首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Prior work in animals and humans suggests that muscle mechanoreceptor control of sympathetic activation [muscle sympathetic nerve activity (MSNA)] during exercise in heart failure (HF) patients is heightened compared with that of healthy humans and that muscle mechanoreceptors are sensitized by metabolic by-products. We sought to determine whether cyclooxygenase products and/or endogenous adenosine, two metabolites of ischemic exercise, sensitize muscle mechanoreceptors during rhythmic handgrip (RHG) exercise in HF patients. Indomethacin, which inhibits the production of prostaglandins, and saline control were infused in 12 HF patients. In a different protocol, aminophylline, which inhibits adenosine receptors, and saline control were infused in 12 different HF patients. MSNA was recorded (microneurography). During exercise following saline, MSNA increased in the first minute of exercise, consistent with baseline heightened mechanoreceptor sensitivity. MSNA continued to increase during 3 min of RHG, indicative that muscle mechanoreceptors are sensitized by ischemia metabolites. Indomethacin, but not aminophylline, markedly attenuated the increase in MSNA during the entire 3 min of low-level rhythmic exercise, consistent with the sensitization of muscle mechanoreceptors by cyclooxygenase products. Interestingly, even the early increase in MSNA was abolished by indomethacin infusion, indicative of the very early generation of cyclooxygenase products after the onset of exercise in HF patients. In conclusion, muscle mechanoreceptors mediate the increase in MSNA during low-level RHG exercise in HF. Cyclooxygenase products, but not endogenous adenosine, play a central role in muscle mechanoreceptor sensitization. Finally, muscle mechanoreceptors in patients with HF have heightened basal sensitivity to mechanical stimuli, which also appears to be mediated by the early generation of cyclooxygenase products, resulting in exaggerated early increases in MSNA.  相似文献   

2.
Evidence in healthy animals and humans is accumulating that the muscle mechanoreceptors play an important role in mediating sympathetic activation during exercise, especially rhythmic exercise. Furthermore, muscle mechanoreceptors appear to be sensitized acutely during exercise by metabolic by-products, although the identity of these by-products remains unknown. The purpose of this study was to determine whether the metabolic by-products 1) prostaglandins and/or 2) adenosine sensitize muscle mechanoreceptor control of muscle sympathetic nerve activity (MSNA) in normal humans during rhythmic exercise. MSNA was recorded using microneurography. Muscle mechanoreceptors were activated by low-level rhythmic forearm exercise for 3 min. In 16 healthy humans, intra-arterial indomethacin was infused into the exercising arm to inhibit synthesis of cyclooxygenase products. In 18 healthy humans, intra-arterial aminophylline was infused into the exercising arm to block adenosine receptors. During saline control, MSNA increased significantly during exercise. Inhibition of cyclooxygenase during exercise dramatically and virtually completely eliminated the reflex sympathetic activation. Inhibition of adenosine receptors with aminophylline had no effect on the sympathetic activation during muscle mechanoreceptor stimulation. In conclusion, muscle mechanoreceptors are sensitized by cyclooxygenase products, but not by adenosine, during 3 min of low-level rhythmic handgrip exercise in healthy humans. Further studies of other metabolic by-products and of patients with enhanced muscle mechanoreceptor sensitivity, such as patients with heart failure, are warranted.  相似文献   

3.
Previous work has suggested that end-stage renal disease (ESRD) patients may have an exaggerated sympathetic nervous system (SNS) response during exercise. We hypothesized that ESRD patients have an exaggerated blood pressure (BP) response during moderate static handgrip exercise (SHG 30%) and that the exaggerated BP response is mediated by SNS overactivation, characterized by augmented mechanoreceptor activation and blunted metaboreceptor control, as has been described in other chronic diseases. We measured hemodynamics and muscle sympathetic nerve activity (MSNA) in 13 ESRD and 16 controls during: 1) passive hand movement (PHM; mechanoreceptor isolation); 2) low-level rhythmic handgrip exercise (RHG 20%; central command and mechanoreceptor activation); 3) SHG 30%, followed by posthandgrip circulatory arrest (PHGCA; metaboreceptor activation); and 4) cold pressor test (CPT; nonexercise stimulus). ESRD patients had exaggerated increases in systolic BP during SHG 30%; however, the absolute and relative increase in MSNA was not augmented, excluding SNS overactivation as the cause of the exaggerated BP response. Increase in MSNA was not exaggerated during RHG 20% and PHM, demonstrating that mechanoreceptor activation is not heightened in ESRD. During PHGCA, MSNA remained elevated in controls but decreased rapidly to baseline levels in ESRD, indicative of markedly blunted metaboreceptor control of MSNA. MSNA response to CPT was virtually identical in ESRD and controls, excluding a generalized sympathetic hyporeactivity in ESRD. In conclusion, ESRD patients have an exaggerated increase in SBP during SHG 30% that is not mediated by overactivation of the SNS directed to muscle. SBP responses were also exaggerated during mechanoreceptor activation and metaboreceptor activation, but without concomitant augmentation in MSNA responses. Metaboreceptor control of MSNA was blunted in ESRD, but the overall ability to mount a SNS response was not impaired. Other mechanisms besides SNS overactivation, such as impaired vasodilatation, should be explored to explain the exaggerated exercise pressor reflex in ESRD.  相似文献   

