首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The proglucagon-derived peptide family consists of three highly related peptides, glucagon and the glucagon-like peptides GLP-1 and GLP-2. Although the biological activity of glucagon as a counter-regulatory hormone has been known for almost a century, studies conducted over the past decade have now also elucidated important roles for GLP-1 as an antidiabetic hormone, and for GLP-2 as a stimulator of intestinal growth. In contrast to pancreatic glucagon, the GLPs are synthesized in the intestinal epithelial L cells, where they are subject to the influences of luminal nutrients, as well as to a variety of neuroendocrine inputs. In this review, we will focus on the complex integrative mechanisms that regulate the secretion of these peptides from L cells, including both direct and indirect regulation by ingested nutrients.  相似文献   

2.
Glucagon-like peptide-1 (GLP-1) is a potent incretin hormone currently under investigation for use as a novel therapeutic agent in the treatment of type 2 diabetes. One of several therapeutically important biological actions of GLP-1 in type 2 diabetic subjects is ability to induce strong suppression of glucagon secretion. The glucagonostatic action of GLP-1 results from its interaction with a specific G-protein coupled receptor resulting in the activation of adenylate cyclase and an increase in cAMP generation. In the pancreatic alpha-cell, cAMP, via activation of protein kinase A, interacts with a plethora of signal transduction processes including ion-channel activity and exocytosis of the glucagon-containing granules. In this short review, we will focus on recent advances in our understanding on the cellular mechanisms proposed to underlie the glucagonotropic action of GLP-1 and attempt to incorporate this knowledge into a working model for the control of glucagon secretion. Studies on the effects of GLP-1 on glucagon secretion are relevant to the pathogenesis of type 2 diabetes due to the likely contribution of hyperglucagonemia to impaired glucose tolerance in type 2 diabetes.  相似文献   

3.
Effect of glucagon-like peptide-1 on insulin secretion   总被引:4,自引:0,他引:4  
The insulinotropic actions of two forms of glucagon-like peptide 1 (GLP-1) containing 31 and 37 amino acid residues on perfused rat pancreas were compared with that of gastric inhibitory polypeptide (GIP), hitherto the most potent intestinal insulinotropic polypeptide known. The smaller form, C-terminally amidated GLP-1-(7-36), strongly enhanced insulin secretion stimulated by 11.1 mM D-glucose at a concentration as low as 0.1 nM. Comparable effects of GIP and GLP-1-(1-37) on insulin secretion were observed at concentrations of 1.0 nM and 10.0 nM, respectively. At the doses tested, neither GLP-1s nor GIP had any effect on insulin secretion induced by 3.3 mM D-glucose. At a concentration of 1.0 nM, GLP-1-(7-36 amide) also enhanced insulin secretion induced by 5 mM L-arginine whereas at concentrations of up to 10.0 nM, GLP-1-(1-37) did not. The results show that the smaller form of GLP-1 is more strongly insulinotropic than GIP. These findings suggest that the smaller GLP-1 may have a physiologically more important role as a modulator of insulin release.  相似文献   

4.
Selective GLP-1 secretagogues represent a novel potential therapy for type 2 diabetes mellitus. This study examined the GLP-1 secretory activity of the ethnomedicinal plant, Fagonia cretica, which is postulated to possess anti-diabetic activity. After extraction and fractionation extracts and purified compounds were tested for GLP-1 and GIP secretory activity in pGIP/neo STC-1 cells. Intracellular levels of incretin hormones and their gene expression were also determined. Crude F. cretica extracts stimulated both GLP-1 and GIP secretion, increased cellular hormone content, and upregulated gene expression of proglucagon, GIP and prohormone convertase. However, ethyl acetate partitioning significantly enriched GLP-1 secretory activity and this fraction underwent bioactivity-guided fractionation. Three isolated compounds were potent and selective GLP-1 secretagogues: quinovic acid (QA) and two QA derivatives, QA-3β-O-β-d-glycopyranoside and QA-3β-O-β-d-glucopyranosyl-(28  1)-β-d-glucopyranosyl ester. All QA compounds activated the TGR5 receptor and increased intracellular incretin levels and gene expression. QA derivatives were more potent GLP-1 secretagogues than QA. This is the first time that QA and its naturally-occurring derivatives have been shown to activate TGR5 and stimulate GLP-1 secretion. These data provide a plausible mechanism for the ethnomedicinal use of F. cretica and may assist in the ongoing development of selective GLP-1 agonists.  相似文献   

