首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Flavin-containing monooxygenase (FMO) in pulmonary and hepatic microsomes from sheep was analyzed by western blotting by probing with antibodies raised against FMO purified from rabbit lung and pig liver. 2. Pulmonary microsomes from sheep contain a single major protein which cross-reacts with the antibody to rabbit lung FMO, but no band can be observed when probed with the antibody to the pig liver enzyme. Likewise, sheep liver microsomes contain a protein which cross-reacts with the antibody to pig liver FMO, but no significant staining is observed following incubation with antibody to the lung enzyme. 3. Sheep pulmonary and hepatic microsomal FMO also display a difference in activity toward chlorpromazine and n-dodecylamine. 4. Preliminary evidence suggests that sheep FMO may be induced (liver) or repressed (lung) during pregnancy. 5. Sheep are similar to rodents (rat, mouse, guinea pig, hamster and rabbit) in having distinct forms of pulmonary and hepatic FMO. The immunochemical and catalytic difference between sheep liver and lung FMO is similar to that of rabbit.  相似文献   

2.
Lung contains both Mg2+-dependent and Mg2+-independent phosphatidate phosphohydrolase activities. Addition of Triton X-100 (0.5%) or chlorpromazine (1 mM) leads to a marked increase in the total phosphatidate phosphohydrolase activity in rat lung microsomes (microsomal fractions), but a decrease in the Mg2+-dependent activity. These observations suggest that the Mg2+-independent activity is stimulated, whereas the Mg2+-dependent activity is inhibited. However, the possibility exists that Triton X-100 could stimulate the Mg2+-dependent enzymic activity in an Mg2+-independent manner. In addition, the positively charged amphiphilic drug could be replacing the enzyme's requirement for Mg2+. These two possibilities were examined by using subcellular fractions in which the Mg2+-dependent phosphatidate phosphohydrolase had been abolished by heat treatment at 55 degrees C for 15 min. Heat treatment does not affect the microsomal Mg2+-independent phosphohydrolase to any great extent. Since the 6-8-fold stimulations due to Triton X-100 and chlorpromazine are retained after heat treatment of this fraction, the Mg2+-independent activity must be involved. Addition of Triton X-100 and chlorpromazine to cytosol virtually abolishes the Mg2+-dependent phosphatidate phosphohydrolase activity and decreases the Mg2+-independent activity by half. Heat treatment also abolishes the Mg2+-dependent activity and decreases the Mg2+-independent activity by over half. The Mg2+-independent phosphatidate phosphohydrolase activity remaining after heat treatment was not affected by Triton X-100 or chlorpromazine. These studies demonstrate that Triton X-100 and chlorpromazine specifically stimulate the heat-stable Mg2+-independent phosphatidate phosphohydrolase activity in rat lung microsomes. In contrast, the heat-labile Mg2+-independent phosphatidate phosphohydrolase activities in cytosol are inhibited by these reagents. Triton X-100 and chlorpromazine inhibit the Mg2+-dependent phosphatidate phosphohydrolase activities in both rat lung microsomes and cytosol. These results are consistent with the view that a single Mg2+-dependent phosphatidate phosphohydrolase present in both microsomes and cytosol is specifically involved in glycerolipid metabolism.  相似文献   

3.
Some kinetic properties of the microsomal cholesterol ester hydrolase (CEH) have been examined in rat liver. The reaction was linear with time up to 60 min and with enzyme concentration up to 0.3 mg/mL, and a pH optimum of 6.7 for enzyme activity was observed. Cholesterol esterase exhibited the following apparent kinetic constants: Km, 68.88 microM and Vmax, 33 Units/mg protein. Cholesteryl palmitate was hydrolyzed to a much greater extent than cholesteryl oleate by the enzyme. Product inhibition with cholesterol and palmitic acid was not apparent; however, oleic acid added to the system reduced markedly microsomal CEH activity. The present paper also reports the solubilization of cholesteryl palmitate hydrolase from the microsomal fraction by pretreating it with Triton X-100, sodium deoxycholate, and sodium dodecylsulfate. All ionic and non-ionic detergents tested are capable of making the enzyme soluble, and maximal effects were found at higher concentrations of detergents although the esterase activity was strongly inhibited. Triton X-100 was found to be more effective than sodium deoxycholate and sodium dodecylsulfate in enzyme and protein solubilization. When the direct effects of detergents on CEH activity were studied, progressive concentration-dependent inhibitions were observed.  相似文献   