4.
The purpose of this study was to determine if abnormalities of sympathetic neural and vascular control are present in mild and/or severe heart failure (HF) and to determine the underlying afferent mechanisms. Patients with severe HF, mild HF, and age-matched controls were studied. Muscle sympathetic nerve activity (MSNA) and forearm vascular resistance (FVR) in the nonexercising arm were measured during mild and moderate static handgrip. MSNA during moderate handgrip was higher at baseline and throughout exercise in severe HF vs. mild HF (peak MSNA 67 +/- 3 vs. 54 +/- 3 bursts/min, P < 0.0001) and higher in mild HF vs. controls (33 +/- 3 bursts/min, P < 0.0001), but the change in MSNA was not different between the groups. The change in FVR was not significantly different between the three groups during static exercise. During isolation of muscle metaboreceptors, MSNA and blood pressure remained elevated in normal controls and mild HF but not in severe HF. During mild handgrip, the increase in MSNA was exaggerated in severe HF vs. controls and mild HF, in whom MSNA did not increase. In summary, the increase in MSNA during static exercise in severe HF appears to be attributable to exaggerated central command or muscle mechanoreceptor control, not muscle metaboreceptor control.  相似文献   

5.
Passive muscle stretch performed during a period of post-exercise muscle ischemia (PEMI) increases muscle sympathetic nerve activity (MSNA), and this suggests that the muscle metabolites may sensitize mechanoreceptors in healthy humans. However, the responsible substance(s) has not been studied thoroughly in humans. Human and animal studies suggest that cyclooxygenase products sensitize muscle mechanoreceptors. Thus we hypothesized that local cyclooxygenase inhibition in exercising muscles could attenuate MSNA responses to passive muscle stretch during PEMI. Blood pressure (Finapres), heart rate, and MSNA (microneurography) responses to passive muscle stretch were assessed in 13 young healthy subjects during PEMI before and after cyclooxygenase inhibition, which was accomplished by a local infusion of 6 mg ketorolac tromethamine in saline via Bier block. In the second experiment, the same amount of saline was infused via the Bier block. Ketorolac Bier block decreased prostaglandin synthesis to approximately 34% of the baseline. Before ketorolac Bier block, passive muscle stretch evoked significant increases in MSNA (P < 0.005) and mean arterial blood pressure (P < 0.02). After ketorolac Bier block, passive muscle stretch did not evoke significant responses in MSNA (P = 0.11) or mean arterial blood pressure (P = 0.83). Saline Bier block had no effect on the MSNA or blood pressure response to ischemic stretch. These observations indicate that cyclooxygenase inhibition attenuates MSNA responses seen during PEMI and suggest that cyclooxygenase products sensitize the muscle mechanoreceptors.  相似文献   