5.
It has been hypothesized that the potent insulinotropic action of the gut incretin hormone glucagon-like peptide-1 (GLP-1) is exerted not only through a direct action on the beta cells but may be partially dependent on sensory nerves. We therefore examined the influence of GLP-1 in mice rendered sensory denervated by neonatal administration of capsaicin performed at days 2 and 5 (50 mg/kg). Control mice were given vehicle. Results show that at 10-16 wk of age in control mice, intravenous GLP-1 at 0.1 or 10 nmol/kg augmented the insulin response to intravenous glucose (1 g/kg) in association with improved glucose elimination. In contrast, in capsaicin-pretreated mice, GLP-1 at 0.1 nmol/kg could not augment the insulin response to intravenous glucose and no effect on glucose elimination was observed. Nevertheless, at the high dose of 10 nmol/kg, GLP-1 augmented the insulin response to glucose in capsaicin-pretreated mice as efficiently as in control mice. The insulin response to GLP-1 from isolated islets was not affected by neonatal capsaicin, and, furthermore, the in vivo insulin response to glucose was augmented whereas that to arginine was not affected by capsaicin. It is concluded that GLP-1-induced insulin secretion at a low dose in mice is dependent on intact sensory nerves and therefore indirectly mediated and that this distinguishes GLP-1 from other examined insulin secretagogues.  相似文献   

6.
The gastrointestinal tract is increasingly viewed as critical in controlling glucose metabolism, because of its role in secreting multiple glucoregulatory hormones, such as glucagon like peptide-1 (GLP-1). Here we investigate the molecular pathways behind the GLP-1- and insulin-secreting capabilities of a novel GPR119 agonist, Oleoyl-lysophosphatidylinositol (Oleoyl-LPI). Oleoyl-LPI is the only LPI species able to potently stimulate the release of GLP-1 in vitro, from murine and human L-cells, and ex-vivo from murine colonic primary cell preparations. Here we show that Oleoyl-LPI mediates GLP-1 secretion through GPR119 as this activity is ablated in cells lacking GPR119 and in colonic primary cell preparation from GPR119?/? mice. Similarly, Oleoyl-LPI-mediated insulin secretion is impaired in islets isolated from GPR119?/? mice. On the other hand, GLP-1 secretion is not impaired in cells lacking GPR55 in vitro or in colonic primary cell preparation from GPR55?/? mice. We therefore conclude that GPR119 is the Oleoyl-LPI receptor, upstream of ERK1/2 and cAMP/PKA/CREB pathways, where primarily ERK1/2 is required for GLP-1 secretion, while CREB activation appears dispensable.  相似文献   

7.
Glucagon-like peptide-1 (GLP-1) is an important incretin produced in the L cells of the intestine. It is essential in the regulation of insulin secretion and glucose homeostasis. Systemic GLP-1 concentrations are typically low in rodents, so it can be difficult to assay physiological levels or detect changes in response to nutrients. We have established a method of assaying GLP-1 in response to nutrients using the intestinal lymph fistula model. Intraduodenal infusion of Intralipid (4.43 kcal/3 ml) induced a significant increase of lymphatic GLP-1 concentration compared with saline control at the peak of 30 min. (P < 0.001). Isocaloric and isovolumetric treatment with dextrin, a glucose polymer, also caused a significant fourfold increase in peak concentration at 60 min (P = 0.001). These findings indicate that intestinal lymph contains high concentrations of postprandial GLP-1. Second, they reveal that GLP-1 secretion into lymph occurs in response to both enteral carbohydrate and fat, but the response to dextrin occurs later than to Intralipid with peak times at 60 and 30 min, respectively. Third, the combination of Intralipid plus dextrin demonstrated an additive effect in the stimulation of GLP-1 with peak at 30 min. These results indicate that assessment of levels in lymph is a novel and powerful means of studying the secretion of GLP-1 and potentially other gastrointestinal hormones in vivo. Furthermore, the lymph fistula rat model provides insight into the gut hormone concentrations to which the neurons and cells in the lamina propria of the gut are likely exposed.  相似文献   

8.
Diabetes, a disease in which the body does not produce or use insulin properly, is a serious global health problem. Gut polypeptides secreted in response to food intake, such as glucagon-like peptide-1 (GLP-1), are potent incretin hormones that enhance the glucose-dependent secretion of insulin from pancreatic beta cells. Free fatty acids (FFAs) provide an important energy source and also act as signaling molecules in various cellular processes, including the secretion of gut incretin peptides. Here we show that a G-protein-coupled receptor, GPR120, which is abundantly expressed in intestine, functions as a receptor for unsaturated long-chain FFAs. Furthermore, we show that the stimulation of GPR120 by FFAs promotes the secretion of GLP-1 in vitro and in vivo, and increases circulating insulin. Because GLP-1 is the most potent insulinotropic incretin, our results indicate that GPR120-mediated GLP-1 secretion induced by dietary FFAs is important in the treatment of diabetes.  相似文献   