4.
Microsomal fractions isolated from rat corpus striatum catalyze the oxidation of thiobenzamide to the sulfoxide. The rate of thiobenzamide sulfoxidation is 6.9 +/- 4.8 nmol(min)-1 (mg microsomal protein)-1. The reaction is inhibited by an excess of sulfur- and nitrogen-containing substrates for the microsomal flavin-containing monooxygenase. These inhibitors of thiobenzamide sulfoxidation include methimazole, cysteamine, and trimethylamine. Enzyme activity is also destroyed by treatment of the microsomal preparation at 60 degrees for 1 min. In parallel experiments, rat liver microsomes exhibit similar inhibition characteristics. The data indicate the presence in corpus striatum of a microsomal monooxygenase with catalytic properties of the hepatic microsomal flavin-containing monooxygenase.  相似文献   

5.
In these studies our goal was to solubilize the microsomal enzyme, 11 beta-hydroxysteroid dehydrogenase (11-HSD) as the first step in its purification. Enzyme was extracted from rat liver microsomes with representative detergents (Zwittergents, Tritons, modified sterols). Oxidation-reduction (O-R) ratios of extracts varied with detergent used and ranged from 0.18 (CHAPS) to 3.8 (Zwittergent 3-14) relative to a ratio of 1.7 in intact microsomes. All detergents solubilized 11-HSD using lack of sedimentation during high speed centrifugation as criterion. With Triton DF-18 and Triton X-100, optimum extraction of 11-HSD occurred in the detergent-protein ratio range of 0.1 to 0.2 O-R ratios decreased with increased Triton X-100, but were constant as Triton DF-18 was varied. The pH optimum of enzyme extraction was 9 at a detergent-protein ratio of 0.05 and 7.5-8.0 at a ratio of 0.2. Sodium chloride increased enzyme extraction by detergents; in the absence of detergent, salt extracted protein, but not enzyme. In aqueous solution at 0 degrees C or -15 degrees C, microsomal 11-oxidation activity rose within 24 h, then decreased; reductase activity consistently decreased. Oxidation and reduction activities were inversely related in the microsomal bound enzyme. No relationship between these activities appeared in detergent-solubilized enzymes. Possible mechanisms to account for the unexpected behavior of this enzyme are discussed.  相似文献   

6.
11 beta-hydroxysteroid dehydrogenase (11-HSD, EC 1.1.1.146) from rat renal cortex microsomes was solubilized using several detergents, the most effective being Zwittergent 3-10 and Triton X-100. The activity ratio oxidation/reduction of the reversible reaction corticosterone in equilibrium 11-dehydrocoticosterone varied depending on the detergent used. We attribute this variation to direct effects of different detergents on enzyme kinetics. In contrast, comparable results obtained with liver 11-HSD have been attributed to the possibility of spatially separated 11-oxidase and 11-reductase activities. In order to test whether renal 11-HSD represents a uniform oxido-reductase as generally assumed, or a dual enzyme system as has been recently proposed an attempt was made to characterize 11-HSD solubilized from renal microsomal fractions using isoelectric focusing (IEF). When 11-HSD was extracted with 1% Triton X-100 (= partially solubilized fraction) a heterogenous peak pattern was obtained. In contrast, IEF of 11-HSD extracted with 10% Triton X-100 (= delipidated fraction) resulted in a single peak at about pH 5.9 with both oxidative and reductive activity at practically identical positions within the gels. From this observation we conclude that the degree of detergent solubilization of a membrane bound protein affects its amphoteric properties and that removal of membranous lipids is a prerequisite for the analysis of its behaviour. Since the more delipidated fraction of 11-HSD revealed only one activity peak the data are compatible with the uniform enzyme concept since oxidative and reductive activities of renal cortical 11-HSD could not be separated.  相似文献   