6.
Based on animal studies, it has been speculated that muscle metabolites sensitize muscle mechanoreceptors and increase mechanoreceptor-mediated muscle sympathetic nerve activity (MSNA). However, this hypothesis has not been directly tested in humans. In this study, we tested the hypothesis that in healthy individuals passive stretch of forearm muscles would evoke significant increases in mean MSNA when muscle metabolite concentrations were increased. In 12 young healthy subjects, MSNA, ECG, and blood pressure were recorded. Subjects performed static fatiguing isometric handgrip at 30% maximum voluntary contraction followed by 4 min of postexercise muscle ischemia (PEMI). After 2 min of PEMI, wrist extension (i.e., wrist dorsiflexion) was performed. The static stretch protocol was also performed during 1) a freely perfused condition, 2) ischemia alone, and 3) PEMI after nonfatiguing exercise. Finally, repetitive short bouts of wrist extension were also performed under freely perfused conditions. This last paradigm evoked transient increases in MSNA but had no significant effect on mean MSNA over the whole protocol. During the PEMI after fatiguing handgrip, static stretch induced significant increases in MSNA (552 +/- 74 to 673 +/- 90 U/min, P < 0.01) and mean blood pressure (102 +/- 2 to 106 +/- 2 mmHg, P < 0.001). Static stretch performed under the other three conditions had no significant effects on mean MSNA and blood pressure. The present data verified that in healthy humans mechanoreceptor(s) stimulation evokes significant increases in mean MSNA and blood pressure when muscle metabolite concentrations are increased above a certain threshold.  相似文献   

7.
In heart failure (HF) patients, reflex renal vasoconstriction during exercise is exaggerated. We hypothesized that muscle mechanoreceptor control of renal vasoconstriction is exaggerated in HF. Nineteen HF patients and nineteen controls were enrolled in two exercise protocols: 1) low-level rhythmic handgrip (mechanoreceptors and central command) and 2) involuntary biceps contractions (mechanoreceptors). Renal cortical blood flow was measured by positron emission tomography, and renal cortical vascular resistance (RCVR) was calculated. During rhythmic handgrip, peak RCVR was greater in HF patients compared with controls (37 +/- 1 vs. 27 +/- 1 units; P < 0.01). Change in (Delta) RCVR tended to be greater as well but did not reach statistical significance (10 +/- 1 vs. 7 +/- 0.9 units; P = 0.13). RCVR was returned to baseline at 2-3 min postexercise in controls but remained significantly elevated in HF patients. During involuntary muscle contractions, peak RCVR was greater in HF patients compared with controls (36 +/- 0.7 vs. 24 +/- 0.5 units; P < 0.0001). The Delta RCVR was also significantly greater in HF patients compared with controls (6 +/- 1 vs. 4 +/- 0.6 units; P = 0.05). The data suggest that reflex renal vasoconstriction is exaggerated in both magnitude and duration during dynamic exercise in HF patients. Given that the exaggerated response was elicited in both the presence and absence of central command, it is clear that intact muscle mechanoreceptor sensitivity contributes to this augmented reflex renal vasoconstriction.  相似文献   

8.
Adenosine (Ado) increases muscle sympathetic nerve activity (MSNA) reflexively. Plasma Ado and MSNA are elevated in heart failure (HF). We tested the hypothesis that Ado receptor blockade by caffeine would attenuate reflex MSNA responses to handgrip (HG) and posthandgrip ischemia (PHGI) and that this action would be more prominent in HF subjects than in normal subjects. We studied 12 HF subjects and 10 age-matched normal subjects after either saline or caffeine (4 mg/kg) infusion during isometric [30% of maximal voluntary contraction (MVC)] and isotonic (10%, 30%, and 50%) HG exercise, followed by 2 min of PHGI. In normal subjects, caffeine did not block increases in MSNA during PHGI after 50% HG. In HF subjects, caffeine abolished MSNA responses to PHGI after both isometric and 50% isotonic exercise (P < 0.05) but MSNA responses during HG were unaffected. These findings are consistent with muscle metaboreflex stimulation by endogenous Ado during ischemic or intense nonischemic HG in HF and suggest an important sympathoexcitatory role for endogenous Ado during exercise in this condition.  相似文献   

9.
Peak oxygen uptake (VO(2 peak)) in patients with heart failure (HF) is inversely related to muscle sympathetic nerve activity (MSNA) at rest. We hypothesized that the MSNA response to handgrip exercise is augmented in HF patients and is greatest in those with low VO(2 peak). We studied 14 HF patients and 10 age-matched normal subjects during isometric [30% of maximal voluntary contraction (MVC)] and isotonic (10%, 30%, and 50% MVC) handgrip exercise that was followed by 2 min of posthandgrip ischemia (PHGI). MSNA was significantly increased during exercise in HF but not normal subjects. Both MSNA and HF levels remained significantly elevated during PHGI after 30% isometric and 50% isotonic handgrip in HF but not normal subjects. HF patients with lower VO(2 peak) (<56% predicted; n = 8) had significantly higher MSNA during rest and exercise than patients with VO(2 peak) > 56% predicted (n = 6) and normal subjects. The muscle metaboreflex contributes to the greater reflex increase in MSNA during ischemic or intense nonischemic exercise in HF. This occurs at a lower threshold than normal and is a function of VO(2 peak).  相似文献   