9.
Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes.  相似文献   

10.
Glucagon-like peptide (GLP)-1 and gastric inhibitory polypeptide (GIP, glucose-dependent insulinotropic polypeptide) are produced in enteroendocrine L-cells and K-cells, respectively. They are known as incretins because they potentiate postprandial insulin secretion. Although unresponsiveness of type 2 diabetes (T2D) patients to GIP has now been reconsidered, GLP-1 mimetics and inhibitors of the GLP-1 degradation enzyme dipeptidyl peptidase (DPP)-4 have now been launched as drugs against T2D. The major roles of GLP-1 in T2D are reduction of appetite, gastric motility, glucagon secretion, enhancement of insulin secretion and β-cell survival. For insulin secretion and peripheral insulin function, GLP-1 and its mimetics sensitise β-cells to glucose; accelerate blood glucose withdrawal, in-cell glucose utilisation and glycogen synthesis in insulin-sensitive tissues; and assist in the function and survival of neurons mainly using glucose as an energy source. Taken together, GLP-1 acts to potentiate glucose availability of various cells or tissues to assist with their essential functions and/or survival. Herein, we review the signalling pathways and clinical relevance of GLP-1 in enhancing cellular glucose availability. On the basis of our recent research results, we also describe a mechanism that regulates GLP-1 for glucokinase activity. Because diabetic tissues including β-cells resist glucose, GLP-1 may be useful for treating T2D.  相似文献   

11.
Bile acids or its derivatives may influence non-alcoholic fatty liver disease development through multiple mechanisms. Intestinal L-cells secrete glucagon-like peptide-1 (GLP-1) and can be activated by bile acids (BA) influencing insulin resistance and hepatic steatosis development and progression. The aim of the present study was to assess the effects of cholic acid (CA) or ursodeoxycholic acid (UDCA) administration on portal and systemic levels of GLP-1 in genetically obese mice with established hepatic steatosis. Eight-week-old ob/ob mice were fed CA or UDCA during 4 weeks. Systemic and portal GLP-1 levels were measured as well as glucose tolerance test, serum and biliary parameters, hepatic triglyceride content, liver histology, and hepatic gene expression of relevant genes related to bile secretion. Eight-week-old ob/ob mice exhibited marked obesity, hyperinsulinemia, and fasting hyperglycemia. Administration of both CA and UDCA was associated to decreased hepatic triglyceride content and complete reversion of histological steatosis. BA-fed animals did not exhibit significant differences in glucose tolerance. In addition, neither CA nor UDCA administration significantly influenced portal or systemic GLP-1 levels. CA and UDCA strongly ameliorated established fatty liver in ob/ob mice independently of the GLP-1 incretin pathway. Thus, the anti-steatotic action of these bile acids is likely related to direct hepatic effects.  相似文献   

12.
Structure, measurement, and secretion of human glucagon-like peptide-2   总被引:8,自引:0,他引:8  
By using radioimmunoassays toward the cDNA-predicted amino acid sequence of human glucagon-like peptide-2, a peptide was isolated from extracts of human ileum. By mass spectrometry and Edman sequencing, this peptide was identified as human proglucagon 126-158. High-performance liquid chromatography analyses indicated that a similar immunoreactive peptide (iGLP-2) was present in human plasma. Human plasma concentrations of iGLP-2 were elevated 3- to 4-fold at 1 to 2 h after ingestion of 800 to 1200 kcal meals.  相似文献   

