首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The barostat is considered the gold standard for evaluation of proximal gastric motility especially for the accommodation response to a meal. The procedure is invasive because it involves the introduction of an intragastric catheter and bag and is not always well tolerated. Moreover, the barostat bag itself may influence motility. Nowadays magnetic resonance imaging (MRI) is able to measure several aspects of gastric motility noninvasively. To evaluate whether the accommodation response of the stomach, observed with the barostat, is present during MRI and whether the barostat interferes with gastric physiology, gastric accommodation, motility, and emptying were studied twice in 14 healthy subjects with MRI using three-dimensional volume scans and two-dimensional dynamic scans once in the presence of a barostat bag and once when the barostat bag was not present. Fasting and postprandial intragastric volumes were significantly higher in the experiment with barostat vs. without barostat (fasting: 350 +/- 132 ml vs. 37 +/- 21 ml, P < 0.0001; postprandial: 852 +/- 126 ml vs. 361 +/- 62 ml, P < 0.0001). No significant differences were found in gastric emptying (88 +/- 41 vs. 97 +/- 40 ml/h, not significant) and contraction frequency between both experiments. The accommodation response observed in the presence of the barostat bag was not observed in the absence of the barostat bag. In conclusion, the presence of an intragastric barostat bag does not interfere with gastric emptying or motility, but the accommodation response measured with the barostat in situ is not observed without the barostat bag in situ. Gastric accommodation is a nonphysiological barostat-induced phenomenon.  相似文献   

2.
The barostat is the gold standard for measurement of proximal gastric accommodation. Ultrasonography can be used to measure gastric volume. The aim was to investigate the effects of the barostat bag on gastric accommodation and transpyloric flow. Accommodation after a liquid meal (300 ml, 450 kcal) was measured twice at random in eight healthy volunteers. Proximal accommodation was measured once using barostat and once using ultrasound (US). Antrum accommodation was measured using US. Bag volume (BV), antral area (AA), proximal gastric area, and proximal gastric diameter (PGD) data were assessed before and 1, 5, 15, 30, 40, 50, and 60 min postprandially. Transpyloric flow was measured using Doppler 1-5 min postprandially. Fasted, AA size was not affected by the barostat bag (1 mmHg > minimal distension pressure; 2.7 +/- 0.5 vs. 2.6 +/- 0.3 cm(2)). Postprandially, AAs were larger with the bag present (ANOVA, P < 0.04). Maximum AA was reached with the bag in 5 min, without the bag in 1 min postprandially (15.1 +/- 2.3 vs. 9.4 +/- 1.5 cm(2); P < 0.03). Furthermore, AAs were related to BVs (r = 0.57; P < 0.01). After bag deflation, AA decreased (11.9 +/- 1.8 to 7.0 +/- 0.9 cm(2); P = 0.02) and was comparable with the 60-min AA size without the bag (7.1 +/- 1.2 cm(2); P = 0.76) present. Proximal gastric radius calculated from the BVs and PGDs was larger with the bag present (ANOVA, P < 0.001). No effect on early gastric emptying was observed. Postprandially, the barostat bag causes dilatation of the antrum due to meal displacement without influencing early gastric emptying. This antral dilatation is likely to induce exaggerated proximal gastric relaxation observed in studies using the barostat to evaluate fundic accommodation.  相似文献   

