首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of extracellularly applied ATP (added as disodium salt) on stimulus-secretion coupling were investigated in clonal insulin-producing RINm5F cells. Cytoplasmic free Ca2+ concentration [( Ca2+]i), electrical activity, membrane potential, formation of InsP3 and insulin release were measured. Addition of ATP in a Ca2(+)-containing medium promoted a rapid rise in [Ca2+]i, which was followed by a slow decline towards the basal level. In a Ca2(+)-free medium, the ATP-induced increase in [Ca2+]i was smaller, but still enough to elicit insulin secretion. Upon normalization of the extracellular Ca2+ concentration, the response to ATP recovered instantaneously. The presence of glucose in the incubation medium was a prerequisite to obtain a pronounced effect of ATP in the absence of extracellular Ca2+. However, glucose did not enhance the response to ATP in a Ca2(+)-containing medium. The effect of ATP was dose-dependent, with a clearly detectable increase in [Ca2+]i at 1 microM and a maximal response being obtained at 200 microM-ATP. The response to ATP was unaffected by activating adenylate cyclase by forskolin, but was abolished by 10 nM of the phorbol ester phorbol 12-myristate 13-acetate. The effects of ATP on [Ca2+]i could not be accounted for by a generalized increase in plasma-membrane permeability, as evident from the failure of the nucleotide to increase the fluorescence of the nuclear stain ethidium bromide. After stimulation with ATP there was an increase in membrane potential, in both the absence and the presence of extracellular Ca2+. Blockage of the voltage-activated Ca2+ channals with D-600, in a Ca2(+)-containing medium, decreased the effect of ATP on [Ca2+]i slightly. Patch-clamp measurements using the cell-attached patch configuration revealed that the RINm5F cells produce spontaneous action potentials, the frequency of which increased markedly on addition of ATP. Whole-cell recordings demonstrated that the increase in spike frequency was not associated with the development of an inward current, but was rather accountable for by a decrease in the activity of the ATP-regulated K+ channels. Addition of 200 microM-ATP stimulated phospholipase C activity, as evident from the formation of InsP3, both in the absence and in the presence of extracellular Ca2+. Thus in the absence of extracellular Ca2+ the stimulatory effect of ATP on insulin release can be explained by InsP3-induced mobilization of intracellularly bound Ca2+. Hence, in the RINm5F cells extracellular ATP acts in a manner similar to other Ca2(+)-mobilizing agents.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Mercury is a non-essential heavy metal affecting intracellular Ca2+ dynamics. We studied the effects of Hg2+ on [Ca2+]i in trout hepatoma cells (RTH-149). Confocal imaging of fluo-3-loaded cells showed that Hg2+ induced dose-dependent, sustained [Ca2+]i transient, triggered intracellular Ca2+ waves, stimulated Ca2+-ATPase activity, and promoted InsP3 production. The effect of Hg2+ was reduced by the Ca2+ channel blocker verapamil and totally abolished by extracellular GSH, but was almost unaffected by cell loading with the heavy metal chelator TPEN or esterified GSH. In a Ca2+-free medium, Hg2+ induced a smaller [Ca2+]i transient, that was unaffected by TPEN, but was abolished by U73122, a PLC inhibitor, and by cell loading with GDP-betaS, a G protein inhibitor, or heparin, a blocker of intracellular Ca2+ release. Data indicate that Hg2+ induces Ca2+ entry through verapamil-sensitive channels, and intracellular Ca2+ release via a G protein-PLC-InsP3 mechanism. However, in cells loaded with heparin and exposed to Hg2+ in the presence of external Ca2+, the [Ca2+]i rise was maximally reduced, indicating that the global effect of Hg2+ is not a mere sum of Ca2+ entry plus Ca2+ release, but involves an amplification of Ca2+ release operated by Ca2+ entry through a CICR mechanism.  相似文献   