10.
In congestive heart failure (CHF), themechanisms of exercise-induced sympathoexcitation are poorly defined.We compared the responses of sympathetic nerve activity directed tomuscle (MSNA) and to skin (SSNA, peroneal microneurography) duringrhythmic handgrip (RHG) at 25% of maximal voluntary contraction andduring posthandgrip circulatory arrest (PHG-CA) in CHF patients with those of an age-matched control group. During RHG, the CHF patients fatigued prematurely. At end exercise, the increase in MSNA was similarin both groups (CHF patients, n = 12;controls, n = 10). However, duringPHG-CA, in the controls MSNA returned to baseline, whereas it remainedelevated in CHF patients (P < 0.05).Similarly, at end exercise, the increase in SSNA was comparable in bothgroups (CHF patients, n = 11;controls, n = 12), whereas SSNAremained elevated during PHG-CA in CHF patients but not in the controls (P < 0.05). In a separate controlgroup (n = 6), even high-intensity static handgrip was not accompanied by sustained elevation of SSNAduring PHG-CA. 31P-nuclear magneticresonance spectroscopy during RHG demonstrated significant muscleacidosis and accumulation of inorganic phosphate in CHF patients(n = 7) but not in controls(n = 9). We conclude that in CHFpatients rhythmic forearm exercise leads to premature fatigue andaccumulation of muscle metabolites. The prominent PHG-CA response ofMSNA and SSNA in CHF patients suggests activation of the musclemetaboreflex. Because, in contrast to controls, in CHF patients bothMSNA and SSNA appear to be under muscle metaboreflex control, themechanisms and distribution of sympathetic outflow during exerciseappear to be different from normal.

  相似文献   

11.
This study attempts to clarify whether intensity of exercise influences functional sympatholysis during mild rhythmic handgrip exercise (RHG). We measured muscle oxygenation in both exercising and non-exercising muscle in the same arm in 11 subjects using near infrared spectroscopy (NIRS), heart rate, and blood pressure. We used the total labile signal to assess the relative muscle oxygenation by occlusion for 6 min. Subjects performed RHG (20 times/min) for 6 min at 10%, 20%, and 30% of maximal voluntary contraction (MVC) at random. We used a non-hypotensive lower body negative pressure (LBNP) of 220 mmHg for 2 min to elicit reproducible enhancement in muscle sympathetic nerve activity (MSNA) at rest and during RHG. LBNP caused decreases of 16.4% and 17.7% of the level of muscle oxygenation at rest (pre) in exercising (forearm) and non-exercising (upper arm) muscle respectively. Muscle oxygenation in non-exercising muscle with the application of LBNP during RHG did not change significantly at each intensity. In contrast, the decrease in muscle oxygenation in exercising muscle attenuated progressively as exercise intensity increased (10% MVC 8.8+/-2.8%, 20% MVC 7.1+/-2.0%, 30% MVC 4.6+/-3.0%), when LBNP was applied during RHG. The attenuation of the decrease in muscle oxygenation due to LBNP during RHG at 10%, 20%, and 30% was significantly different from that at rest (p<0.01). These findings indicate that functional sympatholysis during mild RHG might be attributed to exercise intensity.  相似文献   

