首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang PF  McLeish MJ  Kneen MM  Lee G  Kenyon GL 《Biochemistry》2001,40(39):11698-11705
All phosphagen kinases contain a conserved cysteine residue which has been shown by crystallographic studies, on both creatine kinase and arginine kinase, to be located in the active site. There are conflicting reports as to whether this cysteine is essential for catalysis. In this study we have used site-directed mutagenesis to replace Cys282 of human muscle creatine kinase with serine and methionine. In addition, we have replaced Cys282, conserved across all creatine kinases, with alanine. No activity was found with the C282M mutant. The C282S mutant showed significant, albeit greatly reduced, activity in both the forward (creatine phosphorylation) and reverse (MgADP phosphorylation) reactions. The K(m) for creatine was increased approximately 10-fold, but the K(m) for phosphocreatine was relatively unaffected. The V and V/K pH-profiles for the wild-type enzyme were similar to those reported for rabbit muscle creatine kinase, the most widely studied creatine kinase isozyme. However, the V/K(creatine) profile for the C282S mutant was missing a pK of 5.4. This suggests that Cys282 exists as the thiolate anion, and is necessary for the optimal binding of creatine. The low pK of Cys282 was also determined spectrophotometrically and found to be 5.6 +/- 0.1. The S284A mutant was found to have reduced catalytic activity, as well as a 15-fold increase in K(m) for creatine. The pK(a) of Cys282 in this mutant was found to be 6.7 +/- 0.1, indicating that H-bonding to Ser284 is an important, but not the sole, factor contributing to the unusually low pK(a) of Cys282.  相似文献   

2.
Wang PF  Flynn AJ  Naor MM  Jensen JH  Cui G  Merz KM  Kenyon GL  McLeish MJ 《Biochemistry》2006,45(38):11464-11472
All known guanidino kinases contain a conserved cysteine residue that interacts with the non-nucleophilic eta1-nitrogen of the guanidino substrate. Site-directed mutagenesis studies have shown that this cysteine is important, but not essential for activity. In human muscle creatine kinase (HMCK) this residue, Cys283, forms part of a conserved cysteine-proline-serine (CPS) motif and has a pKa about 3 pH units below that of a regular cysteine residue. Here we employ a computational approach to predict the contribution of residues in this motif to the unusually low cysteine pKa. We calculate that hydrogen bonds to the hydroxyl and to the backbone amide of Ser285 would both contribute approximately 1 pH unit, while the presence of Pro284 in the motif lowers the pKa of Cys283 by a further 1.2 pH units. Using UV difference spectroscopy the pKa of the active site cysteine in WT HMCK and in the P284A, S285A, and C283S/S285C mutants was determined experimentally. The pKa values, although consistently about 0.5 pH unit lower, were in broad agreement with those predicted. The effect of each of these mutations on the pH-rate profile was also examined. The results show conclusively that, contrary to a previous report (Wang et al. (2001) Biochemistry 40, 11698-11705), Cys283 is not responsible for the pKa of 5.4 observed in the WT V/K(creatine) pH profile. Finally we use molecular dynamics simulations to demonstrate that, in order to maintain the linear alignment necessary for associative inline transfer of a phosphoryl group, Cys283 needs to be ionized.  相似文献   

3.
Structure determination of the inactive S554A variant of prolyl oligopeptidase complexed with an octapeptide has shown that substrate binding is restricted to the P4-P2' region. In addition, it has revealed a hydrogen bond network of potential catalytic importance not detected in other serine peptidases. This involves a unique intramolecular hydrogen bond between the P1' amide and P2 carbonyl groups and another between the P2' amide and Nepsilon2 of the catalytic histidine 680 residue. It is argued that both hydrogen bonds promote proton transfer from the imidazolium ion to the leaving group. Another complex formed with the product-like inhibitor benzyloxycarbonyl-glycyl-proline, indicating that the carboxyl group of the inhibitor forms a hydrogen bond with the Nepsilon2 of His(680). Because a protonated histidine makes a stronger interaction with the carboxyl group, it offers a possibility of the determination of the real pK(a) of the catalytic histidine residue. This was found to be 6.25, lower than that of the well studied serine proteases. The new titration method gave a single pK(a) for prolyl oligopeptidase, whose reaction exhibited a complex pH dependence for k(cat)/K(m), and indicated that the observed pK(a) values are apparent. The procedure presented may be applicable for other serine peptidases.  相似文献   