7.
Several detergents activated microsomal dehydrodolichyl diphosphate synthase of rat liver, but the chain length of products shifted downward from C90 and C95 with increasing concentration of the detergents. Maximum activation was observed at the concentration of 2% Triton X-100, 30 mM octyl glucoside, 30 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, and 10 mM deoxycholate with the product chain length being C80-C85, C65-C75, C70-C75, and C55-C65, respectively. The activity of Triton X-100 solubilized enzyme was decreased by asolectin, phosphatidylethanolamine, and phosphatidylcholine. The chain lengths of products formed in the presence of these phospholipids were C85 and C90. In the presence of both phosphatidylcholine and Mg2+ the solubilized enzyme was able to produce C90 and C95 dehydrodolichyl diphosphates like native microsomal enzyme. Microsomal enzyme preparations from rat liver, brain, and testis catalyzed the formation of dehydrodolichyl diphosphates with the same chain lengths as those of the natural dolichols occurring in individual tissues. The chain length distribution of dehydrodolichyl products by (rat liver) microsomes also depended on the concentration of substrates. Not only did increasing the concentration of isopentenyl diphosphate lead to longer chain product, but decreasing that of farnesyl diphosphate increased product chain length.  相似文献   

8.
A sensitive assay for 5 alpha-reductase was introduced which is capable of detecting at least 0.2 U of activity per sample. The assay was used in developing a method for the solubilization of human prostatic 5 alpha-reductase. Homogenisation conditions were devised under which 95% of the total prostatic 5 alpha-reductase was released into the microsomal fraction. A combination of 0.1 M sodium citrate, 0.1 M KCl, 20% (v/v) glycerol, 0.5 mM NADPH and 1 microM testosterone was found to stabilise 5 alpha-reductase in the presence of detergents. The effect of the presence of low concentrations of detergents in the assay on the activity of 5 alpha-reductase was studied. Triton X-100, Lubrol PX and Nonidet P-40, caused a concentration-dependent inhibition of activity. The ability of several detergents (Triton X-100 MEGA-9, Tween 20, Tween 80, digitonin, Lubrol PX and Nonidet P-40) to solubilise 5 alpha-reductase was studied. All detergents caused a concentration-dependent solubilization of 5 alpha-reductase. Significant amounts of active solubilized enzyme were recovered only with Lubrol PX at concentrations less than 1.1 mg/ml. Seventy percent of the 5 alpha-reductase was solubilized in an active form by extracting the membranes 3 times with 0.8 mg/ml Lubrol PX.  相似文献   

9.
Inhibitory effects of detergents Triton X-100 and Chaps on 7-ethoxycoumarin O-deethylation activity were examined in the recombinant microsomes containing both rat CYP1A1 and yeast NADPH-P450 reductase (the mixed system) and their fused enzyme (the fused system). Triton X-100 showed competitive inhibition in both mixed and fused systems with K(i) values of 24.6 and 21.5 microM, respectively. These results strongly suggest that Triton X-100 binds to the substrate-binding pocket of CYP1A1. These K(i) values are far below the critical micelle concentration of Triton X-100 (240 microM). Western blot analysis revealed no disruption of the microsomal membrane by Triton X-100 in the presence of 0-77 microM Triton X-100. On the other hand, Chaps gave distinct inhibitory effects to the mixed and fused systems. In the fused system, a mixed-type inhibition was observed with K(i) and K(i)' values of 1.2 and 5.4 mM of Chaps, respectively. However, in the mixed system, multiple inhibition modes by Chaps were observed. Western blot analysis revealed that the solubilized fused enzyme by Chaps preserved the activity whereas the solubilized CYP1A1 and NADPH-P450 reductase reductase showed no activity in the mixed system. Thus, the comparison of the mixed and fused systems appears quite useful to elucidate inhibition mechanism of detergents.  相似文献   