3.
The effects of glucose on cytoplasmic free Ca2+ concentration, [Ca2+]i, and insulin release were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Measurements of [Ca2+]i were performed in cell suspensions in a cuvette and in single cell-aggregates in a microscopic system, using fura 2 and quin 2. Insulin release was studied from indicator loaded cells in a column perifusion system. In the presence of 1.28 mM extracellular Ca2+, an increase in the glucose concentration from 0 to 20 mM had two major effects on [Ca2+]i. Initially there was a decrease, which was immediately followed by a pronounced increase. At reduced extracellular Ca2+, or when Ca2+ influx was blocked, glucose induced only a decrease in [Ca2+]i. With increasing intracellular concentrations of indicator, the effects of glucose on [Ca2+]i were markedly reduced. Changes in [Ca2+]i, similar effects being obtained in the cuvette and microfluorometric measurements, were paralleled by changes in insulin release. Insulin release from indicator loaded cells did not markedly differ from that of non-loaded controls, either with respect to rapidity or size in the response to the sugar. The addition of 20 mM glucose increased the efflux of fura 2, an effect that was not related to insulin release. Permeabilization of indicator loaded cells demonstrated a substantial amount of fura 2 bound intracellularly. Although the effects of glucose on [Ca2+]i seemed to be similar in fura 2 and quin 2 loaded cells, the demonstrated leakage and possible intracellular binding should be considered before using fura 2 for measurements in pancreatic beta-cells.  相似文献   

4.
In HeLa cells, histamine induces production of inositol 1,4,5-trisphosphate (InsP3) and release of Ca2+ from the endoplasmic reticulum (ER). Ca2+ release is typically biphasic, with a fast and brief initial phase, followed by a much slower and prolonged one. In the presence of inhibitors of protein kinase C (PKC), including staurosporine and the specific inhibitors GF109203X and Ro-31-8220, the fast phase continued until the ER became fully empty. On the contrary, treatment with phorbol 12,13-dibutyrate inhibited Ca2+ release. Staurosporine had no effect on InsP3-induced Ca2+ release in permeabilized cells and did not modify either histamine-induced InsP3 production. These data suggest that histamine induces Ca2+ release and with a short lag activates PKC to down-regulate it. Consistently, Ca2+ oscillations induced by histamine were increased in amplitude and decreased in frequency in the presence of PKC inhibitors. We show also that mitochondrial [Ca2+] was much more sensitive to changes in ER-Ca2+ release induced by PKC modulation than cytosolic [Ca2+]. PKC inhibitors increased the histamine-induced mitochondrial [Ca2+] peak by 4-fold but increased the cytosolic [Ca2+] peak only by 20%. On the contrary, PKC activation inhibited the mitochondrial [Ca2+] peak by 90% and the cytosolic one by only 50%. Similarly, the combination of PKC inhibitors with the mitochondrial Ca2+ uniporter activator SB202190 led to dramatic increases in mitochondrial [Ca2+] peaks, with little effect on cytosolic ones. This suggests that activation of ER-Ca2+ release by PKC inhibitors could be involved in apoptosis induced by staurosporine. In addition, these mechanisms allow flexible and independent regulation of cytosolic and mitochondrial [Ca2+] during cell stimulation.  相似文献   

5.
6.
M Iino  T Yamazawa  Y Miyashita  M Endo    H Kasai 《The EMBO journal》1993,12(13):5287-5291
Neurotransmitters induce contractions of smooth muscle cells initially by mobilizing Ca2+ from intracellular Ca2+ stores through inositol 1,4,5-trisphosphate (InsP3) receptors. Here we studied roles of the molecules involved in Ca2+ mobilization in single smooth muscle cells. A slow rise in cytoplasmic Ca2+ ([Ca2+]i) in agonist-stimulated smooth muscle cells was followed by a wave of rapid regenerative Ca2+ release as the local [Ca2+]i reached a critical concentration of approximately 160 nM. Neither feedback regulation of phospholipase C nor caffeine-sensitive Ca(2+)-induced Ca2+ release was found to be required in the regenerative Ca2+ release. These results indicate that Ca(2+)-dependent feedback control of InsP3-induced Ca2+ release plays a dominant role in the generation of the regenerative Ca2+ release. The resulting Ca2+ release in a whole cell was an all-or-none event, i.e. constant peak [Ca2+]i was attained with agonist concentrations above the threshold value. This finding suggests a possible digital mode involved in the neural control of smooth muscle contraction.  相似文献   