4.
Understanding the roles of noncovalent interactions within the enzyme molecule and between enzyme and substrate or inhibitor is an essential goal of the investigation of active center chemistry and catalytic mechanism. Studies on members of the papain family of cysteine proteinases, particularly papain (EC 3.4.22.2) itself, continue to contribute to this goal. The historic role of the catalytic site Cys/His ion pair now needs to be understood within the context of multiple dynamic phenomena. Movement of Trp177 may be necessary to expose His159 to solvent with consequent decrease in its degree of electrostatic solvation of (Cys25)-S(-). Here we report an investigation of this possibility using computer modeling of quasi-transition states and pH-dependent kinetics using 3,3'-dipyridazinyl disulfide, its n-propyl and phenyl derivatives, and 4,4'-dipyrimidyl disulfide as reactivity probes that differ in the location of potential hydrogen-bonding acceptor atoms. Those interactions that influence ion pair geometry and thereby catalytic competence, including by transmission of the modulatory effect of a remote ionization with pK(a) 4, were identified. A key result is the correlation between the kinetic influence of the modulatory trigger of pK(a) 4 and disruption of the hydrogen bond donated by the indole N-H of Trp177, the hydrophobic shield of the initial "intimate" ion pair. This hydrogen bond is accepted by the amide O of Gln19-a component of the oxyanion hole that binds the tetrahedral species formed from the substrate during the catalytic act. The disruption would be expected to contribute to the mobility of Trp177 and possibly to the effectiveness of the binding of the developing oxyanion.  相似文献   

5.
We report that the production of hydrogen peroxide by radical chain reductions of molecular oxygen into water in buffers leads to hinge degradation of a human IgG1 under thermal incubation conditions. The production of the hydrogen peroxide can be accelerated by superoxide dismutase or redox active metal ions or inhibited by free radical scavengers. The hydrogen peroxide production rate correlates well with the hinge cleavage. In addition to radical reaction mechanisms described previously, new degradation pathways and products were observed. These products were determined to be generated via radical reactions initiated by electron transfer and addition to the interchain disulfide bond between Cys(215) of the light chain and Cys(225) of the heavy chain. Decomposition of the resulting disulfide bond radical anion breaks the C-S bond at the side chain of Cys, converting it into dehydroalanine and generating a sulfur radical adduct at its counterpart. The hydrolysis of the unsaturated dehydropeptides removes Cys and yields an amide at the C terminus of the new fragment. Meanwhile, the competition between the carbonyl (-C(α)ONH-) and the side chain of Cys allows an electron transfer to the α carbon, forming a new intermediate radical species (-(·)C(α)(O(-))NH-) at Cys(225). Dissociative deamidation occurs along the N-C(α) bond, resulting in backbone cleavage. Given that hydrogen peroxide is a commonly observed product of thermal stress and plays a role in mediating the unique degradation of an IgG1, strategies for improving stability of human antibody therapeutics are discussed.  相似文献   

6.
The biological activity of gliotoxin is dependent on the presence of a strained disulfide bond that can react with accessible cysteine residues on proteins. Rabbit muscle creatine kinase contains 4 cysteines per 42-kDa subunit and is active in solution as a dimer. Only Cys-282 has been identified as essential for activity. Modification of this residue results in loss of activity of the enzyme. Treatment of creatine kinase with gliotoxin resulted in a time-dependent loss of activity abrogated in the presence of reducing agents. Activity was restored when the inactivated enzyme was treated with reducing agents. Inactivation of creatine kinase by gliotoxin was accompanied by the formation of a 37-kDa form of the enzyme. This oxidized form of creatine kinase was rapidly reconverted to the 42-kDa species by the addition of reducing agents concomitant with restoration of activity. A 1:1 mixture of the oxidized and reduced monomer forms of creatine kinase as shown on polyacrylamide gel electrophoresis was equivalent to the activity of the fully reduced form of the enzyme consistent with only one reduced monomer of the dimer necessary for complete activity. Conversion of the second monomeric species of the dimer to the oxidized form by gliotoxin correlated with loss of activity. Our data are consistent with gliotoxin inducing the formation of an internal disulfide bond in creatine kinase by initially binding and possibly activating a cysteine residue on the protein, followed by reaction with a second neighboring thiol. The recently published crystal structure of creatine kinase suggests the disulfide is formed between Cys-282 and Cys-73.  相似文献   

