首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The expression of proinflammatory cytokines increases in the hypothalamus of rats with heart failure (HF). The pathophysiological significance of this observation is unknown. We hypothesized that hypothalamic proinflammatory cytokines upregulate the activity of central neural systems that contribute to increased sympathetic nerve activity in HF, specifically, the brain renin-angiotensin system (RAS) and the hypothalamic-pituitary-adrenal (HPA) axis. Rats with HF induced by coronary ligation and sham-operated controls (SHAM) were treated for 4 wk with a continuous intracerebroventricular infusion of the cytokine synthesis inhibitor pentoxifylline (PTX, 10 microg/h) or artificial cerebrospinal fluid (VEH). In VEH-treated HF rats, compared with VEH-treated SHAM rats, the hypothalamic expression of proinflammatory cytokines was increased, along with key components of the brain RAS (renin, angiotensin-converting enzyme, angiotensin type 1 receptor) and corticotropin-releasing hormone, the central indicator of HPA axis activation, in the paraventricular nucleus (PVN) of the hypothalamus. The expression of other inflammatory/excitatory mediators (superoxide, prostaglandin E(2)) was also increased, along with evidence of chronic neuronal excitation in PVN. VEH-treated HF rats had higher plasma levels of norepinephrine, ANG II, interleukin (IL)-1beta, and adrenocorticotropic hormone, increased left ventricular end-diastolic pressure, and increased wet lung-to-body weight ratio. With the exception of plasma IL-1beta, an indicator of peripheral proinflammatory cytokine activity, all measures of neurohumoral excitation were significantly lower in HF rats treated with intracerebroventricular PTX. These findings suggest that the increase in brain proinflammatory cytokines observed in rats with ischemia-induced HF is functionally significant, contributing to neurohumoral excitation by activating brain RAS and the HPA axis.  相似文献   

2.
Aldosterone acts upon mineralocorticoid receptors in the brain to increase blood pressure and sympathetic nerve activity, but the mechanisms are still poorly understood. We hypothesized that aldosterone increases sympathetic nerve activity by upregulating the renin-angiotensin system (RAS) and oxidative stress in the brain, as it does in peripheral tissues. In Sprague-Dawley rats, aldosterone (Aldo) or vehicle (Veh) was infused for 1 wk via an intracerebroventricular (ICV) cannula, while RU-28318 (selective mineralocorticoid receptor antagonist), Tempol (superoxide dismutase mimetic), losartan [angiotensin II type 1 receptor (AT(1)R) antagonist], or Veh was infused simultaneously via a second ICV cannula. After 1 wk of ICV Aldo, plasma norepinephrine was increased and mean arterial pressure was slightly elevated, but heart rate was unchanged. These effects were ameliorated by ICV infusion of RU-28318, Tempol or losartan. Aldo increased expression of AT(1)R and angiotensin-converting enzyme (ACE) mRNA in hypothalamic tissue. RU-28318 minimized and Tempol prevented the increase in AT(1)R mRNA; RU-28318 prevented the increase in ACE mRNA. Losartan had no effect on AT(1)R or ACE mRNA. Immunohistochemistry revealed Aldo-induced increases in dihydroethidium staining (indicating oxidative stress) and Fra-like activity (indicating neuronal excitation) in neurons of the hypothalamic paraventricular nucleus (PVN). RU-28318 prevented the increases in superoxide and Fra-like activity in PVN; Tempol and losartan minimized these effects. Acute ICV infusions of sarthran (AT(1)R antagonist) or Tempol produced greater sympathoinhibition in Aldo-treated than in Veh-treated rats. Thus aldosterone upregulates key elements of brain RAS and induces oxidative stress in the hypothalamus. Aldosterone may increase sympathetic nerve activity by these mechanisms.  相似文献   

3.
两种心衰模型大鼠心功能的比较   总被引:10,自引:2,他引:8  
目的 比较两种心衰模型大鼠心功能的特点。方法 用腹主动脉、下腔静脉穿刺造瘘法及冠脉结扎法建立不同的心衰模型 ,用Doppler超声心动图及心脏称重的方法比较其心功能的各项参数。结果 两组大鼠的相对心脏重量均有所增高。造瘘组射血分数有所下降 ,但心输出量、血压维持正常 ,而冠脉结扎组术后 3周射血分散、心输出量和平均动脉压均明显下降 ,等容舒张期延长。结论 腹主动脉、下腔静脉穿刺造瘘所造成的是高输出量心衰 ,而冠脉结扎法所造成的是低输出量心衰 ,其心衰程度更为严重。Doppler超声心动图为大鼠心功能的检测提供了一种简单、可靠、可随访的无创伤性检查方法。  相似文献   