12.
Chemoreflex control of sympathetic nerve activity is exaggerated in heart failure (HF) patients. However, the vascular implications of the augmented sympathetic activity during chemoreceptor activation in patients with HF are unknown. We tested the hypothesis that the muscle blood flow responses during peripheral and central chemoreflex stimulation would be blunted in patients with HF. Sixteen patients with HF (49 +/- 3 years old, Functional Class II-III, New York Heart Association) and 11 age-paired normal controls were studied. The peripheral chemoreflex control was evaluated by inhalation of 10% O(2) and 90% N(2) for 3 min. The central chemoreflex control was evaluated by inhalation of 7% CO(2) and 93% O(2) for 3 min. Muscle sympathetic nerve activity (MSNA) was directly evaluated by microneurography. Forearm blood flow was evaluated by venous occlusion plethysmography. Baseline MSNA were significantly greater in HF patients (33 +/- 3 vs. 20 +/- 2 bursts/min, P = 0.001). Forearm vascular conductance (FVC) was not different between the groups. During hypoxia, the increase in MSNA was significantly greater in HF patients than in normal controls (9.0 +/- 1.6 vs. 0.8 +/- 2.0 bursts/min, P = 0.001). The increase in FVC was significantly lower in HF patients (0.00 +/- 0.10 vs. 0.76 +/- 0.25 units, P = 0.001). During hypercapnia, MSNA responses were significantly greater in HF patients than in normal controls (13.9 +/- 3.2 vs. 2.1 +/- 1.9 bursts/min, P = 0.001). FVC responses were significantly lower in HF patients (-0.29 +/- 0.10 vs. 0.37 +/- 0.18 units, P = 0.001). In conclusion, muscle vasodilatation during peripheral and central chemoreceptor stimulation is blunted in HF patients. This vascular response seems to be explained, at least in part, by the exaggerated MSNA responses during hypoxia and hypercapnia.  相似文献   

13.
Increases in the concentration of interstitial potassium concentration during exercise may play a role in the modulation of the cardiovascular response to exercise. However, it is not known if changes in potassium correlate with indexes of muscle reflex engagement. Eight healthy subjects performed dynamic [rhythmic handgrip (RHG)] and static handgrip (SHG) exercise at 40% of maximal voluntary contraction. Forearm circulatory arrest was performed to assess the metaboreceptor component of the exercise pressor reflex. Mean arterial pressure (MAP) and muscle sympathetic nerve activity (MSNA) were measured during each exercise paradigm. Venous plasma potassium concentrations ([K(+)](V)) were measured and used as a surrogate marker for interstitial potassium. [K(+)](V) were measured at baseline and at 1-min intervals during dynamic handgrip. During SHG, [K(+)](V) were measured at baseline, 30 and 90 s of exercise, and twice during forearm circulatory arrest. Mean [K(+)](V) was 3.6 mmol/l at rest before both paradigms. During RHG, [K(+)](V) rose by approximately 1.0 mmol/l by min 2 and remained constant throughout the rest of handgrip. During SHG, [K(+)](V) rose significantly at 30 s and rose an additional approximately 1.0 mmol/l by peak exercise. MAP and MSNA rose during both exercise paradigms. During posthandgrip circulatory arrest (PHG-CA), MSNA and blood pressure remained above baseline. [K(+)](V) and MSNA did not correlate during either exercise paradigm. Moreover, during PHG-CA, there was clear dissociation of MSNA from [K(+)](V). These data suggest that potassium does not play a direct role in the maintenance of the exercise pressor reflex.  相似文献   

14.
The purpose of this study was to test the hypothesis that efferent sympathetic neural discharge is coupled with the development of muscle fatigue during voluntary exercise in humans. In 12 healthy subjects (aged 20-34 yr) we measured heart rate (HR), arterial blood pressure (AP), and noncontracting, skeletal muscle sympathetic nerve activity (MSNA) in the leg (peroneal nerve) before (control) and during each of three trials of submaximal (30% of maximum) isometric handgrip exercise performed to exhaustion. In six of the subjects of eletromyographic (EMG) activity of the exercising forearm was also measured. HR and AP increased significantly (P less than 0.05) in the 1st min of exercise in all trials. In contrast, neither MSNA nor EMG activity increased significantly above control during the 1st min of exercise, but both parameters subsequently increased in a progressive and parallel manner (P less than 0.05). The overall correlation coefficient between MSNA and EMG activity (144 observations) was 0.85 (P less than 0.001). With successive trials the magnitudes of the increases in HR, AP, MSNA, and EMG activity were greater at any absolute point in time during exercise. These results indicate that sympathetic activation to noncontracting skeletal muscle is directly related to the development of muscle fatigue (as assessed by the change in EMG) during prolonged isometric exercise in humans. Furthermore, our findings demonstrate that previous fatiguing contractions alter the time course of the sympathetic neural adjustments to exercise.  相似文献   

