首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Due to its high productivity and sucrose content, sugarcane (Saccharum officinarum) is becoming the source of high-value bioproducts. Expression of bacterial extracellular polysaccharide genes in non-biopolymer accumulating plants is an excellent resource for production of added-value products. To this end, an expression cassette containing a full-length glucosyltransferase (gtfI) gene from Streptococcus downei driven by a CaMV promoter was expressed in a commercial sugarcane cultivar (CP48-103) using a biolistic approach. Copy number was assessed for a number of selected transgenic sugarcane lines by DNA blot analysis, where it was corroborated that each transgenic line contained at least two gtfI copies. The southern blot analysis of gtfI-expressing lines showed that the number of integrated copies ranged from two to four. The expression of gtfI in transgenic sugarcane plants was confirmed by mRNA blot analysis and qRT-PCR analysis. The expression of gtfI in transgenic sugarcane plants resulted in an approximate 30% reduction in sucrose accumulation, suggesting that mutansucrase actively converted sucrose to mutan polymer. In internodal stalk tissues, mutan polymer accumulated up to 55.9 mg/g FW, which apparent through glucan staining. The levels of glucose and fructose increased nearly by twofold, suggesting that mutansucrase may also have hydrolyzing activity.

  相似文献   

2.
Nitrogen and light are critical determinants of biomass accumulation and secondary metabolite production under in vitro culture conditions. In this study, we analyzed the effects of varied concentrations of total nitrogen in Murashige and Skoog (MS) medium and light intensity on the production of biomass, anthocyanin pigments, and bioactive antioxidants in callus cultures of Abelmoschus esculentus cv. ‘Hongjiao’. Maximum callus biomass accumulation (3 g FW) was achieved when calluses were cultured on MS medium containing 60 mM nitrogen under 40 μmol m??2 s??1 light intensity. In contrast, maximum values of total anthocyanin accumulation (TA; 7.3 CV/g FW), total phenolic content (TP; 12.07 mg/100 g FW), total flavonoid content (TF; 2.47?±?0.15 mg/100 g FW), and total antioxidant activity (TAA; 56.10 μmol Trolox/g FW) were observed when calluses were cultured on MS medium containing 40 mM total nitrogen under 80 μmol m??2 s??1 light intensity. In addition, callus grown under same culture condition exhibited high flavonoid content along with increased phenolic content and antioxidant activity. High performance liquid chromatography (HPLC) was performed for qualitative and quantity analysis of callus cultures. Most of the pigments from the callus extracts were identical with pod anthocyanins, and appeared on the ODS-column HPLC with lower concentration than the main pigments of the pod tissues. These findings indicate that callus cultures of red-pod okra represent a potential source of bioactive compounds with antioxidant properties for industrial applications.  相似文献   

3.
Selection genes are routinely used in plant genetic transformation protocols to ensure the survival of transformed cells by limiting the regeneration of non-transgenic cells. In order to find alternatives to the use of antibiotics as selection agents, we followed a targeted approach utilizing a plant gene, encoding a mutant form of the enzyme acetolactate synthase, to convey resistance to herbicides. The sensitivity of sugarcane callus (Saccharum spp. hybrids, cv. NCo310) to a number of herbicides from the sulfonylurea and imidazolinone classes was tested. Callus growth was most affected by sulfonylurea herbicides, particularly 3.6 μg/l chlorsulfuron. Herbicide-resistant transgenic sugarcane plants containing mutant forms of a tobacco acetolactate synthase (als) gene were obtained following biolistic transformation. Post-bombardment, putative transgenic callus was selectively proliferated on MS medium containing 3 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), 20 g/l sucrose, 0.5 g/l casein, and 3.6 μg/l chlorsulfuron. Plant regeneration and rooting was done on MS medium lacking 2,4-D under similar selection conditions. Thirty vigorously growing putative transgenic plants were successfully ex vitro-acclimatized and established under glasshouse conditions. Glasshouse spraying of putative transgenic plants with 100 mg/l chlorsulfuron dramatically decreased the amount of non-transgenic plants that had escaped the in vitro selection regime. PCR analysis showed that six surviving plants were als-positive and that five of these expressed the mutant als gene. This report is the first to describe a selection system for sugarcane transformation that uses a selectable marker gene of plant origin targeted by a sulfonylurea herbicide.  相似文献   