3.
Gastric emptying is a determinant of the postprandial glycemic and cardiovascular responses to oral carbohydrate. We evaluated the effects of a solid meal on gastric emptying and the glycemic and cardiovascular responses to oral glucose in healthy older subjects. Ten subjects aged 72.1 +/- 1.9 yr were studied. Each subject had measurements of gastric emptying, blood glucose, serum insulin, blood pressure, and heart rate after ingestion of a 50-g glucose drink (300 ml) with (mixed meal) or without (liquid only) a solid meal (300 g ground beef). Gastric emptying of liquid was initially slightly more rapid (P < 0.05) after the mixed meal compared with liquid only at 5 min (92.0 +/- 1.5 vs. 96.0 +/- 1.3%) and much slower (P < 0.05) after 120 min. The time to peak blood glucose was less (39.0 +/- 4.0 vs. 67.5 +/- 10.3 min; P < 0.01) and blood glucose subsequently lower (P < 0.01) after the mixed meal. The increase in serum insulin was greater (P < 0.001) after the mixed meal. Blood pressure fell (P < 0.05) in the first 30 min, with no difference between the two meals. Increase in heart rate after both meals (P < 0.005), was greater (P < 0.05) after the mixed meal. The presence of a noncarbohydrate solid meal had discrepant effects on early and subsequent emptying of a nutrient liquid, which affects postprandial glycemia and increased heart rate.  相似文献   

4.
The incretin glucagon-like peptide-1 (GLP-1), which is used to treat diabetes mellitus, delays gastric emptying by inhibiting vagal activity. GLP-1 also increases fasting and postprandial gastric volume in humans. On the basis of animal studies, we hypothesized that nitric oxide mediates the effects of GLP-1 on gastric volumes. To assess the effects of nitrergic blockade on GLP-1-induced gastric accommodation in humans, in this double-blind study, 31 healthy volunteers were randomized to placebo (i.e., saline), GLP-1, or the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine acetate (L-NMMA; 4 mg.kg(-1) x h(-1)) alone or with GLP-1. Thereafter, 16 additional subjects were randomized to GLP-1 alone or together with a higher dose of L-NMMA (10 mg/kg bolus plus 8 mg.kg(-1).h(-1) infusion). Gastric volumes (fasting pre- and postdrug, postprandial postdrug) were measured by (99m)Tc-single-photon-emission computed tomography imaging. GLP-1 increased (P = 0.04) fasting gastric volume by 83 +/- 16 ml (vs. 17 +/- 11 ml for placebo) and augmented (P < or = 0.01) postprandial accommodation by 688 +/- 165 ml (vs. 542 +/- 29 ml for placebo). L-NMMA (low dose) alone did not affect fasting or postprandial gastric volume. L-NMMA (low dose) did not attenuate the effect of GLP-1 on gastric volumes. In contrast, L-NMMA (high dose) did not affect fasting volume but blunted GLP-1-mediated postprandial accommodation (postprandial change = 494 +/- 37 ml, P < or = 0.01 vs. GLP-1 alone). These data are consistent with the hypothesis that nitric oxide partly mediates the effects of GLP-1 on postprandial but not fasting gastric volumes in humans.  相似文献   

5.
Ingested fat releases CCK, causes gastric relaxation, delays gastric emptying, and limits meal size; however, the mechanistic link among these actions has not been established. Fatty acid release of CCK is chain-length sensitive; dodecanoic acid (C12) induces greater CCK release than decanoic acid (C10). The effect of C12 or C10 on tolerance to subsequent intragastric infusion of liquid was determined in healthy subjects, with and without the CCK(1) receptor antagonist dexloxiglumide. Gastric wall relaxation after either fatty acid was assessed by graded volume distension and by barostat; gastric emptying was measured by gastric aspiration and by a [(13)C]octanoic acid breath technique. C12 released more CCK (mean plasma CCK after vehicle, 4.7 +/- 0.8 pM; C10, 4.8 +/- 0.3 pM; C12, 8 +/- 1.2 pM; P < 0.05 C12 vs. C10 or vehicle) and reduced the volume of water (and of 5 and 25% glucose solutions) delivered at maximum tolerance compared with C10 or vehicle (volume of water tolerated after vehicle, 1,535 +/- 164 ml; C10, 1,335 +/- 160 ml; C12, 842 +/- 103 ml; P < 0.05 C12 vs. C10 or vehicle); this effect was abolished by dexloxiglumide. Intragastric volumes were always similar at the limit of tolerance, and, whereas gastric relaxation occurred to similar degrees after the fatty acids, its duration was longer after C12, which also induced a longer delay in half-gastric emptying [t(1/2)(min) after vehicle, 53 +/- 2; C10, 67 +/- 3; C12, 88 +/- 7; P < 0.05 C12 vs. C10 or vehicle]. In conclusion, ingestion of a CCK-releasing fatty acid reduces the tolerated volume of liquid delivered into the stomach, primarily via a CCK(1) receptor-mediated delay in gastric emptying.  相似文献   