10.
1. The first dehydrogenation step of peroxisomal beta-oxidation involves the reduction of O2 to H2O2. Production rates of H2O2 and acetyl units by purified rat liver peroxisomes oxidizing palmitoyl-CoA were equal, indicating that H2O2 production is a reliable index for the release of acetyl units during peroxisomal fatty-acid oxidation. 2. Measurements of H2O2 and acid-soluble oxidation products during [1-14C]palmitoyl-CoA oxidation by purified peroxisomes revealed that the number of acetyl units released per molecule of palmitoyl-CoA oxidized rapidly decreased with increasing unbound palmitoyl-CoA concentrations. Structural damage to the peroxisomes caused by detergents or other treatments also decreased the number of acetyl units released. Under conditions where oxidation proceeded linearly with time the theoretical maximum of 5 acetyl units released per molecule of palmitoyl-CoA oxidized [Lazarow (1978) J. Biol. Chem. 253, 1522--1528] was never reached. 3. Expressed in terms of acetyl units produced and measured at low unbound-palmitoyl-CoA concentrations, mitochondrial oxidation was 10--20-fold higher than peroxisomal oxidation. 4. ATP stimulated peroxisomal palmitoyl-CoA oxidation approx. 2-fold. The ATP effect required the presence of Mg2+ and was lost when peroxisomal membranes were disrupted by Triton X-100 or high concentrations of unbound palmitoyl-CoA. 5. Disruption of peroxisomes by detergents, freeze--thawing, osmotic or mechanical treatment did not stimulate palmitoyl-CoA oxidation in the presence of ATP, indicating that peroxisomal fatty-acid-CoA oxidation was not latent. In the absence of ATP, Triton X-100 stimulated peroxisomal palmitoyl-CoA oxidation approx. 2-fold.  相似文献   

11.
The cDNA clone of mouse flavin-containing monooxygenase 2 (FMO2) was obtained as an expressed sequence tag (EST) isolated from a female mouse kidney cDNA library from the I.M.A.G.E. consortium (I.M.A.G.E. CloneID 1432164). Complete sequencing of the EST derived a nucleotide sequence for mouse FMO2, which contains 112 bases of 5' flanking region, 1607 bases of coding region, and 309 bases of 3' flanking region. This FMO2 sequence encodes a protein of 535 amino acids including two putative pyrophosphate binding sequences (GxGxxG/A) beginning at positions 9 and 191. Additionally, this mouse FMO protein sequence shows 87 and 86% homology to rabbit and human FMO2 respectively. The mouse FMO2 sequence was subcloned into the expression vector pJL-2, a derivative of pKK233-2 and used to transform XL1-Blue Escherichia coli. FMO activity in particulate fractions isolated from isopropyl-beta-D-thiogalactopyanoside (IPTG) induced cells was heat stable (45 degrees C for 5 min) and demonstrated optimal activity at a relatively high pH of 10.5. The expressed FMO2 enzyme showed catalytic activity towards the FMO substrate methimazole and further analysis of E. coli fractions utilizing NADPH oxidation demonstrated that the mouse FMO2 enzyme also exhibits catalytic activity towards thiourea, trimethylamine, and the insecticide phorate.  相似文献   