4.
The paraventricular nucleus (PVN) of the hypothalamus has critical homeostatic functions, including the regulation of fluid balance and sympathetic drive. It has been suggested that altered activity of this nucleus contributes to the progression of congestive heart failure (HF). We hypothesized that forebrain influences of the renin-angiotensin-aldosterone system augment the activity of PVN neurons in HF. The rate of PVN neurons (n = 68) from rats with ischemia-induced HF was higher than that of PVN neurons (n = 42) from sham-operated controls (8.7 +/- 0.8 vs. 2.7 +/- 0.3 spikes/s, P < 0.001, HF vs. SHAM). Forebrain-directed intracarotid artery injections of the angiotensin type 1 receptor antagonist losartan, the angiotensin-converting enzyme inhibitor captopril, and the mineralocorticoid receptor antagonist spironolactone all significantly (P < 0.05) reduced PVN neuronal activity in HF rats. These findings demonstrate that the renin-angiotensin-aldosterone system drives PVN neuronal activity in HF, likely resulting in increased sympathetic drive and volume accumulation. This mechanism of neurohumoral excitation in HF is accessible to manipulation by blood-borne therapeutic agents.  相似文献   

5.
Heart failure (HF) is the final outcome of virtually all cardiovascular diseases and is a major and increasingly serious public health problem. The renin-angiotensin system plays an important role in the pathogenesis of cardiovascular disease. Insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE) has attracted significant attention; it has been extensively investigated in a spectrum of cardiovascular phenotypes because of its correlation with serum ACE activity. There is controversy regarding the association of ACE I/D polymorphism with cardiovascular disease. The aim of this study was to investigate whether ACE genotype is associated with HF by comparing cases and controls. The study sample consisted of 229 cases with HF due to coronary heart disease or idiopathic dilated cardiomyopathy and 230 controls recruited from the general population. The ACE I/D genotype was identified using a polymerase chain reaction assay. No evidence was found to support an association between ACE genotype and HF.  相似文献   

6.

Background

Left ventricular (LV) remodeling and activation of sympathetic nervous system (SNS) are cardinal features of heart failure. We previously demonstrated that enhanced central sympathetic outflow is associated with brain toll-like receptor 4 (TLR4) probably mediated by brain angiotensin II type 1 receptor in mice with myocardial infarction (MI)-induced heart failure. The purpose of the present study was to examine whether silencing brain TLR4 could prevent LV remodeling with sympathoinhibition in MI-induced heart failure.

Methodology/Principal Findings

MI-induced heart failure model rats were created by ligation of left coronary artery. The expression level of TLR4 in brainstem was significantly higher in MI-induced heart failure treated with intracerebroventricular (ICV) injection of hGAPDH-SiRNA than in sham. TLR4 in brainstem was significantly lower in MI-induced heart failure treated with ICV injection of TLR4-SiRNA than in that treated with ICV injection of hGAPDH-SiRNA. Lung weight, urinary norepinephrine excretion, and LV end-diastolic pressure were significantly lower and LV dimension was significantly smaller in MI-induced heart failure treated with TLR4-SiRNA than in that treated with hGAPDH-SiRNA for 2 weeks.

Conclusions

Partially silencing brain TLR4 by ICV injection of TLR4-SiRNA for 2 weeks could in part prevent LV remodeling with sympathoinhibition in rats with MI-induced heart failure. Brain TLR4 has a potential to be a target of the treatment for MI-induced heart failure.  相似文献   