7.
Contraction of vascular smooth muscle cells (VSMCs) depends on the rise of cytosolic [Ca2+] owing to either Ca2+ influx through voltage-gated Ca2+ channels of the plasmalemma or receptor-mediated Ca2+ release from the sarcoplasmic reticulum (SR). We show that voltage-gated Ca2+ channels in arterial myocytes mediate fast Ca2+ release from the SR and contraction without the need of Ca2+ influx. After sensing membrane depolarization, Ca2+ channels activate G proteins and the phospholipase C-inositol 1,4,5-trisphosphate (InsP3) pathway. Ca2+ released through InsP3-dependent channels of the SR activates ryanodine receptors to amplify the cytosolic Ca2+ signal. These observations demonstrate a new mechanism of signaling SR Ca(2+)-release channels and reveal an unexpected function of voltage-gated Ca2+ channels in arterial myocytes. Our findings may have therapeutic implications as the calcium-channel-induced Ca2+ release from the SR can be suppressed by Ca(2+)-channel antagonists.  相似文献   

8.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP3R) is an endoplasmic reticulum-localized Ca2+ -release channel that controls complex cytoplasmic Ca(2+) signaling in many cell types. At least three InsP3Rs encoded by different genes have been identified in mammalian cells, with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. To examine regulation of channel gating of the type 3 isoform, recombinant rat type 3 InsP3R (r-InsP3R-3) was expressed in Xenopus oocytes, and single-channel recordings were obtained by patch-clamp electrophysiology of the outer nuclear membrane. Gating of the r-InsP3R-3 exhibited a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). In the presence of 0.5 mM cytoplasmic free ATP, r-InsP3R-3 gating was inhibited by high [Ca2+]i with features similar to those of the endogenous Xenopus type 1 Ins3R (X-InsP3R-1). Ca2+ inhibition of channel gating had an inhibitory Hill coefficient of approximately 3 and half-maximal inhibiting [Ca2+]i (Kinh) = 39 microM under saturating (10 microM) cytoplasmic InsP3 concentrations ([InsP3]). At [InsP3] < 100 nM, the r-InsP3R-3 became more sensitive to Ca2+ inhibition, with the InsP(3) concentration dependence of Kinh described by a half-maximal [InsP3] of 55 nM and a Hill coefficient of approximately 4. InsP(3) activated the type 3 channel by tuning the efficacy of Ca2+ to inhibit it, by a mechanism similar to that observed for the type 1 isoform. In contrast, the r-InsP3R-3 channel was uniquely distinguished from the X-InsP3R-1 channel by its enhanced Ca2+ sensitivity of activation (half-maximal activating [Ca2+]i of 77 nM instead of 190 nM) and lack of cooperativity between Ca2+ activation sites (activating Hill coefficient of 1 instead of 2). These differences endow the InsP3R-3 with high gain InsP3-induced Ca2+ release and low gain Ca2+ -induced Ca2+ release properties complementary to those of InsP3R-1. Thus, distinct Ca2+ signals may be conferred by complementary Ca2+ activation properties of different InsP3R isoforms.  相似文献   

9.
Effects of the alpha 2-adrenergic agonist clonidine on insulin release, membrane potential, and cytoplasmic free Ca2+ concentration ([Ca2+]i) were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Addition of 2 microM clonidine promptly inhibited glucose-stimulated insulin release, an effect accompanied by a lowering in both membrane potential and [Ca2+]i. Within minutes, the effect on Ca2+ was partly reversed, [Ca2+]i attaining a new level, although still significantly lower than in the absence of agonist. This late increase in [Ca2+]i was inhibited by 50 microM D-600, a blocker of voltage-activated Ca2+ channels. The inhibitory effects of clonidine on membrane potential, [Ca2+]i, and insulin release were abolished by 5 microM of the alpha 2-adrenergic antagonist yohimbine. Depolarization with high K+ increased [Ca2+]i also in the presence of clonidine, conditions accompanied by only a minute release of insulin. Secretion was, however, partly restored by subsequent addition of 20 mM glucose. Addition of 5 mM Ca2+ transiently reversed the effects of clonidine on both membrane potential and [Ca2+]i. Although the clonidine-induced repolarization should be enough for closing the voltage-activated Ca2+ channels with a resulting decrease in [Ca2+]i, a direct interaction of the agonist with these channels cannot be excluded. The fact that it was possible to increase [Ca2+]i with only a minor effect on insulin release suggests that the inhibitory effect of clonidine not only is due to a reduction in [Ca2+]i, but also involves interference with some more distal step in the insulin secretory machinery.  相似文献   

