB290.  相似文献   

10.
A lactose-free, low-cost culture medium for the production of -d-galactosidase by Kluyveromyces marxianus was formulated. At high aeration rates (2.2 vvm) and concentrations of 100 g sugar cane molasses l–1 as carbon source and 100 g corn steep liquor l–1 as vitamin and nitrogen source an enzyme production of 708 U l–1 h was achieved. This was 20% higher than using a medium that contained lactose which is considered the primary inductor of -d-galactosidase synthesis.  相似文献   

11.
A general method has been developed for determining the rate of entry of lactose into cells of Escherichia coli that contain β-galactosidase. Lactose entry is measured by either the glucose or galactose released after lactose hydrolysis. Since lactose is hydrolyzed by β-galactosidase as soon as it enters the cell, this assay measures the activity of the lactose transport system with respect to the translocation step. Using assays of glucose release, lactose entry was studied in strain GN2, which does not phosphorylate glucose. Lactose entry was stimulated 3-fold when cells were also presented with readily metabolizable substrates. Entry of o-nitrophenyl-β-d-galactopyranoside (ONPG) was only slightly elevated (1.5-fold) under the same conditions. The effects of arsenate treatment and anaerobiosis suggest that lactose entry may be limited by the need for reextrusion of protons which enter during H+/sugar cotransport. Entry of o-nitrophenyl-β-d-galactopyranoside is less dependent on the need for proton reextrusion, probably because the stoichiometry of H+/substrate cotransport is greater for lactose than for ONPG.  相似文献   

12.
Studies on the constitutive β-1,3-glucanase were conducted in submerged as well as in the stationary culture conditions, in the presence and in the absence of lactose and glucose as main carbon sources. In the absence of lactose or glucose, expression of β-1,3-glucanase was observed at 96?h in extracellular, periplasmic, cell wall bound and internal fractions during submerged fermentation. In shake flask culture, enzyme was found in all subcellular fractions using optimal glucose concentration. When Trichoderma harzianum was grown on media containing 55?kg lactose/m3 in submerged culture, activity was found in extracellular, cell wall bound and in the periplasmic fractions. The relative distribution of the enzyme in the cell is independent of the nature of the carbon source and its concentration.  相似文献   

13.
Cheese whey, the main dairy by-product, is increasingly recognized as a source of many bioactive valuable compounds. Nevertheless, the most abundant component in whey is lactose (ca. 5% w/v), which represents a significant environmental problem. Due to the large lactose surplus generated, its conversion to bio-ethanol has long been considered as a possible solution for whey bioremediation. In this review, fermentation of lactose to ethanol is discussed, focusing on wild lactose-fermenting yeasts, particularly Kluyveromyces marxianus, and recombinant Saccharomyces cerevisiae strains. The early efforts in the screening and characterization of the fermentation properties of wild lactose-consuming yeasts are reviewed. Furthermore, emphasis is given on the latter advances in engineering S. cerevisiae strains for efficient whey-to-ethanol bioprocesses. Examples of industrial implementation are briefly discussed, illustrating the viability of whey-to-ethanol systems. Current developments on strain engineering together with the growing market for biofuels will likely boost the industrial interest in such processes.  相似文献   

14.
β-galactosidase is a commercially important enzyme that was purified from probiotic Pediococcus acidilactici. The enzyme was extracted from cells using sonication and subsequently purified using ammonium sulphate fractionation and successive chromatographies on Sephadex G-100 and Q-Sepharose. The enzyme was purified 3.06-fold up to electrophoretic homogeneity with specific activity of 0.883 U/mg and yield of 28.26%. Molecular mass of β-galactosidase as estimated by SDS-PAGE and MALDI-TOF was 39.07 kDa. The enzyme is a heterodimer with subunit mass of 15.55 and 19.58 kDa. The purified enzyme was optimally active at pH 6.0 and stable in a pH range of 5.8–7.0 with more than 97% activity. Purified β-galactosidase was optimally active at 50 °C. Kinetic parameters Km and Vmax for purified enzyme were 400 µM and 1.22 × 10−1 U respectively. Its inactivation by PMSF confirmed the presence of serine at the active site. The metal ions had different effects on enzyme. Ca2+, Mg2+ and Mn2+ slightly activated the enzyme whereas NH4+, Co2+ and Fe3+ slightly decreased the enzyme activity. Thermodynamic parameters were calculated that suggested that β-galactosidase is less stable at higher temperature (60 °C). Purified enzyme effectively hydrolysed milk lactose with lactose hydrolysing rate of 0.047 min−1 and t1/2 of 14.74 min. This is better than other studied β-galactosidases. Both sonicated Pediococcus acidilactici cells and purified β-galactosidase synthesized galactooligosaccharides (GOSs) as studied by TLC at 30% and 50% of lactose concentration at 47.5 °C. These findings indicate the use of β-galactosidase from probiotic bacteria for producing delactosed milk for lactose intolerant population and prebiotic synthesis. pH and temperature optima and its activation by Ca2+ shows that it is suitable for milk processing.  相似文献   