7.
The present study tested the hypothesis that 17beta-estradiol (E2) inhibits increases in angiotensin-converting enzyme (ACE) and ANG II type 1 receptor (AT1R) in the brain and heart after myocardial infarction (MI) and, thereby, inhibits development of left ventricular (LV) dysfunction after MI. Age-matched female Wistar rats were treated as follows: 1) no surgery (ovary intact), 2) ovariectomy + subcutaneous vehicle treatment (OVX + Veh), or 3) OVX + subcutaneous administration of a high dose of E2 (OVX + high-E2). After 2 wk, rats were randomly assigned to coronary artery ligation (MI) and sham operation groups and studied after 3 wk. E2 status did not affect LV function in sham rats. At 2-3 wk after MI, impairment of LV function was similar across MI groups, as measured by echocardiography and direct LV catheterization. LV ACE mRNA abundance and activity were increased severalfold in all MI groups compared with respective sham animals and to similar levels across MI groups. In most brain nuclei, ACE and AT1R densities increased after MI. Unexpectedly, compared with the respective sham groups the relative increase was clearest (20-40%) in OVX + high-E2 MI rats, somewhat less (10-15%) in ovary-intact MI rats, and least (< 10-15%) in OVX + Veh MI rats. However, because in the sham group brain ACE and AT1R densities increased in the OVX + Veh rats and decreased in the OVX + high-E2 rats compared with the ovary-intact rats, actual ACE and AT1R densities in most brain nuclei were modestly higher (< 20%) in OVX + Veh MI rats than in the other two MI groups. Thus E2 does not inhibit upregulation of ACE in the LV after MI and amplifies the percent increases in ACE and AT1R densities in brain nuclei after MI, despite E2-induced downregulation in sham rats. Consistent with these minor variations in the tissue renin-angiotensin system, during the initial post-MI phase, E2 appears not to enhance or hinder the development of LV dysfunction.  相似文献   

8.
Activation of the hypothalamic-pituitary-adrenal (HPA) axis and augmented plasma and tissue levels of IL-6 are hallmarks of heart failure (HF). Within the forebrain, cardiovascular homeostasis is mediated in part by the paraventricular nucleus (PVN) of the hypothalamus. IL-6, via binding to the IL-6 receptor (IL-6R)/glycoprotein 130 (gp130) complex influences cellular and physiological responses. Thus, in the current study, we hypothesized that PVN IL-6R protein and gene expression are upregulated in HF vs. sham-operated rats, whereas gp130 levels in the same tissues remain stable. Six weeks after coronary ligation surgery, hemodynamic measurements were obtained, and HF rats were divided into moderate noncongestive and severe chronic congestive groups based on cardiac indices. Plasma IL-6 levels were determined and changes in gene and protein expression of IL-6R and gp130 between sham-operated and HF rats were determined via real-time PCR and Western blot analyses, respectively. Plasma levels of IL-6 were elevated in rats with severe, but not moderate, HF compared with sham-operated controls. In both moderate and severe HF rats, protein but not gene expression of IL-6R was significantly increased in PVN tissue but not in non-PVN tissue, compared with sham-operated controls. Gene and protein levels of the gp130 subunit were not altered by HF in either tissue analyzed. Collectively, these data suggest that within the brain of HF rats, IL-6R expression is not a global change. Rather the increased IL-6 levels characteristic of HF may alter PVN-mediated physiological responses via enhanced expression of the IL-6R.  相似文献   

9.
de Resende MM  Kauser K  Mill JG 《Life sciences》2006,78(26):3066-3073
Myocardial infarction (MI) activates the renin-angiotensin system in the heart and increases local production of aldosterone. This hormone may increase reactive fibrosis in the myocardium favoring heart failure development. To elucidate the potential contribution of aldosterone to cardiac remodeling following MI, we evaluated the expression of mineralocorticoid receptors (MCR) in the left ventricle (LV) and kidney of rats after MI and captopril treatment. MI was induced by ligation of the coronary artery in Wistar rats, which were separated into (1) sham-operated group, (2) MI group, (3) MI-captopril treated group (cap, 50 mg kg(-1) day(-1)). One month later angiotensin converting enzyme (ACE) activity was assayed in the plasma, LV and kidney. Cardiac and renal angiotensin II (Ang II) levels were determined by ELISA and MCR mRNA expression and protein were measured by Taqman RT-PCR and Western blot, respectively. Cardiac MCR mRNA and protein levels increased nearly by 80% after MI and Cap treatment normalized cardiac MCR protein and mRNA expression. Kidney MCR expression was not affected. ACE activity increased 34% in the plasma and 83% in the LV after MI. This increase was prevented by Cap. Ang II concentration increased 225% in the LV and 193% in kidney, which was partially attenuated by Cap. Our data demonstrate upregulation of MCR in the heart following MI what may facilitate the effects of aldosterone in the ventricular remodeling process. ACE inhibitors may reduce reactive fibrosis not only by decreasing Ang II production but also by attenuating the aldosterone-signaling pathway by decreasing the expression of MCR receptors.  相似文献   