7.
Electronic parameters of amide and ester bonds in some compounds, modelling substrates of proteolytic enzymes, and electronic properties of corresponding tetrahedral compounds, which are intermediates of the hydrolytic reaction, were calculated by the CNDO/2 method. The nature of substituents and the formation of the hydrogen bond by the carbonyl oxygen atom were shown to have no sufficient influence on the charges and bond orders of the amide group. The dramatic dependence of the amide electronic state from the distort degree of its planar structure was found. The resonance stabilization was shown to be absent in the bicyclic beta-lactams. The pK alpha values of the amide nitrogen atom were calculated at various hybridization states in amides.  相似文献   

8.
Yang L  Zhang J  Ho B  Ding JL 《PloS one》2011,6(5):e19647

Background

M-ficolin, a pathogen recognition molecule in the innate immune system, binds sugar residues including N-acetyl-D-glucosamine (GlcNAc), which is displayed on invading microbes and on apoptotic cells. The cis and trans Asp282-Cys283 peptide bond in the M-ficolin, which was found to occur at neutral and acidic pH in crystal structures, has been suggested to represent binding and non-binding activity, respectively. A detailed understanding of the pH-dependent conformational changes in M-ficolin and pH-mediated discrimination mechanism of GlcNAc-binding activity are crucial to both immune-surveillance and clearance of apoptotic cells.

Methodology/Principal Findings

By immunodetection analysis, we found that the pH-sensitive binding of GlcNAc is regulated by a conformational equilibrium between the active and inactive states of M-ficolin. We performed constant pH molecular dynamics (MD) simulation at a series of pH values to explore the pH effect on the cis-trans isomerization of the Asp282-Cys283 peptide bond in the M-ficolin fibrinogen-like domain (FBG). Analysis of the hydrogen bond occupancy of wild type FBG compared with three His mutants (H251A, H284A and H297A) corroborates that His284 is indispensible for pH-dependent binding. H251A formed new but weaker hydrogen bonds with GlcNAc. His297, unlike the other two His mutants, is more dependent on the solution pH and also contributes to cis-trans isomerization of the Asp282-Cys283 peptide bond in weak basic solution.

Conclusions/Significance

Constant pH MD simulation indicated that the cis active isomer of Asp282-Cys283 peptide bond was predominant around neutral pH while the trans bond gradually prevailed towards acidic environment. The protonation of His284 was found to be associated with the trans-to-cis isomerization of Asp282-Cys283 peptide bond which dominantly regulates the GlcNAc binding. Our MD simulation approach provides an insight into the pH-sensitive proteins and hence, ligand binding activity.  相似文献   

9.
The NH exchange rates in aqueous media of oxytocin and 8-lysine vasopressin (LVP) have been measured by using transfer of solvent saturation method. The data are consistent with a "highly motile" dynamic equilibrium between folded and highly solvated conformations. The highly-motility limit applies to the exchange of NH hydrogens of oxytocin and LVP. Folded structures are more prevalent in oxytocin than in LVP. Partial shielding is indicated for peptide hydrogens of Asn5 and perhaps also Cys6 of oxytocin and for Cys6 of LVP. It is tentatively proposed that the folded conformation of oxytocin in aqueous media may contain a parallel beta-structure in the tocinamide ring consisting of two hydrogen bonds: one between the Tyr2 C = O and Asn5 peptide NH as originally proposed for the preferred conformation of oxytocin in dimethyl sulfoxide (D. W. Urry and R. Walter), and the second between he Cys1 C = O and the Cys6 NH. In LVP the hydrogen bond between the Tyr2 C = O and Asn5 peptide NH appears to be absent. The acylic tripeptide sequences (-Pro-X-Gly-NH2) of both hormones appear to be predominantly solvated. The second-order rate constants for acid catalyzed exchange of the primary amide hydrogens of Gln4, Asn5, and Gly9 of oxytocin are consistently greater for the trans NH than for the corresponding cis NH. This observation can be rationalized in terms of mechanisms involving protonation of either the amide oxygen, or the amide nitrogen, but with limited rotation about the C - N bond.  相似文献   