12.
The effect of detergents on electron and proton transfer in bovine cytochrome c oxidase was studied using steady-state and transient-state methods. Cytochrome c oxidase in lauryl maltoside has high maximal turnover (TN(max)=400 s(-1)), whereas activity is low (TN(max)=10 s(-1)) in Triton X-100. Single turnover studies of intramolecular electron transfer show similar rates in either detergent. Transient proton uptake experiments show the oxidase in lauryl maltoside consumes 1.8+/-0.3 H(+)/aa(3) during either partial reduction of the oxidase or reaction of fully reduced enzyme with O(2). However, the oxidase in Triton X-100 consumes 2.6+/-0.4 H(+)/aa(3) during partial reduction and 1.0+/-0.2 H(+)/aa(3) in the O(2) reaction. Absorption spectra recorded during turnover show that the enzyme undergoes activation in lauryl maltoside, but does not activate in Triton X-100. We propose that cytochrome c oxidase in different detergents allows access to different sites of protonation, which in turn influences steady-state activity.  相似文献   

13.
Sphingosine-1-phosphate lyase is responsible for the ultimate step in sphingolipid breakdown, converting phosphorylated long chain bases into ethanolamine phosphate and a fatty aldehyde. Using tritiated dihydrosphingosine-1-phosphate, prepared enzymatically from [4,5-3H]dihydrosphingosylphosphocholine, we have reinvestigated the subcellular distribution of this enzyme in rat liver. Upon cell fractionation by differential centrifugation, the enzyme showed a microsomal distribution. Further separation of the microsomal fraction by sucrose gradient centrifugation confirmed an association with the endoplasmic reticulum. By means of constrained nonlinear regression, no evidence for a significant association with mitochondrial membranes, as reported previously (Stoffel, W., LeKim, D., and Sticht, G. (1969) Hoppe Seyler's Z. Physiol. Chem. 350, 1233-1241), nor with other cell compartments was found. The lyase activity, which appeared to be sensitive to different detergents, but not to Triton X-100, was not latent. It could be solubilized with Triton X-100, but not by high ionic strength, indicating that it is an integral membrane protein whose catalytic site is most probably exposed to the cytosol. Treatment of intact microsomal vesicles with trypsin or thermolysin inactivated the lyase activity, confirming that its catalytic site(s) or other domains essential for activity face the cytosol.  相似文献   

14.
Studies to identify the cytochrome P450 (CYP) isoform(s) involved in chlorpromazine 7-hydroxylation were performed using human liver microsomes and cDNA-expressed human CYPs. The kinetics of chlorpromazine 7-hydroxylation in human liver microsomes showed a simple Michaelis-Menten behavior. The apparent Km and Vmax values were 3.4+/-1.0 microM and 200.5+/-83.7 pmol/min/mg, respectively. The chlorpromazine 7-hydroxylase activity in human liver microsomes showed good correlations with desipramine 2-hydroxylase activity (r = 0.763, p < 0.05), a marker activity for CYP2D6, and phenacetin O-deethylase activity (r = 0.638, p < 0.05), a marker activity for CYP1A2. Quinidine (an inhibitor of CYP2D6) completely inhibited while alpha-naphthoflavone (an inhibitor of CYP1A2) marginally inhibited the chlorpromazine 7-hydroxylase activity in a human liver microsomal sample showing high CYP2D6 activity. On the other hand, alpha-naphthoflavone inhibited the chlorpromazine 7-hydroxylase activity to 55-65% of control in a human liver microsomal sample showing low CYP2D6 activity. Among eleven cDNA-expressed CYPs studied, CYP2D6 and CYP1A2 exhibited significant activity for the chlorpromazine 7-hydroxylation. The Km values for the chlorpromazine 7-hydroxylation of both cDNA-expressed CYP2D6 and CYP1A2 were in agreement with the Km values of human liver microsomes. These results suggest that chlorpromazine 7-hydroxylation is catalyzed mainly by CYP2D6 and partially by CYP1A2.  相似文献   