6.
The effects of macronutrients on gastric volume changes, emptying, and gastrointestinal symptoms are incompletely understood. Three liquid meals of 500 ml (fat emulsion, 375 kcal; protein solution, 375 kcal; glucose solution, 400 kcal) were infused into the stomach of 12 healthy volunteers on three occasions. Studies were performed in seated body position using an open-configuration magnetic resonance imaging (MRI) system. MRI imaging sequences, assessing stomach and meal volumes, were performed prior to and at times t = 0, 3, 6, 9, 12, 15, 25, 35, 45, 60, 75, and 90 min after meal administration. Areas under the curve for the early emptying phase (0-15 and 0-45 min) were calculated, and characteristics of the volume curves were analyzed by a gastric emptying model. Gastrointestinal symptoms were assessed by a self-report scale. Initial (t = 0 min) and early postprandial gastric volumes were highest for glucose because of lower initial emptying. However, in the early emptying phase the characteristics of the volume curves for stomach and meal were uniform for all macronutrients. Perceptions of fullness and satiety were linearly associated with postprandial gastric volumes, but not with macronutrient composition. Isovolumic macronutrient meals modulate gastric volume response by initial meal emptying patterns. Macronutrient specific accommodation responses, as shown in barostat studies, are not reflected as gastric volume responses under noninvasive conditions.  相似文献   

7.
Noninvasive imaging has been developed to measure gastric volumes. The relationship between gastric emptying and volume postprandially is unclear. The aims were to 1) develop a 3-dimensional (3D) single photon emission-computed tomography (SPECT) method to simultaneously measure gastric volume and emptying postprandially, 2) describe the course of gastric volume change during emptying of the meal, and 3) assess a 3D method measuring gastric emptying. In 30 healthy volunteers, we used (111)In-planar and (99m)Tc-SPECT imaging to estimate gastric emptying and volume after a radiolabeled meal. A customized analysis program of SPECT imaging assessed gastric emptying. A Bland-Altman plot assessed the performance of the new SPECT analysis compared with planar analysis. Gastric volume postprandially exceeds the fasting volume plus meal volume. The course of volume change and gastric emptying differ over time. Higher differences in volumes exist relative to fasting plus residual meal volumes at 15 min (median 763 vs. 568 ml, respectively, P < 0.001), 1 h (median 632 vs. 524 ml, P < 0.001), and 2 h (median 518 vs. 428 ml, P < 0.02), in contrast to similar volumes at 3 h (median 320 vs. 314 ml, P = 0.85). Analysis of SPECT imaging accurately measures gastric emptying compared with planar imaging with median differences of 1% (IQR -2.25 to 2.0) at 1 h, 1% (-3.25 to 2.25) at 2 h, and -2.5% (-4 to 0) at 3 h. Gastric volume exceeds meal volume during the first 2 postprandial hours, and simultaneous measurements of gastric volume and emptying can be achieved with a novel 3D SPECT method.  相似文献   