4.
Summary Bacillus polymyxa (NRRL-18475) produced a levan-type fructan (B, 26 fructofuranoside) when grown on sucrose, sugarcane juice, and sugarbeet molasses. The organism converted about 46% of the fructose moiety of sucrose to levan when grown on sucrose medium, however, the yields of levan from sugarcane juice and beet molasses were much less than sucrose solution. Such sugarcane juice and beet molasses can be made a good substrate for levan production by various modifications. Adding peptone to sugarcane juice or passing beet molasses through a column of gel filtration media improved levan yield to a level almost comparable to that obtained from sucrose.  相似文献   

5.
Six day old rice seedlings (Oryza sativa L. cv. Bahía) were grown for 5 or 10 days in a nutrient solution with either Cd (0.01, 0.1 mmol/l) or Ni (0.1, 0.5 mmol/l). Both Cd and Ni reduced the length of shoots and roots depending on the concentration and type of ion tested. On the other hand, the dry weight to fresh weight ratio was increased by heavy metal treatments, especially in the aerial part of 0.5 mmol/l Ni treated plants. The application of 0.1 mmol/l Cd and 0.5 mmol/l Ni to the seedlings produced an inhibition of the transport of carbohydrate reserves from the seeds from which plants were developing, to the rest of the plant. Net photosynthesis was also inhibited in treated plants. However, the total carbohydrate content in the shoots of these plants was higher than in controls. Thus, the starch, soluble sugars and sucrose content in the shoots of 0.5 mmol/l Ni treated plants was respectively up to 2.6, 2.8 and 4 times greater compared to controls. The distribution of assimilates between organs was also affected by the treatment: the carbohydrate content increased in the stem and second leaf but it was not affected or decreased in the root and third leaf. Although less evident, the effect of Cd on carbohydrate distribution and content was similar to that of Ni. The possible mechanisms involved in the abnormal carbohydrate accumulation and distribution are discussed.Abbreviations 0 DT plants at day zero of treatment - 5 DT five days treated plants - 10 DT ten days treated plants - DW dry weight - FW fresh weight  相似文献   

6.
Fructan biosynthesis in transgenic plants   总被引:14,自引:0,他引:14  
Data from plants transformed to accumulate fructan are assessed in the context of natural concentrations of reserve carbohydrates and natural fluxes of carbon in primary metabolism: Transgenic fructan accumulation is universally reported as an instantaneous endpoint concentration. In exceptional cases, concentrations of 60-160 mg g(-1) fresh mass were reported and compare favourably with naturally occurring maximal starch and fructan content in leaves and storage organs. Generally, values were less than 20 mg g(-1) for plants transformed with bacterial genes and <9 mg g(-1) for plant-plant transformants. Superficially, the results indicate a marked modification of carbon partitioning. However, transgenic fructan accumulation was generally constitutive and involved accumulation over time-scales of weeks or months. When calculated as a function of accumulation period, fluxes into the transgenic product were low, in the range 0.00002-0.03 nkat g(-1). By comparison with an estimated minimum daily carbohydrate flux in leaves for a natural fructan-accumulating plant in field conditions (37 nkat g(-1)), transgenic fructan accumulation was only 0.00005-0.08% of primary carbohydrate flux and does not indicate radical modification of carbon partitioning, but rather, a quantitatively minor leakage into transgenic fructan. Possible mechanisms for this low fructan accumulation in the transformants are considered and include: (i) rare codon usage in bacterial genes compared with eukaryotes, (ii) low transgene mRNA concentrations caused by low expression and/or high turnover, (iii) resultant low expression of enzyme protein, (iv) resultant low total enzyme activity, (v) inappropriate kinetic properties of the gene products with respect to substrate concentrations in the host, (vi) in situ product hydrolysis, and (vii) levan toxicity. Transformants expressing bacterial fructan synthesis exhibited a number of aberrant phenotypes such as stunting, leaf bleaching, necrosis, reduced tuber number and mass, tuber cortex discoloration, reduction in starch accumulation, and chloroplast agglutination. In severe cases of developmental aberration, potato tubers were replaced by florets. Possible mechanisms to explain these aberrations are discussed. In most instances, the attempted subcellular targeting of the transgene product was not demonstrated. Where localization was attempted, the transgene product generally mis-localized, for example, to the cell perimeter or to the endomembrane system, instead of the intended target, the vacuole. Fructosyltransferases exhibited different product specificities in planta than in vitro, expression in planta generally favouring the formation of larger fructan oligomers and polymers. This implies a direct influence of the intracellular environment on the capacity for polymerization of fructosyltransferases and may have implications for the mechanism of natural fructan polymerization in vivo.  相似文献   