15.
We have characterised ceramidase activity in extracts of human spleen from control subjects and from patients with Gaucher disease. In Triton X-100 extracts of control spleens, a broad pH optimum of pH 3.5-5.0 was found; no ceramidase activity was detectable at neutral or alkaline pH. About 45-60% of acid ceramidase could be extracted from spleen without detergents, but for complete extraction, Triton X-100 was required. For the radiolabelled substrate oleoylsphingosine, a Km of 0.22 +/- 0.09 mM and a Vmax of 57 +/- 11 nmol/h per mg protein was calculated in spleen from a control subject. Flat-bed isoelectric focussing in the presence of Triton X-100 revealed a pI of 6.0-7.0 for acid ceramidase; similar values were found for sphingomyelinase and glucerebrosidase. HPLC-gel filtration indicated that in the presence of Triton X-100, acid ceramidase has an Mr of about 100 kDa. In the absence of detergents, the enzyme forms high-molecular-weight aggregates. Similar aggregation behaviour was observed for sphingomyelinase, while the elution of beta-hexosaminidase was not affected by detergents. The elution profile of glucocerebrosidase was only slightly altered by Triton X-100. There was no difference in the properties of acid ceramidase present in spleen from control subjects and from patients with type I Gaucher disease.  相似文献   

16.
Rat liver microsomes contain a Triton X-100 solubilizable vitamin K-dependent carboxylase activity that converts specific glutamyl residues of a microsomal prothrombin precursor to gamma-carboxyglutamyl residues. This activity has been studied in partially (0.25% Triton X-100) and completely (1.0% Triton X-100) solubilized rat liver microsomal preparations. The rate of vitamin K-dependent carboxylation of endogenous microsomal protein precursors was very rapid in the completely solubilized liver microsomal preparation, and carboxylation of an exogenous peptide substrate (Phe-Leu-Glu-Glu-Leu) proceeded at the same time. In the partially solubilized liver microsomal preparation, the rate of protein carboxylation was greatly reduced, and a lag in carboxylation of the exogenous substrate was observed. When microsomal preparations which were depleted of endogenous precursors were used, this lag was eliminated. These data suggest that both substrates utilize the same microsomal pool of carboxylase and that the fraction of the carboxylase bound to the endogenous precursors is not immediately available to exogenous substrates.  相似文献   

17.
1. The lipid requirement for maximum desaturase activity was investigated using acetone/water mixtures. It was shown that for maximum stearoyl-CoA desaturase activity of hen liver microsomes neither the total neutral lipid fraction nor 44% of the phospholipid fraction were required. 2. The effect of sodium deoxycholate, Triton X-100, Nonidet P-40 and Bio-solv on the enzyme activity indicated that the neutral detergents had a milder effect than the ionic detergent but both classes could cause considerable irreversible loss of activity. 3. The treatment of the microsomes with 2.5% (v/v) water in acetone greatly improved the effective solubilising power of Triton X-100. The yield of desaturase in the 100 000 X g supernatant obtained by treating the microsomal fraction in this way was strongly dependent upon protein concentration. Maximum solubilisation was achieved with25 mg protein per ml 1% (w/v) Triton X-100 in 0.1 M potassium phosphate buffer pH 7.4. 4. A comparison of the properties of the solubilised and membrane-bound enzyme was made by an investigation of: (i) the temperature and pH optimum, (ii) activation energy and (iii) the effect of inhibitors on the enzyme activity.  相似文献   