10.
The NADP-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans (abbreviated Sm-ALDH) belongs to the aldehyde dehydrogenase (ALDH) family. Its catalytic mechanism proceeds via two steps, acylation and deacylation. Its high catalytic efficiency at neutral pH implies prerequisites relative to the chemical mechanism. First, the catalytic Cys284 should be accessible and in a thiolate form at physiological pH to attack efficiently the aldehydic group of the glyceraldehyde-3-phosphate (G3P). Second, the hydride transfer from the hemithioacetal intermediate toward the nicotinamide ring of NADP should be efficient. Third, the nucleophilic character of the water molecule involved in the deacylation should be strongly increased. Moreover, the different complexes formed during the catalytic process should be stabilised.The crystal structures presented here (an apoenzyme named Apo2 with two sulphate ions bound to the catalytic site, the C284S mutant holoenzyme and the ternary complex composed of the C284S holoenzyme and G3P) together with biochemical results and previously published apo and holo crystal structures (named Apo1 and Holo1, respectively) contribute to the understanding of the ALDH catalytic mechanism.Comparison of Apo1 and Holo1 crystal structures shows a Cys284 side-chain rotation of 110 degrees, upon cofactor binding, which is probably responsible for its pK(a) decrease. In the Apo2 structure, an oxygen atom of a sulphate anion interacts by hydrogen bonds with the NH2 group of a conserved asparagine residue (Asn154 in Sm-ALDH) and the Cys284 NH group. In the ternary complex, the oxygen atom of the aldehydic carbonyl group of the substrate interacts with the Ser284 NH group and the Asn154 NH2 group. A substrate isotope effect on acylation is observed for both the wild-type and the N154A and N154T mutants. The rate of the acylation step strongly decreases for the mutants and becomes limiting. All these results suggest the involvement of Asn154 in an oxyanion hole in order to stabilise the tetrahedral intermediate and likely the other intermediates of the reaction. In the ternary complex, the cofactor conformation is shifted in comparison with its conformation in the C284S holoenzyme structure, likely resulting from its peculiar binding mode to the Rossmann fold (i.e. non-perpendicular to the plane of the beta-sheet). This change is likely favoured by a characteristic loop of the Rossmann fold, longer in ALDHs than in other dehydrogenases, whose orientation could be constrained by a conserved proline residue. In the ternary and C284S holenzyme structures, as well as in the Apo2 structure, the Glu250 side-chain is situated less than 4 A from Cys284 or Ser284 instead of 7 A in the crystal structure of the wild-type holoenzyme. It is now positioned in a hydrophobic environment. This supports the pK(a) assignment of 7.6 to Glu250 as recently proposed from enzymatic studies.  相似文献   

11.
12.
The chemistry of active-site cysteine residues is central to the activity of thiol-disulfide oxidoreductases of the thioredoxin superfamily. In these reactions, a nucleophilic thiolate is required, but the associated pK(a) values differ vastly in the superfamily, from less than 4 in DsbA to greater than 7 in Trx. The factors that stabilize this thiolate are, however, not clearly established. The glutaredoxins (Grxs), which are members of this superfamily, contain a Cys-Pro-Tyr-Cys motif in their active site. In reduced Grxs, the pK(a) of the N-terminal active-site nucleophilic cysteine residue is lowered significantly, and the stabilization of the corresponding thiolate is expected to influence the redox potential of these enzymes. Here, we use a combination of long molecular dynamics (MD) simulations, pK(a) calculations, and experimental investigations to derive the structure and dynamics of the reduced active site from Escherichia coli Grx3, and investigate the factors that stabilize the thiolate. Several different MD simulations converged toward a consensus conformation for the active-site cysteine residues (Cys11 and Cys14), after a number of local conformational changes. Key features of the model were tested experimentally by measurement of NMR scalar coupling constants, and determination of pK(a) values of selected residues. The pK(a) values of the Grx3 active-site residues were calculated during the MD simulations, and support the underlying structural model. The structure of Grx3, in combination with the pK(a) calculations, indicate that the pK(a) of the N-terminal active-site cysteine residue in Grx3 is intermediate between that of its counterpart in DsbA and Trx. The pK(a) values in best agreement with experiment are obtained with a low (<4) protein dielectric constant. The calculated pK(a) values fluctuate significantly in response to protein dynamics, which underscores the importance of the details of the underlying structures when calculating pK(a) values. The thiolate of Cys11 is stabilized primarily by direct hydrogen bonding with the amide protons of Tyr13 and Cys14 and the thiol proton of Cys14, rather than by long-range interactions from charged groups or from a helix macrodipole. From the comparison of reduced Grx3 with other members of the thioredoxin superfamily, a unifying theme for the structural basis of thiol pK(a) differences in this superfamily begins to emerge.  相似文献   