10.
In cultured neonatal islet cells, glucose (16.7 mM) and K+ (50 mM) increased cytosolic free Ca2+ ([Ca2+]i). The increments in [Ca2+]i induced by either glucose or K+ were similar to those obtained in cultured adult islet cells but only half of that recorded in freshly isolated adult islet cells. These data indicate that, in neonatal islet cells, the reduced insulin release in response to glucose is associated with a diminished increase in [Ca2+]i. This reduced insulin response may not solely be due to an impaired regulation of the ATP-sensitive K+ channels as previously suggested. It may also result from some alteration in the process of Ca2+ inflow through voltage-sensitive Ca2+ channels.  相似文献   

11.
In Madin-Darby canine kidney (MDCK) cells, the effect of nortriptyline, an antidepressant, on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Nortriptyline (> 10 microM) caused a rapid increase of [Ca2+]i in a concentration-dependent manner (EC50 = 75 microM). Nortriptyline-induced [Ca2+]i increase was prevented by 40% by removal of extracellular Ca2+ but was not altered by voltage-gated Ca2+ channel blockers. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i, increase, after which the increasing effect of nortriptyline on [Ca2+], was abolished; also, pretreatment with nortriptyline reduced a large portion of thapsigargin-induced [Ca2+]i increase. U73122, an inhibitor of phospholipase C, abolished ATP (but not nortriptyline)-induced [Ca2+]i increase. Overnight incubation with 10 microM nortriptyline decreased cell viability by 16%, and 50 microM nortriptyline killed all cells. Prechelation of cytosolic Ca2+ with BAPTA did not alter nortriptyline-induced cell death. These findings suggest that nortriptyline rapidly increased [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and was cytotoxic at higher concentrations in a Ca(2+)-dissociated manner.  相似文献   

12.
Changes in the intracellular free calcium concentration ([Ca2+]i) control many important processes in excitable and nonexcitable cells. In cerebellar Purkinje neurons, increases in [Ca2+]i modulate excitability by turning on calcium-activated potassium and chloride conductances, and modifying the synaptic efficacy of inhibitory and excitatory inputs to the cell. Calcium release from the intracellular stores plays an important role in the regulation of [Ca2+]i. Purkinje neurons contain both inositol trisphosphate (InsP3) and ryanodine (Ry) receptors. With the exception of the dendritic spines, where only InsP3 receptors are found, InsP3 and Ry receptors are present in the entire cell. The distribution of the two calcium release channels, however, is not uniform, and it has been suggested that InsP3 and Ry receptors use separate Ca2+ pools. The functional properties of InsP3 and Ry Ca2+ pools were investigated by flash photolysis and single-cell microspectrofluorimetry. It was found that depletion of ryanodine-sensitive Ca2+ stores renders InsP3 incapable of releasing more Ca2+ from the stores. Abolishing calcium-induced calcium release by blocking ryanodine receptors with ruthenium red did not have a significant effect on InsP3-evoked Ca2+ release. It is concluded that InsP3 receptors use the same functional Ca2+ pool as that utilized by Ry receptors in Purkinje neurons.  相似文献   

13.
Calcium seems to be a major second messenger involved in the regulation of prostatic cell functions, but the mechanisms underlying its control are poorly understood. We investigated spatiotemporal aspects of Ca2+ signals in the LNCaP cell line, a model of androgen-dependent prostatic cells, by using non-invasive external electric field pulses that hyperpolarize the anode facing membrane and depolarize the membrane facing the cathode. Using high-speed fluo-3 confocal imaging, we found that an electric field pulse (10-15 V/cm, 1-5 mA, 5 ms) initiated rapidly, at the hyperpolarized end of the cell, a propagated [Ca2+]i wave which spread through the cell with a constant amplitude and an average velocity of about 20 microns/s. As evidenced by the total wave inhibition either by the block of Ca2+ entry or the depletion of Ca2+ stores by thapsigargin, a specific Ca(2+)-ATPase inhibitor, the [Ca2+]i wave initiation may imply a localized Ca2+ influx linked to a focal auto-regenerative process of Ca2+ release. Using different external Ca2+ and Ca2+ entry blockers concentrations, Mn2+ quenching of fluo-3 and fura-2 fluorescence and inhibitors of InsP3 production, we found evidence that the [Ca2+]i wave progression required, in the presence of basal levels of InsP3, an interplay between Ca2+ release from InsP3-sensitive Ca2+ stores and Ca2+ influx through channels possibly activated by the [Ca2+]i rise.  相似文献   