8.
Preprocessed fatty foods often contain calories added as a fat emulsion stabilized by emulsifiers. Emulsion stability in the acidic gastric environment can readily be manipulated by altering emulsifier chemistry. We tested the hypothesis that it would be possible to control gastric emptying, CCK release, and satiety by varying intragastric fat emulsion stability. Nine healthy volunteers received a test meal on two occasions, comprising a 500-ml 15% oil emulsion with 2.5% of one of two emulsifiers that produced emulsions that were either stable (meal A) or unstable (meal B) in the acid gastric environment. Gastric emptying and gallbladder volume changes were assessed by MRI. CCK plasma levels were measured and satiety scores were recorded. Meal B layered rapidly owing to fat emulsion breakdown. The gastric half-emptying time of the aqueous phase was faster for meal B (72 +/- 13 min) than for meal A (171 +/- 35 min, P < 0.008). Meal A released more CCK than meal B (integrated areas, respectively 1,095 +/- 244 and 531 +/- 111 pmol.min.l(-1), P < 0.02), induced a greater gallbladder contraction (P < 0.02), and decreased postprandial appetite (P < 0.05), although no significant differences were observed in fullness and hunger. We conclude that acid-stable emulsions delayed gastric emptying and increased postprandial CCK levels and gallbladder contraction, whereas acid-instability led to rapid layering of fat in the gastric lumen with accelerated gastric emptying, lower CCK levels, and reduced gallbladder contraction. Manipulation of the acid stability of fat emulsion added to preprocessed foods could maximize satiety signaling and, in turn, help to reduce overconsumption of calories.  相似文献   

9.
We examined the contributions of insulin secretion, glucagon suppression, splanchnic and peripheral glucose metabolism, and delayed gastric emptying to the attenuation of postprandial hyperglycemia during intravenous exenatide administration. Twelve subjects with type 2 diabetes (3 F/9 M, 44 +/- 2 yr, BMI 34 +/- 4 kg/m2, Hb A(1c) 7.5 +/- 1.5%) participated in three meal-tolerance tests performed with double tracer technique (iv [3-3H]glucose and oral [1-14C]glucose): 1) iv saline (CON), 2) iv exenatide (EXE), and 3) iv exenatide plus glucagon (E+G). Acetaminophen was given with the mixed meal (75 g glucose, 25 g fat, 20 g protein) to monitor gastric emptying. Plasma glucose, insulin, glucagon, acetaminophen concentrations and glucose specific activities were measured for 6 h post meal. Post-meal hyperglycemia was markedly reduced (P < 0.01) in EXE (138 +/- 16 mg/dl) and in E+G (165 +/- 12) compared with CON (206 +/- 15). Baseline plasma glucagon ( approximately 90 pg/ml) decreased by approximately 20% to 73 +/- 4 pg/ml in EXE (P < 0.01) and was not different from CON in E+G (81 +/- 2). EGP was suppressed by exenatide [231 +/- 9 to 108 +/- 8 mg/min (54%) vs. 254 +/- 29 to189 +/- 27 mg/min (26%, P < 0.001, EXE vs. CON] and partially reversed by glucagon replacement [247 +/- 15 to 173 +/- 18 mg/min (31%)]. Oral glucose appearance was 39 +/- 4 g in CON vs. 23 +/- 6 g in EXE (P < 0.001) and 15 +/- 5 g in E+G, (P < 0.01 vs. CON). The glucose retained within the splanchnic bed increased from approximately 36g in CON to approximately 52g in EXE and to approximately 60g in E+G (P < 0.001 vs. CON). Acetaminophen((AUC)) was reduced by approximately 80% in EXE vs. CON (P < 0.01). We conclude that exenatide infusion attenuates postprandial hyperglycemia by decreasing EGP (by approximately 50%) and by slowing gastric emptying.  相似文献   

10.
Glucagon-like peptide-1 (GLP-1) relaxes the stomach during fasting but decreases hunger and food consumption and retards gastric emptying. The interrelationships between volume, emptying, and postprandial symptoms in response to GLP-1 are unclear. We performed, in healthy human volunteers, a placebo-controlled study of the effects of intravenous GLP-1 on gastric volume using (99m)Tc-single photon emission computed tomography imaging, gastric emptying of a nutrient liquid meal (Ensure) using scintigraphy, maximum tolerated volume (MTV) of Ensure, and postprandial symptoms 30 min after MTV. The role of vagal cholinergic function in the effects of GLP-1 was assessed by human pancreatic polypeptide (HPP) response to the Ensure meal. GLP-1 increased fasting and postprandial gastric volumes and retarded gastric emptying; MTV and postprandial symptoms were not different compared with controls. Effects on postprandial gastric function were associated with reduced postprandial HPP levels. GLP-1 does not induce postprandial symptoms despite significant inhibition of gastric emptying and vagal function; this may be partly explained by the increase in postprandial gastric volume.  相似文献   