13.
Bott RR  Chan G  Domingo B  Ganshaw G  Hsia CY  Knapp M  Murray CJ 《Biochemistry》2003,42(36):10545-10553
The properties of the transition state for serine protease-catalyzed hydrolysis of an amide bond were determined for a series of subtilisin variants from Bacillus lentus. There is no significant change in the structure of the enzyme upon introduction of charged mutations S156E/S166D, suggesting that changes in catalytic activity reflect global properties of the enzyme. The effect of charged mutations on the pK(a) of the active site histidine-64 N(epsilon)(2)-H was correlated with changes in the second-order rate constant k(cat)/K(m) for hydrolysis of tetrapeptide anilides at low ionic strength with a Br?nsted slope alpha = 1.1. The solvent isotope effect (D)2(O)(k(cat)/K(m))(1) = 1.4 +/- 0.2. These results are consistent with a rate-limiting breakdown of the tetrahedral intermediate in the acylation step with hydrogen bond stabilization of the departing amine leaving group. There is an increase in the ratio of hydrolysis of succinyl-Ala-Ala-Pro-Phe-anilides for p-nitroaniline versus aniline leaving groups with variants with more basic active site histidines that can be described by the interaction coefficient p(xy) = delta beta(lg)/delta pK(a) (H64) = 0.15. This is attributed to increased hydrogen bonding of the active site imidazolium N-H to the more basic amine leaving group as well as electrostatic destabilization of the transition state. A qualitative characterization of the transition state is presented in terms of a reaction coordinate diagram that is defined by the structure-reactivity parameters.  相似文献   

14.
The positively charged quaternary ammonium group of agonists of the nicotinic acetylcholine (ACh) receptor binds to a negative subsite at most about 1 nm from a readily reducible disulfide. This disulfide is formed by alpha Cys192 and Cys193 (Kao and Karlin, 1986). In order to identify Asp or Glu residues that may contribute to the negative subsite, we synthesized S-(2-[3H]glycylamidoethyl)dithio-2-pyridine. Purified ACh receptor from Torpedo californica was mildly reduced and reacted with S-(2-[3H]glycylamidoethyl)dithio-2-pyridine. The predominant product was a mixed disulfide between the 3H-N-glycylcysteamine moiety and alpha Cys192 or Cys193. In the extended conformation of [3H] N-glycylcysteamine, the distance from the glycyl amino group to the cysteamine thio group is 0.9 nm. Thus, the amino group of disulfide-linked [3H]N-glycylcysteamine could react with carboxyls within 0.9 nm of Cys192/Cys193. To promote amide bond formation between the tethered amino group and receptor carboxyls, we added 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide. The predominant sites of amide coupling were on the delta subunit, in CNBr fragment 4 (delta 164-257). This reaction was inhibited by ACh. Only the first 61 residues of delta CNBr 4 are predicted to be extracellular, and there are 11 Asp or Gly residues in this region. One or more of these residues is likely to contribute to the binding of ACh.  相似文献   