18.
Rat-liver microsomes were treated with two non-ionic detergents, Triton X-100 and Lubrol WX, with phospholipase A2, or with aqueous acetone solution. The activity of the membrane-bound UDP-glucoronosyltransferase (UDPGT, EC 2.4.1.17) was measured after the treatment with these perturbants. At the same time, modifications of the secondary structure of the microsomal proteins were followed and studied by circular dichroism (CD) spectroscopy. The detergents greatly activated UDPGT, maximally at a 1 mM concentration of either detergent. The maximally activating Triton X-100 treatment did not greatly change the ellipticity of the microsomes at 222 nm ((theta)222), whereas that with Lubrol WX affected the secondary structure of the membrane proteins more strongly. UDPGT activation also occurred in phospholipase A2-treated microsomes. Maximal activation was obtained after 1--5 min of incubation and was stable throughout the experiment. Phospholipase A2 at the ratio of microsomal protein to phospholipase 250 : 1 (w/w) slightly increased (theta)222 after 10 min of incubation and did not change it further even after 30 min of incubation. Treatment of liver microsomes with a 10 : 90 (v/v) aqueous acetone solution removed 90% of the total membrane phospholipids, particularly phosphatidylcholine and phosphatidylethanolamine. The UDPGT activity was decreased in lipid-depleted microsomes, and the enzyme was not reactivated when phosphatidylcholine-lysophosphatidylcholine liposomes were added at a low temperature. An even greater decrease was obtained when the lipid binding was carried out at 37 degree C. Lipid-depleted microsomes had a high (theta)222 associated with a red-shift of 2 nm, indicating partial aggregation of membrane proteins and an increase in the alpha-helical content of the protein after acetone extraction. However, this particular protein structure was partially reversible, since a binding of phospholipids to lipid-depleted microsomes gave a (theta)222 close to that found in control microsomes. The UDPGT activity was not dependent on the secondary structure of the membrane proteins.  相似文献   

19.
G Betz  D Michels 《Steroids》1973,21(6):785-800
The activity of the steroid 17, 20-lyase from rat testis microsomes was determined following exposure of the microsomes to detergents. Only Triton N-101 and X-100 produced enzymically active supernatants. The supernatant from Triton N-101 treatment consisted of submicrosomal particles enriched in cytochrome P450, flavin, and phospholipid; depleted in RNA and NADPH oxidase; and unchanged in the concentration of cytochrome b5 and non-heme iron. The activities of the NADPH and NADH cytochrome C reductases were also intact. Lubrol produced an inactive supernatant which contained all the components thought to be necessary for microsomal electron transport with the exception of cytochrome b5. An assay, specific for cleavage and more expeditious than the chromatographic separation of reactants, is also described.  相似文献   

20.
The influence of the detergent environment upon individual electron-transfer rates of cytochrome c oxidase was investigated by stopped-flow spectrophotometry. The effects of three detergents were studied: lauryl maltoside, which supports a high turnover number (TN = 350 s-1), n-dodecyl octaethylene glycol monoether (C12E8), which supports an intermediate TN (150 s-1), and Triton X-100 in which oxidase is nearly inactive (TN = 2-3 s-1). Under limited turnover conditions (cytochrome c:cytochrome c oxidase ratio = 1:1 to 8:1), the rate of oxidation of cytochrome c was measured and compared with the fast reduction of cytochrome a and its relatively slow reoxidation. Two reducing equivalents of cytochrome c were rapidly oxidized in a burst phase; the remaining two to six equivalents were oxidized more slowly, concurrent with the reoxidation of cytochrome a; i.e., the percent reduced cytochrome a reflects the percent reduced cytochrome c. With the resting enzyme, the bimolecular reaction between reduced cytochrome c and cytochrome a was rapid, was insensitive to the detergent environment, and was not the rate-limiting step in the presence of any detergent. The rate of internal electron transfer from cytochrome a to cytochrome a3 in the resting enzyme was slow and only slightly affected by the detergent environment: 1.0-1.1 s-1 in Triton X-100, 5-7 s-1 in C12E8, and 5-12 s-1 in lauryl maltoside. With the pulsed enzyme, the intramolecular electron transfer between cytochrome a and cytochrome a3 increased 4-5-fold in the lauryl maltoside enzyme but did not increase in the Triton X-100 enzyme (intermediate values were obtained with the C12E8 enzyme). We conclude that cytochrome c oxidase acquires the pulsed conformation only in those detergents that support high TN's, e.g., lauryl maltoside and C12E8, but it is locked in the resting conformation in those detergents which result in low TN's, e.g., Triton X-100.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号