7.
The activities of sucrose-phosphate synthase (SPS), sucrose synthase (SUSY), neutral invertase (NI) and soluble acid invertase (SAI) regulates sucrose activity in sugarcane were studied. Micropropagated sugarcane plants were obtained from callus cultures of four Mexican commercially available sugarcane varieties characterized by differences in sugar production, and activities of SPS, SUSY, NI, SAI and concentrations of sucrose were monitored in the sugarcane stem. The results indicated that sucrose accumulation was positively and significantly related to an increase in activity of SPS and SUSY and negatively to a reduction in activity of SAI and NI (P<0.05). SPS explained most of the variations found for sucrose accumulation and least for NI. The relationship between activity of SPS, SUSY, NI and SAI in sugarcane stem was similar in each variety.  相似文献   

8.
We studied the storage of sucrose, starch, and hexose before heading in rice (Oryza sativa L.) plants by quantitative trait locus (QTL) analysis with a population of backcross inbred lines (BILs) of japonica cv. Nipponbare x indica cv. Kasalath. Carbohydrates are accumulated in the rice plant before heading and are translated to the panicle after heading. A higher capacity for accumulation is thus a main target for improvement in yield. The form of carbohydrate (sucrose, starch, or hexose) differs depending on the organ in which it is stored. There was no correlation between starch and sucrose or hexose contents in BILs, and the positions of QTLs controlling starch differed from those for sucrose and hexose accumulation. These results suggest that the genetic control of accumulation differs between starch and sugars. QTLs that control the ratio of sucrose to starch content were detected, suggesting the existence of a mechanism(s) that determines this ratio. On chromosome 1, sucrose-phosphate synthase 1, the key enzyme in sucrose synthesis was close to the peaks of the likelihood odds ratios in QTLs for sucrose or hexose content. These results suggest that SPS1 is related to conversion of carbohydrate to sucrose as accumulated form in a plant before heading.  相似文献   

9.
Diterpenoids in higher plants are biosynthesized from isoprene units obtained from two distinct pathways: the mevalonate pathway and the deoxyxylulose phosphate pathway. The metabolic partitioning of both pathways in plant species is dependent upon the type of culture. In order to study the diterpenoid biosynthesis in Croton stellatopilosus cell culture, callus culture was firstly induced from C. stellatopilosus young leaves in Murashige and Skoog (MS) medium in the presence of 1.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), 1.0 mg/l benzyladenine (BA), 3% (w/v) sucrose and 0.8% (w/v) agar. The suspension culture was further induced from its callus in the same medium without gelling agent. Detection of diterpenoid accumulation by gas chromatography-mass spectrometry revealed that a cell culture could accumulate a low amount of geranylgeraniol (GGOH) and a high content of fatty acids and phytosterols. To improve the GGOH production, the culture conditions were optimized by medium manipulation in terms of hormonal factors. The growth rates of cell cultures were similar in all kinds of media. The GGOH production curve indicated that GGOH plays an important role as a primary metabolite in the cell culture. The optimum medium for GGOH production was MS medium supplemented with 2.0 mg/l 2,4-D and 2 mg/l BA that could produce GGOH with a yield of 1.14 mg/g FW.  相似文献   