10.
Our previous study demonstrated a contribution of the paraventricular nucleus (PVN) of the hypothalamus in the processing of the carotid body (CB) chemoreflex. Nitric oxide (NO) (within the PVN), known to modulate autonomic function, is altered in rats with heart failure (HF). Therefore, the goal of the present study was to examine the influence of endogenous and exogenous NO within the PVN on the sympathoexcitatory component of the peripheral chemoreflex in normal and HF states. We measured mean arterial blood pressure, heart rate, renal sympathetic nerve activity (RSNA), and phrenic nerve activity (PNA) in sham-operated and HF rats (6-8 wk after coronary artery ligation) after incremental doses of potassium cyanide (25-100 mug/kg iv). There was potentiation of the reflex responses in HF compared with sham-operated rats. Bilateral microinjection of an inhibitor of NO synthase, N(G)-monomethyl-l-arginine (50 pmol), into the PVN augmented the RSNA and PNA response to peripheral chemoreceptor stimulation in sham-operated rats but had no effect in HF rats. Conversely, bilateral microinjection of a NO donor, sodium nitroprusside (50 nmol), into the PVN attenuated the RSNA response of the peripheral chemoreflex in sham-operated rats but to a smaller extent in HF rats. These data indicate that 1) NO within the PVN plays an important role in the processing of the CB chemoreflex and 2) there is an impairment of the NO function within the PVN of HF rats, which contributes to an augmented peripheral chemoreflex and subsequent elevation of sympathetic activity in HF.  相似文献   

11.
This study examined the early neurohumoral events in the progression of congestive heart failure (CHF) after myocardial infarction (MI) in rats. Immediately after MI was induced by coronary artery ligation, rats had severely depressed left ventricular systolic function and increased left ventricular end-diastolic volume (LVEDV). Both left ventricular function and the neurohumoral indicators of CHF underwent dynamic changes over the next 6 wk. LVEDV increased continuously over the study interval, whereas left ventricular stroke volume increased but reached a plateau at 4 wk. Plasma renin activity (PRA), arginine vasopressin, and atrial natriuretic factor all increased, but with differing time courses. PRA declined to a lower steady-state level by 4 wk. Six to 8 wk after MI, CHF rats had enhanced renal sympathetic nerve activity and blunted baroreflex regulation. These findings demonstrate that the early course of heart failure is characterized not by a simple "switching on" of neurohumoral drive, but rather by dynamic fluctuations in neurohumoral regulation that are linked to the process of left ventricular remodeling.  相似文献   

12.
In this study, we investigated the role of the renin-angiotensin system in expression of the endothelin system in atrial myocardium of patients with congestive heart failure. Atrial myocardium of control patients without angiotensin-converting enzyme (ACE) inhibitor therapy and heart failure patients without or with ACE inhibitor therapy undergoing aorto-coronary bypass surgery was studied. Endothelin-converting enzyme-1 (ECE-1) expression and endothelin-1 peptide level was upregulated in myocardium of heart failure patients without ACE inhibition. ACE inhibitor therapy prevented upregulation of ECE-1 and endothelin-1 in failing myocardium. Prepro-endothelin-1 and endothelin receptor A expression were not affected by heart failure. Endothelin receptor B was downregulated in heart failure patients. Our data demonstrate an upregulation of ECE-1 mRNA expression in failing human myocardium. Inhibition of the renin-angiotensin system by ACE inhibitor treatment prevents upregulation of ECE-1, suggesting that angiotensin II regulates ECE-1 expression in vivo.  相似文献   

13.
We examined the topology of angiotensin-converting enzyme (ACE) mRNA expression, activity, and shedding in myocardial infarction-induced heart failure and sought to elucidate the source of the increased plasma ACE activity in this model. Three months after coronary ligature, lung, scar, and remaining viable left ventricular tissues were analyzed for ACE mRNA expression as well as tissue and solubilized ACE activity. ACE mRNA expression increased in the scar with respect to infarct severity, decreased in the lung, and remained unchanged in the left ventricle. ACE activity decreased in the lung and increased in the scar tissue and plasma. Shedding of ACE remained constant in the lung and increased in the scar. This study shows that ACE expression and activity is shifted from the pulmonary endothelium to the infarct scar tissue and that constancy of shedding in the lung and its increase in the scar are the source of the increased plasma ACE in congestive heart failure.  相似文献   