14.
Inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ release from intracellular stores displays complex kinetic behavior. While it well established that cytosolic [Ca2+] can modulate release by acting on the InsP3 receptor directly, the role of the filling state of internal Ca2+stores in modulating Ca2+ release remains unclear. Here we have reevaluated this topic using a technique that permits rapid and reversible changes in free [Ca2+] in internal stores of living intact cells without altering cytoplasmic [Ca2+], InsP3 receptors, or sarcoendoplasmic reticulum Ca2+ ATPases (SERCAs). N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylene diamine (TPEN), a membrane-permeant, low affinity Ca2+ chelator was used to manipulate [Ca2+] in intracellular stores, while [Ca2+] changes within the store were monitored directly with the low-affinity Ca2+ indicator, mag-fura-2, in intact BHK-21 cells. 200 microM TPEN caused a rapid drop in luminal free [Ca2+] and significantly reduced the extent of the response to stimulation with 100 nm bradykinin, a calcium-mobilizing agonist. The same effect was observed when intact cells were pretreated with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid(acetoxymethyl ester) (BAPTA-AM) to buffer cytoplasmic [Ca2+] changes. Although inhibition of Ca2+ uptake using the SERCA inhibitor tBHQ permitted significantly larger release of Ca2+ from stores, TPEN still attenuated the release in the presence of tBHQ in BAPTA-AM-loaded cells. These results demonstrate that the filling state of stores modulates the magnitude of InsP3-induced Ca2+release by additional mechanism(s) that are independent of regulation by cytoplasmic [Ca2+] or effects on SERCA pumps.  相似文献   

15.
Oscillations of free intracellular Ca2+ concentration ([Ca2+]i) are known to occur in many cell types during physiological cell signaling. To identify the basis for the oscillations, we measured both [Ca2+]i and extracellular Ca2+ concentration ([Ca2+]o) to follow the fate of Ca2+ during stimulation of [Ca2+]i oscillations in pancreatic acinar cells. [Ca2+]i oscillations were initiated by either t-butyloxycarbonyl-Tyr(SO3)-Nle-Gly-Tyr-Nle-Asp-2-phenylethyl ester (CCK-J), which mobilized Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-insensitive pool, or low concentration of cholecystokinin octapeptide (CCK-OP), which mobilized Ca2+ from the IP3-sensitive internal pool. Little Ca2+ efflux occurred during the oscillations triggered by CCK-J or CCK-OP in spite of a large average increase in [Ca2+]i. When internal store Ca2+ pumps were inhibited with thapsigargin (Tg) during [Ca2+]i oscillations, a rapid Ca2+ efflux occurred similar to that measured in intensely stimulated, nonoscillatory cells. Tg also stimulated 45Ca efflux from internal pools of cells stimulated with CCK-J or a low concentration of CCK-OP. Hence, a large fraction of the Ca2+ released during each spike is reincorporated by the internal store Ca2+ pumps. Surprisingly, when the increase in [Ca2+]i during stimulation of oscillations was prevented by loading the cells with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid, a persistent activation of Ca2+ release and Ca2+ efflux occurred. This was reflected as a persistent increase in [Ca2+]o in cells suspended at low [Ca2+]o or persistent efflux of 45Ca from internal stores of cells maintained at high [Ca2+]o. Since agonist-stimulated Ca2+ release evidently remains activated when [Ca2+]i is highly buffered, the primary mechanism determining Ca2+ oscillations must include an inhibition of Ca2+ release by [Ca2+]i. Loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid had no apparent effect on the levels or kinetics of IP3 formation in agonist-stimulated cells. This suggests that [Ca2+]i regulated the oscillation by inhibition of Ca2+ release independent of its possible effects on cellular levels of IP3.  相似文献   