11.
CM3, a highly cross-linked cellulose in capsule form, expands in the stomach to a size several fold of its original volume. It is purported to induce a prolonged feeling of satiation and a delay in gastric emptying, thus promoting weight loss. We examined whether CM3 delays gastric emptying (using the stable isotope (13)C-octanoic breath test) and whether it influences subjective feelings of appetite sensations (using visual analog scales, VASs). We performed a double-blind randomized placebo-controlled crossover trial in 19 moderately obese but otherwise healthy subjects (mean age 55 +/- 9 years, BMI 31.1 +/- 4.6 kg/m(2)). The subjects were treated with six capsules of CM3 or matching placebo 30 min before a standardized solid meal. Breath collection and VASs were performed over 4 h every 15 min and 30 min, respectively. Half-excretion time of (13)CO(2) in breath, indicating gastric emptying half time, was the primary outcome parameter. The study was powered to detect a change in gastric emptying of 20-30 min. Mean (13)CO(2) half-excretion time changed from 2.3 +/- 0.4 to 2.4 +/- 0.33 h (mean difference +6 min, 95% confidence interval (CI) -3 to +15 min; P = 0.17). Appetite sensations (hunger, satiation, fullness, prospective food consumption, desire to eat something sweet, salty, savory, or fatty) changed over time during the course of the postprandial phase but were not influenced by CM3 (repeated measures ANOVA). In obese subjects, acute administration of the weight-loss supplement CM3 does not delay gastric emptying and does not influence subjective appetite sensations.  相似文献   

12.
It is generally believed that gastric emptying of solids is regulated by a coordinated motor pattern between the antrum and pylorus. We studied the role of the vagus nerve in mediating postprandial coordination between the antrum and pylorus. Force transducers were implanted on the serosal surface of the body, antrum, pylorus, and duodenum in seven dogs. Dogs were given either a solid or a liquid meal, and gastroduodenal motility was recorded over 10 h. Gastric emptying was evaluated with radiopaque markers mixed with a solid meal. Dogs were treated with hexamethonium, N(G)-nitro-l-arginine methyl ester (l-NAME), or transient vagal nerve blockade by cooling. A postprandial motility pattern showed three distinct phases: early, intermediate, and late. In the late phase, profound pyloric relaxations predominantly synchronized with giant antral contractions that were defined as postprandial antropyloric coordination. A gastric emptying study revealed that the time at which gastric contents entered into the duodenum occurred concomitantly with antropyloric coordination. Treatment by vagal blockade or hexamethonium significantly reduced postprandial antral contractions and pyloric relaxations of the late phase. l-NAME changed pyloric motor patterns from relaxation dominant to contraction dominant. Solid gastric emptying was significantly attenuated by treatment with hexamethonium, l-NAME, and vagal blockade. Postprandial antropyloric coordination was not seen after feeding a liquid meal. It is concluded that postprandial antropyloric coordination plays an important role to regulate gastric emptying of a solid food. Postprandial antropyloric coordination is regulated by the vagus nerve and nitrergic neurons in conscious dogs.  相似文献   