15.
Stehle F  Brandt W  Milkowski C  Strack D 《FEBS letters》2006,580(27):6366-6374
Structures of the serine carboxypeptidase-like enzymes 1-O-sinapoyl-beta-glucose:L-malate sinapoyltransferase (SMT) and 1-O-sinapoyl-beta-glucose:choline sinapoyltransferase (SCT) were modeled to gain insight into determinants of specificity and substrate recognition. The structures reveal the alpha/beta-hydrolase fold as scaffold for the catalytic triad Ser-His-Asp. The recombinant mutants of SMT Ser173Ala and His411Ala were inactive, whereas Asp358Ala displayed residual activity of 20%. 1-O-sinapoyl-beta-glucose recognition is mediated by a network of hydrogen bonds. The glucose moiety is recognized by a hydrogen bond network including Trp71, Asn73, Glu87 and Asp172. The conserved Asp172 at the sequence position preceding the catalytic serine meets sterical requirements for the glucose moiety. The mutant Asn73Ala with a residual activity of 13% underscores the importance of the intact hydrogen bond network. Arg322 is of key importance by hydrogen bonding of 1-O-sinapoyl-beta-glucose and L-malate. By conformational change, Arg322 transfers L-malate to a position favoring its activation by His411. Accordingly, the mutant Arg322Glu showed 1% residual activity. Glu215 and Arg219 establish hydrogen bonds with the sinapoyl moiety. The backbone amide hydrogens of Gly75 and Tyr174 were shown to form the oxyanion hole, stabilizing the transition state. SCT reveals also the catalytic triad and a hydrogen bond network for 1-O-sinapoyl-beta-glucose recognition, but Glu274, Glu447, Thr445 and Cys281 are crucial for positioning of choline.  相似文献   

16.
The pH dependence of the kinetic parameters of pepsin, rhizopuspepsin, and their active-site hydrogen bond mutants has been determined. These data have permitted the calculation of two active-site ionization constants in the free enzymes (pKe1 and pK32) and in the enzyme-substrate complexes (pKes1 and pKes2). The pKe1 of rhizopuspepsin (2.8) is near that of a normal carboxyl group and near the pKe1 of human immunodeficiency virus type 1 (HIV-1) protease (3.32) (Ido, E., Han, H. P., Kezdy, F. J., and Tang, J. (1991) J. Biol. Chem. 266, 24359-24366). The pKe1 of pepsin (1.57) is thus abnormally low. The pKe2 of rhizopuspepsin (4.44) is lower than that of pepsin (5.02) and HIV protease (6.80). The binding of substrate to rhizopuspepsin causes the lowering of pKes1 to 1.8 and the elevating of pKes2 to above 6. The pK alpha shifts due to substrate binding are much less pronounced in pepsin. Thus, the two enzyme-substrate complexes have similar pK alpha values. For both pepsin and rhizopuspepsin, the removal of hydrogen bonds to the active-site carboxyls by mutagenesis results in negligible changes in the four pK alpha values. The major alteration caused by these mutations is the decrease in kcat values, while there is little change in Km. These observations suggest that these hydrogen bonds to the active-site aspartyls contribute little to the pH-activity relationships of the aspartic proteases. The role of the active-site hydrogen bonds may well be to preserve the conformational rigidity of the catalytic apparatus.  相似文献   

17.
Serpins form loop-sheet polymers through the formation of a partially folded intermediate. Through mutagenesis and biophysical analysis, we have probed the conformational stability of the F-helix, demonstrating that it is almost completely unfolded in the intermediate state. The replacement of Tyr160 on the F-helix of alpha1-antitrypsin to alanine results in the loss of a conserved hydrogen bond that dramatically reduces the stability of the protein to both heat and solvent denaturation, indicating the importance of Tyr160 in the stability of the molecule. The mutation of Tyr160 to a tryptophan residue, within a fluorescently silent variant of alpha1-antitrypsin, results in a fully active, stable serpin. Fluorescence analysis of the equilibrium unfolding behavior of this variant indicates that the F-helix is highly disrupted in the intermediate conformation. Iodide quenching experiments demonstrate that the tryptophan residue is exposed to a similar extent in both the intermediate and unfolded states. Cumulatively, these data indicate that the F-helix plays an important role in controlling the early conformational changes involved in alpha1-antitrypsin unfolding. The implications of these data on both alpha1-antitrypsin function and misfolding are discussed.  相似文献   