10.
Inhibition of starch biosynthesis in transgenic potato (Solanum tuberosum L. cv. Désirée) plants (by virtue of antisense inhibition of ADP-glucose pyrophosphorylase) has recently been reported to influence tuber formation and drastically reduce dry matter content of tubers, indicating a reduction in sink strength (Müller-Röber et al. 1992, EMBO J 11: 1229–1238). Transgenic tubers produced low levels of starch, but instead accumulated high levels of soluble sugars. We wanted to know whether these changes in tuber development/sink strength could be reversed by the production of a new high-molecular-weight polymer, i.e. fructan, that incorporates sucrose and thereby should reduce the level of osmotically active compounds. To this end the enzyme levan sucrase from the gram-negative bacterium Erwinia amylovora was expressed in tubers of transgenic potato plants inhibited for starch biosynthesis. Levan sucrase was targeted to different subcellular compartments (apoplasm, vacuole and cytosol). Only in the case of apoplastic and vacuolar targeting was significant accumulation of fructan observed, leading to fructan representing between 12% and 19% of the tuber dry weight. Gel filtration and 13C-nuclear magnetic resonance spectroscopy showed that the molecular weight and structure of the fructan produced in transgenic plants is identical to levan isolated from E. amylovora. Whereas apoplastic expression of levansucrase had deleterious effects on tuber development, tubers containing the levansucrase in the vacuole did not differ in phenotype from tubers of the starch-deficient plants used as starting material for transformation with the levansucrase. When tuber yield was analysed, no increase but rather a further decrease relative to ADP-glucose pyrophosphorylase antisense plants was observed.Abbreviations CaMV cauliflower mosaic virus - NMR nuclear magnetic resonance We gratefully acknowledge Dr. Ulrich Eder (Schering AG, Berlin, Germany) for performing 13C-NMR spectroscopy, and Dr. Susanne Hoffmann-Benning (Institut für Genbiologische Forschung) for introducing us to immunohistochemistry. We thank Jessyca Dietze for plant transformations, Birgit Burose for taking care of greenhouse plants, and Antje Voigt for photographic work.  相似文献   

11.
There is evidence suggesting that in plants changes in the photosynthetic source/sink balance are an important factor that regulates leaf photosynthetic rate through affects on the leaf carbohydrate status. However, to resolve the regulatory mechanism of leaf photosynthetic rate associated with photosynthetic source/sink balance, information, particularly on mutual relationships of experimental data that are linked with a variety of photosynthetic source/sink balances, seems to be still limited. Thus, a variety of manipulations altering the plant source/sink ratio were carried out with soybean plants, and the mutual relationships of various characteristics such as leaf photosynthetic rate, carbohydrate content and the source/sink ratio were analyzed in manipulated and non-manipulated control plants. The manipulations were removal of one-half or all pods, removal of one-third or two-third leaves, and shading of one-third or one-half leaves with soybean plants grown for 8 weeks under 10 h light (24 degrees C) and 14 h darkness (17 degrees C). It was shown that there were significant negative correlations between source/sink ratio (dry weight ratio of attached leaves to other all organs) and leaf photosynthetic rate; source/sink ratio and activation ratio (percentage of initial activity to total activity) of Rubisco in leaf extract; leaf carbohydrate (sucrose or starch) content and photosynthetic rate; carbohydrate (sucrose or starch) content and activation ratio of Rubisco; amount of protein-bound ribulose-1,5-bisphosphate (RuBP) in leaf extract and leaf photosynthetic rate; and the amount of protein-bound RuBP and activation ratio of Rubisco. In addition, there were significant positive correlations between source/sink ratio and leaf carbohydrate (sucrose or starch) content; source/sink ratio and the amount of protein-bound RuBP; carbohydrate (sucrose or starch) content and amount of protein-bound RuBP and the activation ratio of Rubisco and leaf photosynthetic rate. The plant water content, leaf chlorophyll and Rubisco contents were not affected significantly by the manipulations. There is a previous report in Arabidopsis thaliana that the amount of protein-bound RuBP in leaf extract correlates negatively with the activation ratio of Rubisco in the leaf extract. Therefore, the results obtained from the manipulation experiments indicate that there is a regulatory mechanism for the leaf photosynthetic rate that correlates negatively with leaf carbohydrate (sucrose and starch) status and positively with the activation state of Rubisco under a variety of photosynthetic source/sink balances.  相似文献   