14.
In congestive heart failure, renal blood flow is decreased and renal vascular resistance is increased in a setting of increased activity of both the sympathetic nervous and renin-angiotensin systems. The renal vasoconstrictor response to renal nerve stimulation is enhanced. This is associated with an abnormality in the low-pass filter function of the renal vasculature wherein higher frequencies (> or =0.01 Hz) within renal sympathetic nerve activity are not normally attenuated and are passed into the renal blood flow signal. This study tested the hypothesis that excess angiotensin II action mediates the abnormal frequency response characteristics of the renal vasculature in congestive heart failure. In anesthetized rats, the renal vasoconstrictor response to graded frequency renal nerve stimulation was significantly greater in congestive heart failure than in control rats. Losartan attenuated the renal vasoconstrictor response to a significantly greater degree in congestive heart failure than in control rats. In control rats, the frequency response of the renal vasculature was that of a first order (-20 dB/frequency decade) low-pass filter with a corner frequency (-3 dB, 30% attenuation) of 0.002 Hz and 97% attenuation (-30 dB) at > or =0.1 Hz. In congestive heart failure rats, attenuation did not exceed 45% (-5 dB) over the frequency range of 0.001-0.6 Hz. The frequency response of the renal vasculature was not affected by losartan treatment in control rats but was completely restored to normal by losartan treatment in congestive heart failure rats. The enhanced renal vasoconstrictor response to renal nerve stimulation and the associated abnormality in the frequency response characteristics of the renal vasculature seen in congestive heart failure are mediated by the action of angiotensin II on renal angiotensin II AT1 receptors.  相似文献   

15.
Earlier studies have revealed an improvement of cardiac function in animals with congestive heart failure (CHF) due to myocardial infarction (MI) by treatment with angiotensin converting enzyme (ACE) inhibitors. Since heart failure is also associated with attenuated responses to catecholamines, we examined the effects of imidapril, an ACE inhibitor, on the beta-adrenoceptor (beta-AR) signal transduction in the failing heart. Heart failure in rats was induced by occluding the coronary artery, and 3 weeks later the animals were treated with g/(kg x day) (orally) imidapril for 4 weeks. The animals were assessed for their left ventricular function and inotropic responses to isoproterenol. Cardiomyocytes and crude membranes were isolated from the non-ischemic viable left ventricle and examined for the intracellular concentration of Ca2+ [Ca2+]i and beta-ARs as well as adenylyl cyclase (AC) activity, respectively. Animals with heart failure exhibited depressions in ventricular function and positive inotropic response to isoproterenol as well as isoproterenol-induced increase in [Ca2+]i in cardiomyocytes; these changes were attenuated by imidapril treatment. Both beta1-AR receptor density and isoproterenol-stimulated AC activity were decreased in the failing heart and these alterations were prevented by imidapril treatment. Alterations in cardiac function, positive inotropic effect of isoproterenol, beta1-AR density and isoproterenol-stimulated AC activity in the failing heart were also attenuated by treatment with another ACE inhibitor, enalapril and an angiotensin II receptor antagonist, losartan. The results indicate that imidapril not only attenuates cardiac dysfunction but also prevents changes in beta-AR signal transduction in CHF due to MI. These beneficial effects are similar to those of enalapril or losartan and thus appear to be due to blockade of the renin-angiotensin system.  相似文献   

16.
We have demonstrated a decreased neuronal nitric oxide (NO) synthase (nNOS) message in the hypothalamus of rats with heart failure (HF). Subsequently, we have demonstrated that NADPH diaphorase (a commonly used marker for nNOS activity) positive neurons are decreased in paraventricular nucleus (PVN) of rats with coronary artery ligation model of HF. The goal of the present study was to examine the influence of endogenous NO within the PVN on renal sympathetic nerve discharge (RSND) during HF. In alpha-chloralose- and urethane-anesthetized rats, an inhibitor of NO synthase, N(G)-monomethyl-L-arginine (L-NMMA) microinjected into the PVN (50, 100, and 200 pmol in 50-200 nl) produced a dose-dependent increase in RSND, blood pressure, and heart rate in control and HF rats. These responses were attenuated in rats with HF compared with control rats. On the other hand, the NO agonist, sodium nitroprusside, microinjected in PVN produced a dose-dependent decrease in RSND and blood pressure in control and HF rats. These responses were less in rats with HF compared with control rats. These data suggest that the endogenous NO-mediated effect within the PVN of HF rats is less potent in suppressing RSND compared with control rats. These data support the conclusion that the NO system within the PVN involved in controlling autonomic outflow is altered during HF and may contribute to the elevated levels of renal sympathoexcitation commonly observed in HF.  相似文献   