15.
Previous reports suggest that inflammatory bowel diseases may be accompanied by abnormalities in the neural autonomic profile. We tested the hypotheses that 1) an exaggerated sympathetic activity characterizes active ulcerative colitis (UC) and 2) a reduction of sympathetic activity by clonidine would be associated with clinical changes of UC. In 23 patients with UC and 20 controls, muscle sympathetic nerve activity (MSNA), ECG, blood pressure, and respiration were continuously recorded, and plasma catecholamine was evaluated both at rest and during a 75 degrees head-up tilt. Autonomic profile was assessed by MSNA, norepinephrine, epinephrine, spectral markers of low-frequency (LF) cardiac sympathetic (LF(RR); normalized units) and high-frequency (HF) parasympathetic (HF(RR); normalized units) modulation and sympathetic vasomotor control (LF systolic arterial pressure; LF(SAP)), obtained by spectrum analysis of the R-R interval and systolic pressure variability. Among UC patients, 16 agreed to be randomly assigned to 8-wk transdermal clonidine (15 mg/wk, 9 subjects), or placebo (7 patients). An autonomic profile, Disease Activity Index (DAI), and endoscopic pattern were compared before and after clonidine/placebo. At rest, MSNA, heart rate (HR), LF(RR), LF/HF, and LF(SAP) were higher and HF(RR) was lower in patients than in controls. Tilt decreased HF(RR) and increased MSNA and LF(RR) less in patients than in controls. Clonidine decreased HR, MSNA, epinephrine, LF(RR), and increased HF(RR), whereas placebo had no effects. Changes of the autonomic profile after clonidine were associated with reduction of DAI score. An overall increase of sympathetic activity characterized active UC. Normalization of the autonomic profile by clonidine was accompanied by an improvement of the disease.  相似文献   

16.
Recording of neural firing from single-unit muscle sympathetic nerve activity (MSNA) is a new strategy offering information about the frequency of pure sympathetic firing. However, it is uncertain whether and when single-unit MSNA would be more useful than multiunit MSNA for analysis of various physiological stresses in humans. In 15 healthy subjects, we measured single-unit and multiunit MSNA before and during handgrip exercise at 30% of maximum voluntary contraction for 3 min and during the Valsalva maneuver at 40 mmHg expiratory pressure for 15 s. Shapes of individual single-unit MSNA were proved to be consistent and suitable for further evaluation. Single-unit and multiunit MSNA exhibited similar responses during handgrip exercise. However, acceleration of neural firing determined from single-unit MSNA became steeper than multiunit MSNA during the Valsalva maneuver. During the Valsalva maneuver, unlike handgrip exercise, the distribution of multiunit burst between 0, 1, 2, 3, and 4 spikes was significantly shifted toward multiple spikes within a given burst (P < 0.05). These results indicated that evaluation of single-unit MSNA could provide more detailed and accurate information concerning the role and responses of neuronal discharges induced by various physiological stresses in humans, especially amid intense sympathetic activity.  相似文献   

17.
Peripheral chemoreflex inhibition with hyperoxia decreases sympathetic nerve traffic to muscle circulation [muscle sympathetic nerve activity (MSNA)]. Hyperoxia also decreases lactate production during exercise. However, hyperoxia markedly increases the activation of sensory endings in skeletal muscle in animal studies. We tested the hypothesis that hyperoxia increases the MSNA and mean blood pressure (MBP) responses to isometric exercise. The effects of breathing 21% and 100% oxygen at rest and during isometric handgrip at 30% of maximal voluntary contraction on MSNA, heart rate (HR), MBP, blood lactate (BL), and arterial O2 saturation (SaO2) were determined in 12 healthy men. The isometric handgrips were followed by 3 min of postexercise circulatory arrest (PE-CA) to allow metaboreflex activation in the absence of other reflex mechanisms. Hyperoxia lowered resting MSNA, HR, MBP, and BL but increased Sa(O2) compared with normoxia (all P < 0.05). MSNA and MBP increased more when exercise was performed in hyperoxia than in normoxia (MSNA: hyperoxic exercise, 255 +/- 100% vs. normoxic exercise, 211 +/- 80%, P = 0.04; and MBP: hyperoxic exercise, 33 +/- 9 mmHg vs. normoxic exercise, 26 +/- 10 mmHg, P = 0.03). During PE-CA, MSNA and MBP remained elevated (both P < 0.05) and to a larger extent during hyperoxia than normoxia (P < 0.05). Hyperoxia enhances the sympathetic and blood pressure (BP) reactivity to metaboreflex activation. This is due to an increase in metaboreflex sensitivity by hyperoxia that overrules the sympathoinhibitory and BP lowering effects of chemoreflex inhibition. This occurs despite a reduced lactic acid production.  相似文献   