12.
An efficient in planta sugarcane-based production system may be realized by coupling the synthesis of alternative products to the metabolic intermediates of sucrose metabolism, thus taking advantage of the sucrose-producing capability of the plant. This was evaluated by synthesizing sorbitol in sugarcane (Saccharum hybrids) using the Malus domestica sorbitol-6-phosphate dehydrogenase gene (mds6pdh). Mature transgenic sugarcane plants were compared with untransformed sugarcane variety Q117 by evaluation of the growth, metabolite levels and extractable activity of relevant enzymes. The average amounts of sorbitol detected in the most productive line were 120 mg/g dry weight (equivalent to 61% of the soluble sugars) in the leaf lamina and 10 mg/g dry weight in the stalk pith. The levels of enzymes involved in sucrose synthesis and cleavage were elevated in the leaves of plants accumulating sorbitol, but this did not affect sucrose accumulation in the culm. The activity of oxidative reactions in the pentose phosphate pathway and the non-reversible glyceraldehyde-3-phosphate dehydrogenase reaction were elevated to replenish the reducing power consumed by sorbitol synthesis. Sorbitol-producing sugarcane generated 30%-40% less aerial biomass and was 10%-30% shorter than control lines. Leaves developed necrosis in a pattern characteristic of early senescence, and the severity was related to the relative quantity of sorbitol accumulated. When the Zymomonas mobilis glucokinase (zmglk) gene was co-expressed with mds6pdh to increase the production of glucose-6-phosphate, the plants were again smaller, indicating that glucose-6-phosphate deficiency was not responsible for the reduced growth. In summary, sorbitol hyperaccumulation affected sugarcane growth and metabolism, but the outcome was not lethal for the plant. This work also demonstrated that impressive yields of alternative products can be generated from the intermediates of sucrose metabolism in Saccharum spp.  相似文献   

13.
Experiments are described which improve the protocols for initiating in vitro cultures of sugarcane and allowing efficient regeneration of plants even after 30 months of callus proliferation. Procedures adopted included use of leaf base explants, CS medium with 3 mg/l 2, 4-D and 0.25 mg/l kinetin for callus initiation and growth, MS medium with 0.5 mg/l IAA and 1 mg/l BAP for shoots, MS medium with 5 mg/l NAA and 7% (wt/vol) sucrose for rooting of shoots. Casein hydrolysate (N-Z amine) significantly shortened the lag period in the growth of sugarcane suspension cultures, but did not increase the rate of growth following the lag phase. Protoplasts isolated from two types of cultures could be grown to re-establish cell cultures but no plants have yet been regenerated derived from isolated protoplasts.  相似文献   

14.
The influence of osmotic stress on capsaicin production was investigated in cell suspension cultures of Capsicum chinense Jacq.cv. Naga King Chili, a chili species native to Northeastern India. The sterilized seeds were germinated in Murashige and Skoog medium. Two-week-old hypocotyls were excised from in vitro germinated seedlings and implanted in MS medium containing 2, 4-dichlorophenoxyacetic acid (2?mg/l), and Kinetin (0.5?mg/l) for callus induction. Capsaicin production in the suspension cultures was significantly affected using sucrose, mannitol, and NaCl in the medium. Stoichiometric analysis with different combinations of sucrose and non-sugar osmotic agent (NaCl) showed that osmotic stress was an important factor for enhancing capsaicin production in cell suspension cultures of C. chinense. The capsaicin content of 1,644.1???g?g?1 f.wt was recorded on day 15 in cultures grown in MS medium containing 87.64?mM sucrose in combination with 40?mM NaCl. However, osmotic stress treatment at 160?mM NaCl with sucrose resulted in lowering capsaicin accumulation and separation of cell wall from their cytoplasm, under microscopic observation.  相似文献   