17.
The sympathetic nervous system, leptin, and renin-angiotensin system (RAS) have been implicated in obesity-associated hypertension. There is increasing evidence for the presence of both leptin and angiotensin II receptors in several key brain cardiovascular and metabolic control regions. We tested the hypothesis that the brain RAS plays a facilitatory role in the sympathetic nerve responses to leptin. In rats, intracerebroventricular (ICV) administration of losartan (5 μg) selectively inhibited increases in renal and brown adipose tissue (BAT) sympathetic nerve activity (SNA) produced by leptin (10 μg ICV) but did not reduce the SNA responses to corticotrophin-releasing factor (CRF) or the melanocortin receptor agonist MTII. In mice with deletion of angiotensin II type-1a receptors (AT(1a)R(-/-)), increases in renal and BAT SNA induced by leptin (2 μg ICV) were impaired whereas SNA responses to MTII were preserved. Decreases in food intake and body weight with ICV leptin did not differ in AT(1a)R(-/-) vs. AT(1a)R(+/+) mice. ICV leptin in rats increased AT(1a)R and angiotensin-converting enzyme (ACE) mRNA in the subfornical organ and AT(1a)R mRNA in the arcuate nucleus, suggesting leptin-induced upregulation of the brain RAS in specific brain regions. To evaluate the role of de novo production of brain angiotensin II in SNA responses to leptin, we treated rats with captopril (12.5 μg ICV). Captopril attenuated leptin effects on renal and BAT SNA. In conclusion, these studies provide evidence that the brain RAS selectively facilitates renal and BAT sympathetic nerve responses to leptin while sparing effects on food intake.  相似文献   

18.
The mechanisms regulating water, electrolyte, and blood volume homeostasis continue to mature in early postnatal life, and this maturation may be altered by perturbations of volume or cardiovascular status. To evaluate the long-term effects of chronic hypoxia on water balance, urinary electrolyte excretion, heart weights, systemic arterial pressure, and components of the renin-angiotensin system, male Sprague-Dawley rats were exposed to periods of simulated altitude of 10,000 ft up to 90 days of age beginning at 2 or 30 days of age. Altitude exposure of both neonatal and adult rats was associated with increases in urine output and water intake after 30 days of exposure, and right ventricular (RV) hypertrophy at all ages was examined. However, the percent increase in urine output, water intake, and RV hypertrophy was numerically greater in neonates. Neonates also had increases in urinary sodium and potassium excretion after 30 days of exposure. Plasma renin activity and serum angiotensin-converting enzyme (ACE) activity were not affected, but plasma renin substrate was reduced in both neonatal and adult altitude-exposed rats. Lung ACE activity was also decreased in altitude-exposed neonates. These data indicate that the degree and, in some cases, the nature of these homeostatic responses varies with age during long-term hypoxia.  相似文献   

19.
Plasma levels of atrial natriuretic peptide (ANP) and renal responses to ANP were examined in rats with chronic cardiac failure produced by coronary artery ligation and in sham-operated controls. Plasma ANP levels were elevated in the rats with severe cardiac failure as compared with the controls (P less than 0.001). ANP injections at the doses of 1, 5, 25 and 50 micrograms/kg increased water and sodium excretion significantly at all but the lowest dose in the controls; only the two largest doses caused clear diuresis and natriuresis in the heart failure group. The diuretic and natriuretic effects of ANP were significantly weaker at the doses of 5 and 25 micrograms/kg in the rats with heart failure as compared with the controls. We conclude, that natriuretic and diuretic effects of ANP are attenuated in this chronic heart failure mode.  相似文献   

20.
We measured atrial natriuretic peptide (ANP) plasma levels in rats with experimental heart failure caused by left coronary artery ligation. ANP levels were clearly higher in infarcted rats (409 +/- 59 pg/ml; mean +/- S.E.M.) than in sham-operated controls (39 +/- 6 pg/ml). Moreover, plasma ANP levels increased progressively with the severity of cardiac dysfunction and size of infarct. Increased release of ANP in post-infarction heart failure appears to be a meaningful compensatory response to control rising preload. Our results are in keeping with evidence from human studies showing increased plasma concentration of ANP in patients with congestive heart failure. This model is a useful tool to further explore the role of ANP in heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号