15.
Protease producing bacteria were isolated from soil in South Korea. These bacteria were screened in skim milk agar medium using skim milk as the substrate. The highest clear zone producing bacterial strain (BK-P23) was selected for further optimization studies. The strain was identified as Exiguobacterium profundum BK-P23 based on morphological, biochemical and molecular characterizations. The results of the 16S rRNA analysis showed that this strain was highly similar to E. profundum. The strain was able to grow under alkaline conditions at pH 8.5 and a temperature of 30°C. In the preliminary optimization experiments, five different parameters, i.e. carbon source (lactose), nitrogen source (corn steep solid), pH, temperature and incubation period were varied with the goal of optimizing enzyme production in low cost medium using the Box-Behnken design combined with response surface methodology. The optimal conditions were determined to be pH 9.0, a temperature of 30°C, lactose (1.0%) as the carbon source and corn steep solid (1.0%) as the cheap additional nitrogen source. In addition, 24 h of incubation was shown to produce the highest protease yield. Overall, the amount of enzyme produced was significantly higher in the optimized medium when compared with the original medium.  相似文献   

16.
We have used the technique of continuous culture to study the expression of β-galactosidase in Escherichia coli. In these experiments the cultures were grown on carbon-limited media in which half of the available carbon was supplied as glycerol, glucose, or glucose 6-phosphate, and the other half as lactose. Lactose itself provided the sole source of inducer for the lac operon. The steady-state specific activity of the enzyme passed through a maximal value as a function of dilution rate. Moreover, the rate at which activity was maximal (0.40 h?1) and the observed specific activity of the enzyme at a given growth rate were found to be identical in each of the three media tested. This result was unexpected, since the steady-state specific activity can be shown to be equal to the differential rate of enzyme synthesis, and since it is known that glycerol, glucose, and glucose-6-P-cause different degrees of catabolite repression in batch culture. The differential rate of β-galactosidase synthesis was an apparently linear function of the rate of lactose utilization per milligram protein regardless of the composition of the input medium. That is, it is independent of the rate of metabolism of substrates other than lactose which are concurrently being utilized and the enzyme level appears to be matched to the metabolic requirement for it. If this relationship is taken to indicate the existence of a fundamental control mechanism, it may represent a form of attenuation of the rate of β-galactosidase synthesis which is independent of cyclic AMP levels.  相似文献   

17.
18.
19.
A process for production of mold lactase was developed. Tests were carried out in pilot and industrial scale with an Aspergillus niger strain selected after screening a number of molds.A computer coupled autoanalyzer system was used for monitoring enzyme formation in the pilot fermentor. Lactase production was investigated using different pH- and temperature-profiles. A. niger lactase has an acid pH optimum, a high temperature optimum and good stability. It does not require any metal ions. It is suitable for immobilization for hydrolysis of lactose in acid whey.Three-fold enhancement of lactase production was obtained by mutagenizing A. niger using NTG as mutagenic agent.The lactases produced by the mutants have the same pH and temperature optima and stability but the growth properties of the mutants were different from those of the original strain.Sufficient specific activity of the enzyme preparation for immobilization was obtained by purifying the enzyme by selective adsorption on Na-Ca-silicate.  相似文献   

20.
Xanthomonas genus possesses a low level of β-galactosidase gene expression and is therefore unable to produce xanthan gum in lactose-based media. In this study, we report the emergence of some natural field strains of Xanthomonas citri subsp. citri (Xcc) capable to use lactose as a sole carbon source to produce xanthan gum. From 210 Xcc strains isolated from key lime (C. aurantifolia), 27 showed the capacity to grow on lactose containing medium. Xcc lactose consuming strains demonstrated a good level of xanthan production. Amongst all, NIGEBK37 produced the greatest (14.62 g/l) amount of xanthan gum in experimental laboratory conditions. By evaluating the viscosity of the biopolymer at 25 °C, it was demonstrated that xanthan synthesized by strain NIGEBK37 has the highest viscosity (44,170.66 cP). Our results were indicative for the weakness of a commercial strain of Xanthomonas campestris pv. Campestris DSM1706 (Xcc/DSM1706) to produce xanthan in lactose containing medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号