15.
The bioindustrial production of fuels, chemicals, and therapeutics typically relies upon carbohydrate inputs derived from agricultural plants, resulting in the entanglement of food and chemical commodity markets. We demonstrate the efficient production of sucrose from a cyanobacterial species, Synechococcus elongatus, heterologously expressing a symporter of protons and sucrose (cscB). cscB-expressing cyanobacteria export sucrose irreversibly to concentrations of >10 mM without culture toxicity. Moreover, sucrose-exporting cyanobacteria exhibit increased biomass production rates relative to wild-type strains, accompanied by enhanced photosystem II activity, carbon fixation, and chlorophyll content. The genetic modification of sucrose biosynthesis pathways to minimize competing glucose- or sucrose-consuming reactions can further improve sucrose production, allowing the export of sucrose at rates of up to 36.1 mg liter(-1) h illumination(-1). This rate of production exceeds that of previous reports of targeted, photobiological production from microbes. Engineered S. elongatus produces sucrose in sufficient quantities (up to ~80% of total biomass) such that it may be a viable alternative to sugar synthesis from terrestrial plants, including sugarcane.  相似文献   

16.
17.
A good culture system provides considerable quantities of highly regenerable target tissues. Embryogenic callus cultures are ideal for micro-projectile-mediated transformation, because regenerable cells are not very stable. Effective exploitation of genetic transformation requires good regeneration systems. We selected three sugarcane genotypes for the establishment and optimization of good in vitro regeneration systems, viz., S-2003-us-359, S-2006-sp-30, and S-2003-us-165. Three callus induction media were investigated. These media were composed of Murashige and Skoog (MS) medium salt plus 1, 2, and 3 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D). Medium with 3 mg/L 2,4-D gave the greatest mass of embryogenic calli. The calli produced on the three callus induction media were transferred to 18 types of regeneration media (RM1-RM18). They varied with respect to plant growth regulators and sucrose levels but the basal medium was MS. Two levels of sucrose (30 and 40 g/L), three levels of 2,4-D (0.1, 0.25, 0.5 mg/L) and three levels of 6-benzylaminopurine (0, 0.25 and 0.5 mg/L) were studied in the regeneration media. The effects of callus age on regeneration were evaluated by transferring the calli to regeneration media after 15, 21, 28, and 35 days of culture. The 21-day-old callus of the genotype S-2003-us-359 on RM3 yielded the largest number of plants and was selected as the best for transformation. Six RAPD DNA primers were used to check genetic stability; this medium did not affect the sugarcane genomes.  相似文献   