18.
Previous studies suggest that prostaglandins may contribute to exercise-induced increases in muscle sympathetic nerve activity (MSNA). To test this hypothesis, MSNA was measured at rest and during exercise before and after oral administration of ketoprofen, a cyclooxygenase inhibitor, or placebo. Twenty-one subjects completed two bouts of graded dynamic and isometric handgrip to fatigue. Each exercise bout was followed by 2 min of postexercise muscle ischemia. The second exercise bouts were performed after 60 min of rest in which 11 subjects were given ketoprofen (300 mg) and 10 subjects received a placebo. Ketoprofen significantly lowered plasma thromboxane B(2) in the drug group (from 36 +/- 6 to 22 +/- 3 pg/ml, P < 0.04), whereas thromboxane B(2) in the placebo group increased from 40 +/- 5 to 61 +/- 9 pg/ml from trial 1 to trial 2 (P < 0.008). Ketoprofen and placebo did not change sympathetic and cardiovascular responses to dynamic handgrip, isometric handgrip, and postexercise muscle ischemia. There was no relationship between thromboxane B(2) concentrations and MSNA or arterial pressure responses during both exercise modes. The data indicate that physiological increases or decreases in prostaglandins do not alter exercise-induced increases in MSNA and arterial pressure in humans. These findings suggest that contraction-induced metabolites other than prostaglandins mediate MSNA responses to exercise in humans.  相似文献   

19.
The primary purpose of this study was to determine whether the sympathetic neural activation induced by isometric exercise is influenced by the size of the contracting muscle mass. To address this, in nine healthy subjects (aged 19-27 yr) we measured heart rate, systolic arterial blood pressure, and muscle sympathetic nerve activity in the leg (MSNA; peroneal nerve) before (control) and during 2.5 min of isometric handgrip exercise (30% of maximal voluntary force). Exercise was performed with the right and left arms separately and with both arms simultaneously (random order). During exercise, heart rate, systolic pressure, and MSNA increased above control under all conditions (P less than 0.05). For each variable, the magnitudes of the increases from control to the end of exercise were significantly greater when exercise was performed with two arms compared with either arm alone (P less than 0.05). In general, the increases in heart rate, systolic pressure, and MSNA elicited during two-arm exercise were significantly less than the simple sums of the responses evoked during exercise of each arm separately. These findings indicate that the magnitude of the sympathetic neural activation evoked during isometric exercise in humans is determined in part by the size of the active muscle mass. In addition, our results suggest that the sympathetic cardiovascular adjustments elicited during exercise of separate limbs are not simply additive but instead exhibit an inhibitory interaction (i.e., neural occlusion).  相似文献   

20.
There are conflicting reports for the role of endogenous opioids on sympathetic and cardiovascular responses to exercise in humans. A number of studies have utilized naloxone (an opioid-receptor antagonist) to investigate the effect of opioids during exercise. In the present study, we examined the effect of morphine (an opioid-receptor agonist) on sympathetic and cardiovascular responses at rest and during isometric handgrip (IHG). Eleven subjects performed 2 min of IHG (30% maximum) followed by 2 min of postexercise muscle ischemia (PEMI) before and after systemic infusion of morphine (0.075 mg/kg loading dose + 1 mg/h maintenance) or placebo (saline) in double-blinded experiments on separate days. Morphine increased resting muscle sympathetic nerve activity (MSNA; 17 +/- 2 to 22 +/- 2 bursts/min; P < 0.01) and increased mean arterial pressure (MAP; 87 +/- 2 to 91 +/- 2 mmHg; P < 0.02), but it decreased heart rate (HR; 61 +/- 4 to 59 +/- 3; P < 0.01). However, IHG elicited similar increases for MSNA, MAP, and HR between the control and morphine trial (drug x exercise interaction = not significant). Moreover, responses to PEMI were not different. Placebo had no effect on resting, IHG, and PEMI responses. We conclude that morphine modulates cardiovascular and sympathetic responses at rest but not during isometric exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号