18.
The Phe114Pro mutation to the cupredoxin azurin (AZ) leads to a number of structural changes at the active site attributed to deletion of one of the hydrogen bonds to the Cys112 ligand, removal of the bulky phenyl group from the hydrophobic patch of the protein, and steric interactions made by the introduced Pro. The remaining hydrogen bond between the coordinating thiolate and the backbone amide of Asn47 is strengthened. At the type-1 copper site, the Cu(II)-O(Gly45) axial interaction decreases, while the metal moves out of the plane formed by the equatorial His46, Cys112, and His117 ligands, shortening the bond to the axially coordinating Met121. The resulting distorted tetrahedral geometry is distinct from the trigonal bipyramidal arrangement in the wild-type (WT) protein. The unique position of the main S(Cys) --> Cu(II) ligand-to-metal charge-transfer transition in AZ (628 nm) has shifted in the Phe114Pro variant to a value that is more typical for cupredoxins (599 nm). This probably occurs because of the removal of the Phe114-Cys112 hydrogen bond. The Phe114Pro mutation results in a 90 mV decrease in the reduction potential of AZ, and removal of the second hydrogen bond to the Cys ligand seems to be the major cause of this change. The C-terminal His117 ligand does not protonate in the reduced Phe114Pro AZ variant, which suggests that none of the structural features altered by the mutation are responsible for the absence of this effect in the WT protein. Upon reduction, the copper displaces further from the equatorial ligand plane and the Cu-S(Met121) bond length decreases. These changes are larger than those seen in the WT protein and contribute to the order of magnitude decrease in the intrinsic electron-transfer capabilities of the Phe114Pro variant.  相似文献   

19.
Chen S  Lin F  Xu M  Riek RP  Novotny J  Graham RM 《Biochemistry》2002,41(19):6045-6053
We showed previously that Phe(303) in transmembrane segment (TM) VI of the alpha(1B)-adrenergic receptor (alpha(1B)-AR), a residue conserved in many G protein-coupled receptors (GPCRs), is critically involved in coupling agonist binding with TM helical movement and G protein activation. Here the equivalent residue, Phe(282), in the beta(2)-AR was evaluated by mutation to glycine, asparagine, alanine, or leucine. Except for F282N, which exhibits attenuated basal and maximal isoproterenol stimulation, the Phe(282) mutants display varying degrees of constitutive activity (F282L > F282A > F282G), and as shown by the results of substituted cysteine accessibility method (SCAM) studies, induce movement of endogenous cysteine(s) into the water-accessible ligand-binding pocket. For F282A, movement is confined to Cys(285) in TMVI, whereas F282L induces movement of both Cys(285) in TMVI and Cys(327) in TMVII. Further, engineered cysteine-sensor studies indicate that F282L causes movement of TMVI, both above and below an apparent kink-inducing TMVI proline (Pro(288)), whereas that due to F282A is confined to the domain below Pro(288). A plausible interpretation of these data is that receptor activation involves rigid body movement of TMVI which, because of its Pro(288)-induced kink, acts as a pivot to transduce and amplify the agonist-induced conformational change in the upper domain, to a change in the lower domain required for productive receptor-G protein coupling.  相似文献   

20.
The rate of quinol oxidation by cytochrome bc(1)/b(6)f complex is in part associated with the redox potential (E(m)) of its Rieske [2Fe-2S] center, for which an approximate correlation with the number of hydrogen bonds to the cluster has been proposed. Here we report comparative resonance Raman (RR) characterization of bacterial and archaeal high-potential Rieske proteins and their site-directed variants with a modified hydrogen bond network around the cluster. Major differences among their RR spectra appear to be associated in part with the presence or absence of Tyr-156 (in the Rhodobacter sphaeroides numbering) near one of the Cys ligands to the cluster. Elimination of the hydrogen bond between the terminal cysteinyl sulfur ligand (S(t)) and Tyr-Oeta (as with the Y156W variant, which has a modified histidine N(epsilon) pK(a,ox)) induces a small structural bias of the geometry of the cluster and the surrounding protein in the normal coordinate system, and significantly affects some Fe-S(b/t) stretching vibrations. This is not observed in the case of the hydrogen bond between the bridging sulfide ligand (S(b)) and Ser-Ogamma, which is weak and/or unfavorably oriented for extensive coupling with the Fe-S(b/t) stretching vibrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号