13.
The postprandial reduction in blood pressure (BP) is triggered by the interaction of nutrients with the small intestine and associated with an increase in splanchnic blood flow. Gastric distension may attenuate the postprandial fall in BP. The aim of this study was to determine the effects of differences in intragastric volume, including distension at a low (100 ml) volume, on BP and superior mesenteric artery (SMA) blood flow responses to intraduodenal glucose in healthy older subjects. BP and heart rate (HR; automated device), SMA blood flow (Doppler ultrasound), mesenteric vascular resistance (MVR), and plasma norepinephrine of nine male subjects (65-75 yr old) were measured after an overnight fast on 4 separate days in random order. On each day, subjects were intubated with a nasoduodenal catheter, incorporating a duodenal infusion port, and orally with a second catheter, incorporating a barostat bag, positioned in the fundus. Each subject received a 60-min (t = 0-60 min) intraduodenal glucose infusion (3 kcal/min) and gastric distension at a volume of 1) 0 ml (V0), 2) 100 ml (V100), 3) 300 ml (V300), or 4) 500 ml (V500). Systolic BP fell (P < 0.05) during V0, but not during V100, V300, or V500. In contrast, HR (P < 0.01) and SMA blood flow (P < 0.001) increased and MVR decreased (P < 0.05) comparably on all 4 days. Plasma norepinephrine rose (P < 0.01) in response to intraduodenal glucose, with no difference between the four treatments. There was a relationship between the areas under the curve for the change in systolic BP from baseline with intragastric volume (r = 0.60, P < 0.001). In conclusion, low-volume (≤100 ml) gastric distension has the capacity to abolish the fall in BP induced by intraduodenal glucose in healthy older subjects without affecting SMA blood flow or MVR. These observations support the concept that nonnutrient gastric distension prior to a meal has potential therapeutic applications in the management of postprandial hypotension.  相似文献   

14.
Transient lower esophageal sphincter relaxations (tLESRs) are vagally mediated in response to gastric cardiac distension. Nine volunteers, eight gastroesophageal reflux disease (GERD) patients, and eight fundoplication patients were studied. Manometry with an assembly that included a barostat bag was done for 1 h with and 1 h without barostat distension to 8 mmHg. Recordings were scored for tLESRs and barostat bag volume. Fundoplication patients had fewer tLESRs (0.4 +/- 0.3/h) than either normal subjects (2.4 +/- 0.5/h) or GERD patients (2.0 +/- 0.3/h). The tLESRs rate increased significantly in normal subjects (5.8 +/- 0.9/h) and GERD patients (5.4 +/- 0.8/h) during distension but not in the fundoplication group. All groups exhibited similar gastric accommodation (change in volume/change in pressure) in response to distension. Fundoplication patients exhibit a lower tLESR rate at rest and a marked attenuation of the response to gastric distension compared with either controls or GERD patients. Gastric accommodation was not impaired with fundoplication. This suggests that the receptive field for triggering tLESRs is contained within a wider field for elicitation of gastric receptive relaxation and that only the first is affected by fundoplication.  相似文献   

15.
The present study was undertaken to investigate how the activation of gastric mechanoreceptors by distension of the stomach in conscious gastric fistula rats influences gastric emptying; and the roles of capsaicin sensitive vagal afferent fibres and the 5-HT3, GRP and CCK-A receptors involved in mediating these responses. To activate mechanoreceptors by non-nutrient dependent pathways, methylcellulose in saline was used to distend the stomach (5 cm H2O) and the subsequent emptying of saline was examined immediately, and at 3, 5 and 10 min following distension. Prior distension delayed the subsequent emptying of saline instilled into the stomach compared with non-distended controls (2.28+/-0.09 ml/5 min; P < 0.001). Topical application of capsaicin, completely abolished the distension-induced inhibition of gastric emptying when compared with vehicle treated rats (2.82+/-0.09 vs. 2.38+/-0.04 ml/5 min; P < 0.001). Peripheral administration of a GRP antagonist (2258 U89UJ, 1 mg/kg), and a 5-HT3 antagonist (BRL4369UA, 50 microg/kg) significantly reversed (2.56+/-0.14 ml/5 min; P < 0.05 and 2.61+/-0.07 ml/5 min; P < 0.01; respectively) the delay in gastric emptying induced by distension. When the rats were treated with the CCK-A antagonist, gastric emptying of saline following distension was also significantly facilitated (2.56+/-0.07 ml/5 min; P < 0.001). In contrast, the CCK-B/gastrin receptor antagonist had no significant effect on the distension induced delay in gastric emptying (1.95+/-0.12 ml/5 min). The present results suggest that gastric distension in conscious gastric fistula rats delays gastric emptying by activating capsaicin-sensitive extrinsic afferent nerve fibres. Moreover, the results also indicate that distension-induced mechanisms involve GRP, 5-HT3 and CCK-A receptors, but not CCK-B receptors.  相似文献   