13.
Little is known about the metabolism of the intestinotropic factor glucagon-like peptide-2 (GLP-2); except that it is a substrate for dipeptidyl peptidase IV (DPP-IV) and that it appears to be eliminated by the kidneys. We, therefore, investigated GLP-2 metabolism in six multicatheterized pigs receiving intravenous GLP-2 infusions (2 pmol/kg/min) before and after administration of valine-pyrrolidide (300 mumol/kg; a well characterized DPP-IV inhibitor). Plasma samples were analyzed by radioimmunoassays allowing determination of intact, biologically active GLP-2 and the DPP-IV metabolite GLP-2 (3-33). During infusion of GLP-2 alone, 30.9+/-1.7% of the infused peptide was degraded to GLP-2 (3-33). After valine-pyrrolidide, there was no significant formation of the metabolite. Significant extraction of intact GLP-2 was observed across the kidneys, the extremities (represented by a leg), and the splanchnic bed, resulting in a metabolic clearance rate (MCR) of 6.80+/-0.47 ml/kg/min and a plasma half-life of 6.8+/-0.8 min. Hepatic extraction was not detected. Valine-pyrrolidide addition did not affect extraction ratios significantly, but decreased (p=0.003) MCR to 4.18+/-0.27 ml/kg/min and increased (p=0.052) plasma half-life to 9.9+/-0.8 min. The metabolite was eliminated with a half-life of 22.1+/-2.6 min and a clearance of 2.07+/-0.11 ml/kg/min. In conclusion, intact GLP-2 is eliminated in the peripheral tissues, the splanchnic bed and the kidneys, but not in the liver, by mechanisms unrelated to DPP-IV. However, DPP-IV is involved in the overall GLP-2 metabolism and seems to be the sole enzyme responsible for N-terminal degradation of GLP-2.  相似文献   

14.
Bile acids play essential roles in the absorption of dietary lipids and in the regulation of bile acid biosynthesis. Recently, a G protein-coupled receptor, TGR5, was identified as a cell-surface bile acid receptor. In this study, we show that bile acids promote glucagon-like peptide-1 (GLP-1) secretion through TGR5 in a murine enteroendocrine cell line STC-1. In STC-1 cells, bile acids promoted GLP-1 secretion in a dose-dependent manner. As STC-1 cells express TGR5 mRNA, we examined whether bile acids induce GLP-1 secretion through TGR5. RNA interference experiments showed that reduced expression of TGR5 resulted in reduced secretion of GLP-1. Furthermore, transient transfection of STC-1 cells with an expression plasmid containing TGR5 significantly enhanced GLP-1 secretion, indicating that bile acids promote GLP-1 secretion through TGR5 in STC-1 cells. Bile acids induced rapid and dose-dependent elevation of intracellular cAMP levels in STC-1 cells. An adenylate cyclase inhibitor, MDL12330A, significantly suppressed bile acid-promoted GLP-1 secretion, suggesting that bile acids induce GLP-1 secretion via intracellular cAMP production in STC-1 cells.  相似文献   

15.
The effects of glucagon and glucagon-like peptide-1 (GLP-1) on the secretory activity of rat adrenocortical cells have been investigated in vitro. Neither hormones affected basal or agonist-stimulated aldosterone secretion of dispersed rat zona glomerulosa cells or basal corticosterone production of zona fasciculata-reticularis (inner) cells. In contrast, glucagon and GLP-1 partially (40%) inhibited ACTH (10(-9) M)-enhanced corticosterone secretion of inner cells, maximal effective concentration being 10(-7) M. The effect of 10(-7) M glucagon or GPL-1 was suppressed by 10(-6) M Des-His1-[Glu9]-glucagon amide (glucagon-A) and exendin-4(3-39) (GPL-1-A), which are selective antagonists of glucagon and GLP-1 receptors, respectively. Glucagon and GLP-1 (10(-7) M) decreased by about 45-50% cyclic-AMP production by dispersed inner adrenocortical cells in response to ACTH (10(-9) M), but not to the adenylate cyclase activator forskolin (10(-5) M). Again this effect was blocked by 10(-6) M glucagon-A or GLP-1-A. The exposure of dispersed inner cells to 10(-7) M glucagon plus GLP-1 completely suppressed corticosterone response to ACTH (10(-9) M). However, they only partially inhibited (by about 65-70%) both corticosterone response to forskolin (10(-5) M) or dibutyryl-cyclic-AMP (10(-5) M) and ACTH (10(-9) M)-enhanced cyclic-AMP production. Quantitative HPLC showed that 10(-7) M glucagon or GLP-1 did not affect ACTH-stimulated pregnenolone production, evoked a slight rise in progesterone and 11-deoxycorticosterone release, and markedly reduced (by about 55%) corticosterone secretion of dispersed inner adrenocortical cells. In light of these findings the following conclusion are drawn: (i) glucagon and GLP-1, via the activation of specific receptors, inhibit glucocorticoid response of rat adrenal cortex to ACTH; and (ii) the mechanism underlying the effect of glucagon and GLP-1 is probably two-fold, and involves both the inhibition of the ACTH-induced activation of adenylate cyclase and the impairment of the late steps of glucocorticoid synthesis.  相似文献   