16.
We tested the hypothesis that somatostatin (SRIF) inhibits insulin secretion from an SV40 transformed hamster beta cell line (HIT cells) by an effect on the voltage-dependent Ca2+ channels and examined whether G-proteins were involved in the process. Ca2+ currents were recorded by the whole cell patch-clamp method, the free cytosolic calcium, [Ca2+]i, was monitored in HIT cells by fura-2, and cAMP and insulin secretion were measured by radioimmunoassay. SRIF decreased Ca2+ currents, [Ca2+]i, and basal insulin secretion in a dose-dependent manner over the range of 10(-12)-10(-7)M. The increase in [Ca2+]i and insulin secretion induced by either depolarization with K+ (15 mM) or by the Ca2+ channel agonist, Bay K 8644 (1 microM) was attenuated by SRIF in a dose-dependent manner over the same range of 10(-12)-10(-7) M. the half-maximal inhibitory concentrations (IC50) for SRIF inhibition of insulin secretion were 8.6 X 10(-12) M and 8.3 X 10(-11) M for K+ and Bay K 8644-stimulated secretion and 1 X 10(-10) M and 2.9 X 10(-10) M for the SRIF inhibition of the K+ and Bay K 8644-induced rise in [Ca2+]i, respectively. SRIF also attenuated the rise in [Ca2+]i induced by the cAMP-elevating agent, isobutylmethylxanthine (1 mM) in the presence of glucose. Bay K 8644, K+ and SRIF had no significant effects on cAMP levels and SRIF had no effects on adenylyl cyclase activity at concentrations lower than 1 microM. SRIF (100 nM) did not change K+ efflux (measured by 86Rb+) through ATP-sensitive K+ channels in HIT cells. SRIF (up to 1 microM) had no significant effect on membrane potential measured by bisoxonol fluorescence. Pretreatment of the HIT cells with pertussis toxin (0.1 microgram/ml) overnight abolished the effects of SRIF on Ca2+ currents, [Ca2+]i and insulin secretion implying a G-protein dependence in SRIF's actions. Thus, one mechanism by which SRIF decreases insulin secretion is by inhibiting Ca2+ influx through voltage-dependent Ca2+ channels, an action mediated through a pertussis toxin-sensitive G-protein.  相似文献   

17.
The effects of galanin and somatostatin on insulin release, membrane potential, and cytoplasmic free Ca2+ concentration [( Ca2+]i) were investigated using beta-cells isolated from obese hyperglycemic mice. Whereas insulin release was measured in a column perifusion system, membrane potential and [Ca2+]i were measured with the fluorescent indicators bisoxonol (bis-(1,3-diethylthiobarbiturate)trimethineoxonol) and quin 2, in cell suspensions in a cuvette. Galanin (16 nM) and somatostatin (400 nM) suppressed glucose-stimulated insulin release in parallel to promoting repolarization and a reduction in [Ca2+]i. The reduction in [Ca2+]i comprised an initial nadir followed by a slow rise and the establishment of a new steady state level. The slow rise in [Ca2+]i was abolished by 50 microM D-600, a blocker of voltage-activated Ca2+ channels. Both peptides suppressed insulin release even when [Ca2+]i was raised by 25 mM K+. Under these conditions the inhibition of insulin release was partly reversed by an increase in the glucose concentration. Addition of 5 mM Ca2+ to a cell suspension, incubated in the presence of 20 mM glucose and either galanin, somatostatin, or the alpha 2-adrenergic agonist clonidine (10 nM), induced oscillations in [Ca2+]i, this effect disappearing subsequent to the addition of D-600. The effects of galanin, somatostatin, and clonidine on [Ca2+]i were abolished in beta-cells treated with pertussis toxin. In accordance with measurements of [Ca2+]i, treatment with pertussis toxin reversed the inhibitory effect of galanin on insulin release. The inhibitory action of galanin and somatostatin on insulin release is probably accounted for by not only a repolarization-induced reduction in [Ca2+]i and a decreased sensitivity of the secretory machinery to Ca2+, but also by a direct interaction with the exocytotic process. It is proposed that these effects are mediated by a pertussis toxin-sensitive GTP-binding protein.  相似文献   