16.
We have evaluated esophageal tone in two different conditions that, in some cases, similarly impair phasic esophageal motility. Studies were performed in 14 healthy volunteers, 10 patients with total esophageal aperistalsis secondary to gastroesophageal reflux disease (GERD), and 25 untreated achalasia patients. We quantified esophageal compliance and relaxation induced by a nitric oxide donor using a barostat. Intraesophageal volume at a minimal distending pressure (2 mmHg) was not significantly different among all three groups (4.1 +/- 0.7, 3.8 +/- 0.7, and 4.2 +/- 1.2 ml for healthy, GERD, and achalasia groups, respectively). Esophageal compliance was significantly increased (P < 0.05 vs. healthy group) in the two groups of patients with aperistalsis (1.9 +/- 0.2, 3.0 +/- 0.2, and 3.1 +/- 0.3 ml/mmHg for healthy, GERD, and achalasia groups, respectively). Esophageal relaxation was decreased in GERD patients (Delta diameter: 0.4 +/- 0.1 cm) and increased in achalasia patients (Delta diameter: 1.3 +/- 0.4 cm) relative to healthy subjects (Delta diameter: 0.9 +/- 0.2 cm) (P < 0.05 for GERD vs. achalasia and healthy groups). Our results indicate that diseases that similarly impair phasic esophageal motility may affect esophageal tone differently.  相似文献   

17.
Tonic reflexes in the colon and rectum are likely to be important in health and in disorders of gastrointestinal function. The aim of this study was to evaluate the fasting and postprandial "colorectal" and "rectocolic" reflexes in response to 2-min isobaric distensions of the colon and rectum, accounting for enteric sensation, compliance, and distending balloon volume. In 14 healthy fasting subjects, a dual barostat assembly was positioned (descending colon and rectum). A 2-min phasic distension was performed in the colon and rectum in random order while the opposing balloon volume was recorded. Sensation (phasic distension) and compliance (ramp distension) were also determined. The experiment was repeated postprandially. Colonic distension resulted in significant rectal tonic contraction in the fasting (rectal volume change: -35.4 +/- 8.4 ml, P < 0.01) and postprandial (-22.2 +/- 8.4 ml, P < 0.01) states. After adjustment for colonic sensitivity, for compliance, and for distending balloon volume, the rectal volume change remained significant; the extent of the tonic response, however, correlated significantly with increasing pain score (P < 0.01). In contrast, rectal distension did not produce a significant tonic response in the colon (fasting: -6.5 +/- 7.3 ml; postprandial: 2.7 +/- 7.3 ml), either unadjusted or adjusted for rectal sensitivity, compliance, and distending balloon volume. In conclusion, the colorectal reflex, but not the rectocolic reflex, can be readily demonstrated both before and after a meal in response to a 2-min isobaric distension in the colon and rectum, respectively. Although the presence of the colorectal reflex does not depend on colonic sensitivity or the volume of the distending colonic balloon, these factors modulate the reflex, especially in the fasting state.  相似文献   