16.
Suspecting that paracrine inhibition might influence neuronal regulation of the endocrine L cells, we studied the role of somatostatin (SS) in the regulation of the secretion of the proglucagon-derived hormones glucagon-like peptide-1 and -2 (GLP-1 and GLP-2). This was examined using the isolated perfused porcine ileum stimulated with acetylcholine (ACh, 10(-6) M), neuromedin C (NC, 10(-8) M), and electrical nerve stimulation (NS) with or without alpha-adrenergic blockade (phentolamine 10(-5) M), and perfusion with a high-affinity monoclonal antibody against SS. ACh and NC significantly increased GLP secretion, whereas NS had little effect. SS immunoneutralization increased GLP secretion eight- to ninefold but had little influence on the GLP responses to ACh, NC, and NS. Basal SS secretion (mainly SS28) was unaffected by NS alone. Phentolamine + NS and NC abstract strongly stimulated release mainly of SS14, whereas ACh had little effect. Infused intravascularly, SS14 weakly and SS28 strongly inhibited GLP secretion. We conclude that GLP secretion is tonically inhibited by a local release of SS28 from epithelial paracrine cells, whereas SS14, supposedly derived from enteric neurons, only weakly influences GLP secretion.  相似文献   

17.
We examined whether free fatty acids (FFAs) promote glucagon-like peptide-1 (GLP-1) secretion when administered into the intestinal tract. We found that an unsaturated long-chain FFA, alpha-linolenic acid (alpha-LA), resulted in increased plasma GLP-1 and insulin levels when administered into the colon. Such stimulatory effects were not apparent with either vehicle or a saturated middle-chain FFA, octanoic acid (OA). Concomitant with GLP-1 secretion, the administration of alpha-LA, but not vehicle or OA, also resulted in a significant increase in the population of pERK positive cells within the GLP-1 positive cells of the colonic mucosa. Moreover, colonic administration of alpha-LA into normal C3H/He mice caused a reduction in plasma glucose levels, as well as in type 2 diabetic model NSY mice. Our results indicate that the in vivo colonic administration of alpha-LA promotes secretion of incretin GLP-1 by activating the ERK pathway in L-cells and thereby enhances the secretion of insulin.  相似文献   

18.
19.
Glucagon-like peptide-1 (GLP-1), derived from proglucagon, is thought to act as a negative regulator of energy homeostasis in mammals, since intracerebroventricular (ICV) injection of GLP-1 inhibits feeding behavior and enhances energy expenditure. The anorexigenic effect of GLP-1 is also observed in chicks, but whether brain GLP-1 enhances energy expenditure has not been investigated. The aim of the present study was to clarify the effect of ICV injection of GLP-1 on energy expenditure as well as metabolic changes in chicks. The injection of GLP-1 did not affect energy expenditure calculated from oxygen consumption and carbon dioxide production. On the other hand, the injection of GLP-1 significantly decreased respiratory quotient, suggesting that brain GLP-1 shifted the use of energy sources from carbohydrates to lipids. In support of this, ICV injection of GLP-1 increased plasma non-esterified fatty acid concentration while plasma glucose concentration was decreased. In conclusion, GLP-1 appears to act in the brain as a metabolic modulator rather than as a regulator of total energy expenditure in chicks.  相似文献   

20.
There is current interest in the use of inhibitors of dipeptidyl peptidase IV (DP IV) as therapeutic agents to normalize glycemic excursions in type 2 diabetic patients. Data indicating that metformin increases the circulating amount of active glucagon-like peptide-1 (GLP-1) in obese nondiabetic subjects have recently been presented, and it was proposed that metformin might act as a DP IV inhibitor. This possibility has been investigated directly using a number of in vitro methods. Studies were performed on DP IV enzyme from three sources: 20% human serum, purified porcine kidney DP IV, and recombinant human DP IV. Inhibition of DP IV hydrolysis of the substrate Gly-Pro-pNA by metformin was examined spectrophotometrically. Effects of metformin on GLP-1([7-36NH2]) degradation were assessed by mass spectrometry. In addition, surface plasmon resonance was used to establish whether or not metformin had any effect on GLP-1([7-36NH2]) or GLP-1([9-36NH2]) interaction with immobilized porcine or human DP IV. Metformin failed to alter the kinetics of Gly-Pro-pNA hydrolysis or GLP-1 degradation tested according to established methods. Surface plasmon resonance recordings indicated that both GLP-1([7-36NH2]) and GLP-1([9-36NH2]) show micromolar affinity (K(D)) for DP IV, but neither interaction was influenced by metformin. The results conclusively indicate that metformin does not act directly on DP IV, therefore alternative explanations for the purported effect of metformin on circulating active GLP-1 concentrations must be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号