18.
The cytoplasmic concentration of ionized Ca2+ [( Ca2+]i) was determined in 3T3-L1 cells during their differentiation from fibroblasts to adipocytes, suspended and loaded with the fluorescent Ca2+ indicators quin2 or indo-1. In undifferentiated fibroblasts, as well as in differentiated adipocytes up to day 9, [Ca2+]i was steady around 170 nM, and it increased significantly only in old adipocytes (day 12). During differentiation, stimulation of glucose uptake by insulin increased from a few percent to severalfold. Stimulation of uptake was already apparent after 10 min of addition of the hormone, and 10 nM insulin produced maximal stimulation in 30 min. Insulin (10(-6) M) added to quin2- or indo-1-loaded, suspended adipocytes had no detectable effect on [Ca2+]i for at least 10 min. In contrast, addition of the general anesthetic halothane increased [Ca2+]i from 172 to 251 nM in 3 min. In EGTA solution, the Ca2+ ionophore ionomycin elicited release of Ca2+ from intracellular stores that resulted in a transient increase in [Ca2+]i. A smaller but measurable Ca2+ release from intracellular stores (increasing [Ca2+]i by 20 nM) resulted upon addition of 20 micrograms/ml phosphatidic acid. In contrast, insulin did not produce any detectable release of Ca2+ from intracellular stores. Incubation of 3T3-L1 adipocytes with insulin in the presence of EGTA (the latter in excess over the Ca2+ concentration of the medium) did not prevent the stimulation of hexose uptake by the hormone, indicating that extracellular Ca2+ does not play a role in the insulin response. Furthermore, incubation of cells with quin2/AM in EGTA medium during exposure to insulin did not prevent stimulation of hexose uptake. Under these conditions it is demonstrated that intracellular quin2 suffices to chelate cytoplasmic Ca2+ even if releasable Ca2+ from intracellular stores were to pour into the cytoplasm. Thus, quin2 effectively lowers [Ca2+]i without impairing insulin action. It is concluded that insulin does not produce changes in [Ca2+]i and that chelating intracellular Ca2+ does not prevent stimulation of hexose uptake by insulin. These results suggest that it is unlikely that changes in [Ca2+]i may play a role in the transduction of information in insulin stimulation of glucose uptake in 3T3-L1 adipocytes.  相似文献   

19.
Influence of basal glucose concentration on the response evoked by subsequent stimulation with the sugar, was evaluated by investigating changes in free cytoplasmic Ca2+ concentration, [Ca2+]i, and insulin release, using beta-cells isolated from obese hyperglycemic mice. When increasing the glucose concentration from 0 to either 11 or 20 mM, there was a transient decrease in both [Ca2+]i and insulin release. The decrease was followed by a pronounced increase in both of the parameters. When increasing the basal glucose concentration, the initial decrease gradually disappeared, being abolished already at 5 mM of the sugar and the subsequent increase appeared more rapidly. It is suggested that the observed decrease in [Ca2+]i and thereby insulin release reflects a phenomenon associated with fuel deprived beta-cells.  相似文献   

20.
Binding of mitogenic lectins to T lymphocytes results in elevated cytoplasmic Ca2+ concentrations ([Ca2+]i). This change in [Ca2+]i is thought to be essential for cellular proliferation. In addition, the lectins increase the conductance to K+ through voltage-sensitive channels. Based on the inhibitory effect of K+ channel blockers on lectin-induced mitogenesis, it has been suggested that Ca2+ could enter the cells through these activated K+ channels (Chandy, K. G., De Coursey, T. E., Cahalan, M. D., McLaughlin, C., and Gupta, S. (1984) J. Exp. Med. 160, 369-385; Chandy, K. G., De Coursey, T. E., Cahalan, M. D., and Gupta, S. (1985) J. Clin. Immunol. 5, 1-5). This hypothesis was tested experimentally by measuring the effect of activation or blockade of K+ channels on [Ca2+]i using quin-2 and indo-1 and by determining the effect of K+ channel blockers on lectin-induced proliferation. We found that: depolarization of the membrane, which is expected to open the K+ channels, failed to increase [Ca2+]i, K+ channel blockers such as tetraethylammonium and 4-aminopyridine had only a marginal effect on the lectin-induced increase in [Ca2+]i, and the inhibitory effect of K+ channel blockers on proliferation was found to be nonspecific, occurring also when proliferation was triggered by phorbol esters under conditions where [Ca2+]i is not elevated. It is concluded that the lectin-induced changes in [Ca2+]i are not mediated by the opening of voltage-gated K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号