18.
The relationship between the intragastric distribution, dilution, and emptying of meals and satiety was studied using noninvasive magnetic resonance imaging techniques in 12 healthy subjects with four polysaccharide test meals of varying viscosity and nutrient content as follows: 1) low-viscosity nonnutrient, 2) low-viscosity nutrient, 3) high-viscosity nonnutrient, and 4) high-viscosity nutrient. Increasing the nutrient content of the high-viscosity meal delayed gastric emptying from 46 +/- 9 to 76 +/- 6 min (P < 0.004), whereas increasing viscosity had a smaller effect. The volume of secretions within the stomach 60 min after ingestion was higher for the high-viscosity nutrient meal (P < 0.04). A simple model to calculate the total volume of secretion added to the test meal is presented. Color-coded dilution map images showed the heterogeneous process of progressive gastric dilution of high-viscosity meals, whereas low-viscosity meals were uniformly diluted. Fullness was found to be linearly related to total gastric volumes for the nutrient meals (R(2) = 0.98) and logarithmically related for the nonnutrient meals (R(2) = 0.96). Fullness was higher for high- compared with low-viscosity meals (P < 0.02), and with the nutrient meals this was associated with greater antral volumes (P < 0.05).  相似文献   

19.
The amylin analog pramlintide delays gastric emptying in type I diabetics. The effects of multiple doses of pramlintide and the mechanism of action in non-amylin-deficient humans are unknown. We investigated the effects of pramlintide on gastrointestinal and colonic transit and on the plasma pancreatic polypeptide response to the meal in a parallel-group dose-response study with subjects randomized to placebo, or 30 or 60 microg (tid, sc) of pramlintide. Pramlintide delayed gastric emptying [half-time (t(1/2)): 112 min (SE 8.7 min), 169 min (SE 12 min), or 177 min (SE 25 min) after placebo or 30- or 60-microg pramlintide treatment, respectively; P = 0.033]. Pramlintide did not significantly affect small bowel or colonic transit. Pancreatic polypeptide concentrations in the first postprandial hour were lower with pramlintide than with placebo (P<0.01 for drug effect). An inverse correlation was observed between mean pancreatic polypeptide concentrations in the first postprandial hour and gastric emptying t(1/2) [Spearman correlation coefficient (R(s)) = 0.48; P = 0.044]. Pramlintide at 30 and 60 microg delays gastric emptying in healthy humans without affecting small bowel or colonic transit. Vagal inhibition is a potential mechanism of the effects of pramlintide on gastric emptying.  相似文献   

20.

Background

Improving gastric accommodation and gastric emptying is an attractive physiological treatment target in patients with functional dyspepsia (FD). We evaluated the effect of DA-9701, a new drug for FD, on gastric motor function after a meal in healthy volunteers using magnetic resonance imaging (MRI).

Methods

Forty healthy volunteers were randomly allocated to receive either DA-9701 or placebo. After 5 days of treatment, subjects underwent gastric MRI (60 min before and 15, 30, 45, 60, 90, and 120 min after a liquid test meal). Gastric volume was measured through 3-dimensional reconstruction from MRI data. We analyzed 4 outcome variables including changes in total gastric volume (TGV), proximal TGV, and proximal to distal TGV ratio after a meal and gastric emptying rates after adjusting values at the pre-test meal.

Results

Changes in TGV and proximal TGV after a meal did not differ between the DA-9701 and placebo groups (difference between groups -25.9 mL, 95% confidence interval [CI] -54.0 to 2.3 mL, P = 0.070 and -2.9 mL, 95% CI -30.3 to 24.5 mL, P = 0.832, respectively). However, pre-treatment with DA-9701 increased postprandial proximal to distal TGV ratio more than placebo (difference between groups 0.93, 95% CI 0.08 to 1.79, P = 0.034). In addition, pre-treatment with DA-9701 significantly increased gastric emptying as compared with placebo (mean difference between groups 3.41%, 95% CI 0.54% to 6.29%, P = 0.021, by mixed model for repeated measures).

Conclusion

Our results suggested that DA-9701 enhances gastric emptying and does not significantly affect gastric accommodation in healthy volunteers. Further studies to confirm whether DA-9701 enhances these gastric motor functions in patients with FD are warranted.

Trial Registration

ClinicalTrials.gov NCT02091635  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号