18.
To change the hexose-to-sucrose ratio within phloem cells, yeast-derived cytosolic invertase was expressed in transgenic potato (Solanum tuberosum cv. Desirée) plants under control of the rolC promoter. Vascular tissue specific expression of the transgene was verified by histochemical detection of invertase activity in tuber cross-sections. Vegetative growth and tuber yield of transgenic plants was unaltered as compared to wild-type plants. However, the sprout growth of stored tubers was much delayed, indicating impaired phloem-transport of sucrose towards the developing bud. Biochemical analysis of growing tubers revealed that, in contrast to sucrose levels, which rapidly declined in growing invertase-expressing tubers, hexose and starch levels remained unchanged as compared to wild-type controls. During storage, sucrose and starch content declined in wild-type tubers, whereas glucose and fructose levels remained unchanged. A similar response was found in transgenic tubers with the exception that starch degradation was accelerated and fructose levels increased slightly. Furthermore, changes in carbohydrate metabolism were accompanied by an elevated level of phosphorylated intermediates, and a stimulated rate of respiration. Considering that sucrose breakdown was restricted to phloem cells it is concluded that, in response to phloem-associated sucrose depletion or hexose elevation, starch degradation and respiration is triggered in parenchyma cells. To study further whether elevated hexose and/or hexose-phosphates or decreased sucrose levels are responsible for the metabolic changes observed, sucrose content was decreased by tuber-specific expression of a bacterial sucrose isomerase. Sucrose isomerase catalyses the reversible conversion of sucrose into palatinose, which is not further metabolizable by plant cells. Tubers harvested from these plants were found to accumulate high levels of palatinose at the expense of sucrose. In addition, starch content decreased slightly, while hexose levels remained unaltered, compared with the wild-type controls. Similar to low sucrose-containing invertase tubers, respiration and starch breakdown were found to be accelerated during storage in palatinose-accumulating potato tubers. In contrast to invertase transgenics, however, no accumulation of phosphorylated intermediates was observed. Therefore, it is concluded that sucrose depletion rather than increased hexose metabolism triggers reserve mobilization and respiration in stored potato tubers.  相似文献   

19.
In sugarcane, increased sink demand has previously been shown to result in increased photosynthetic rates that are correlated with a reduction in leaf hexose concentrations. To establish whether sink limitation of photosynthesis is a result of sugar accumulation in the leaf, excision and cold-girdling techniques were used to modify leaf sugar concentrations in pot-grown sugarcane. In excised leaves that were preincubated in darkness for 3h, sucrose accumulation was reduced but accumulated again upon transfer to the light, while hexose concentrations remained lower than in controls (7.7 micromol mg(-1)FW versus 18.6 micromol mg(-1)FW hexose in controls). These results were associated with a 66% and 59% increase in photosynthetic assimilation (A) and electron transport rate (ETR), respectively, compared to controls maintained in the light. Similar increases in photosynthesis were observed when dark-treated leaves were supplied with 5mM sorbitol, but not when supplied with 5mM sucrose. Further analyses of (14)C-labeled sugars indicated rapid turnover between sucrose and hexose. Cold-girdling (5 degrees C) increased sucrose and hexose levels and resulted in a decline of photosynthetic rates over 5d (48% and 35% decline in assimilation rate and ETR, respectively). These sugar-induced changes in photosynthesis were independent of changes in stomatal conductance. This study demonstrates that the down-regulation of photosynthesis in response to culm sugar accumulation reported previously could be due to the knock-on effect of accumulation of sugar in leaf tissue, and supports the contention that hexose, rather than sucrose, is responsible for the modulation of photosynthetic activity.  相似文献   

20.
The relationship of carbohydrate type to cholesterol-induced hypercholesterolemia and the potential role of intestinal flora in the above process were examined in 12 male cynomolgus monkeys (M. fascicularis). Semipurified diets provided two types of carbohydrates (starch or sucrose, 49% by calorie) with 0.4 mg cholesterol/kcal. Six weeks of the starch diet resulted in significantly enhanced hypercholesterolemia when compared to sucrose diet. Starch in relation to sucrose produced cholesterol enrichment of intermediate density lipoproteins and increase in low density lipoprotein particles, whereas sucrose increased high density lipoprotein constituents (phospholipids, cholesterol, and apoA-I) and triglyceride content of very low density lipoproteins. Fecal Escherichia counts were high during the starch diet as contrasted with sucrose diet, but the Escherichia, Streptococcus, and Bacteroides groups did not show differences by diet following each consecutive 4-week period of oral neomycin (107 mg/kg body wt) treatment and withdrawal. The magnitude of hypercholesterolemia during these periods also remained similar between starch and sucrose, suggesting formation of germfree metabolic characteristics. Thus, the magnitude of cholesterol-induced hypercholesterolemia can be affected by the type of carbohydrate, which may be in part determined by intestinal flora metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号